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Vertex Cover Problem

Input: Graph G = (V, E) with weights w : V — R
Goal: Find subset of vertices U C V of minimum weight covering all the

edges of the graph, i.e:

min{W(U) ‘ UcV, [Un{u vl >1 Y(uv)e E}.

Integer Programming Formulation:

min E Wy Xy

veV
xy+x,>1 V(u,v)€eE
x, €{0,1} VYveV
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Approximation Algorithms

Definition: Approximation Algorithm

An efficient algorithm for a minimization problem is a ¢-approximation if it
returns a solution U such that w(U) < ¢ w(OPT)

Vertex Cover
e NP-Hard
e NP-Hard to approximate within a factor of 1.36 [Dinur, Safra]
o NP-Hard to approximate within 2 — € for any € > 0 under the unique
games conjecture [Khot, Regev]
@ Admits an easy 2-approximation using linear programming
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Vertex Cover

Linear Programming Relaxation P(G):

min g Wy Xy

veV
Xy +x,>1 VY(u,v)eE
x>0 VvevVv

Any extreme point solution x* € [0,1]" of P(G) satisfies
o x* € {0,1}V for bipartite graphs G
e x* € {0, %, 1}V for general graphs G
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Vertex Cover

Linear Programming Relaxation P(G):

min g Wy Xy

veV
Xy +x,>1 VY(u,v)eE
x>0 VvevVv

Any extreme point solution x* € [0,1]" of P(G) satisfies
o x* € {0,1}V for bipartite graphs G
e x* € {0, %, 1}V for general graphs G

Bipartite G: exact algorithm General G: 2-approximation

Solve P(G) to get x* € {0,1}V | Solve P(G) to get x* € {0,1,1}V
Return U:={ve V|xi=1} | ReturnU:={veV|x;>1}
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Vertex Cover: LP Relaxation
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Vertex Cover: LP Relaxation

O

Vi={v|x; =1}
Vo ={v|ay =0}
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Vertex Cover: LP Relaxation

° Vi={v|a;=1}
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Vertex Cover: LP Relaxation
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Vertex Cover: LP Relaxation

Vi=A{v|z, =1}
Vi={v|zy =3}

VOZ{U|$::O}
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Vertex Cover: LP Relaxation
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Vertex Cover: LP Relaxation

Vi=A{v|z; =1}

V%:{v\ac;i:l
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Nemhauser-Trotter theorem

G2 is the subgraph induced by the half-integral nodes V.
Theorem [Nemhauser-Trotter]

Let x* € {0,1,1}Y be an optimal extreme point solution to P(G). Then,

W(OPT(gl/z)) + w(V1) = w(OPT(G)).
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Nemhauser-Trotter theorem

G2 is the subgraph induced by the half-integral nodes V5.

Theorem [Nemhauser-Trotter]

Let x* € {0,1,1}Y be an optimal extreme point solution to P(G). Then,

W(OPT(gl/z)) + w(V1) = w(OPT(G)).

Corollary

If S C Vi is a ¢p-approximate solution for Gy 5, then SU Vy is a
¢-approximate solution for G.

Proof: w(S) + w(V1) < ¢ w(OPT(Gy)2)) + w(V1) < ¢ w(OPT(G))
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Nemhauser-Trotter theorem
Corollary

If S C Vi, is a ¢p-approximate solution for Gy /5, then SU Vy is a
¢-approximate solution for G.

— We may restrict our attention to Gy /.
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Nemhauser-Trotter theorem

Corollary

If S C Vi, is a ¢p-approximate solution for Gy /5, then SU Vy is a

¢-approximate solution for G.

— We may restrict our attention to Gy /.
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Nemhauser-Trotter theorem

Corollary

If S C Vi, is a ¢p-approximate solution for Gy /5, then SU Vy is a
¢-approximate solution for G.

— We may restrict our attention to Gy /.

Vi=A{v|z, =

N |~

}

\N)

b

Question

Possible to exploit some information about Gy, for better approximation? J

7/21



Our Set-Up
Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of G 5,
i.e. Gijo \ S is a bipartite graph

New Algorithm

@ Solve the linear program P(G) to get Vo, Vi, Vi /5

o Solve the integral linear program P(Gy > \ S) to get W C V),
e Return: VUSU W
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Our Set-Up
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Suppose we have access to an odd cycle transversal S of Gy >,
i.e. Gi/o\ S is a bipartite graph

New Algorithm

@ Solve the linear program P(G) to get Vo, V1, Vy)»

o Solve the integral linear program P(Gy > \ S) to get W C V),
e Return: VUSU W

Vi={v|ax; =1}

Vi= {v

5 = 1)

Vo ={v | x;, =0}
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Our Set-Up
Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of Gy >,
i.e. Gi/o\ S is a bipartite graph

New Algorithm

@ Solve the linear program P(G) to get Vo, V1, Vy)»

o Solve the integral linear program P(Gy > \ S) to get W C V),
e Return: VUSU W
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Our Set-Up
Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of G 5,
i.e. Gijo \ S is a bipartite graph
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o Solve the integral linear program P(Gy > \ S) to get W C V),
e Return: VUSU W
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Our Set-Up
Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of Gy >,
i.e. Gi/o\ S is a bipartite graph

New Algorithm

@ Solve the linear program P(G) to get Vo, Vi, Vi /5

@ Solve the integral linear program P(Gy/, \ S) to get W C V),
e Return: VUSU W

W = OPT(G\ S)
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Our Set-Up
Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of Gy >,
i.e. Gi/o\ S is a bipartite graph

New Algorithm

@ Solve the linear program P(G) to get Vo, Vi, Vi /5

o Solve the integral linear program P(Gy > \ S) to get W C V),
e Return: VUSU W

ViuSuw
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Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm J

e Taking S = V4, recovers the standard 2-approximation.
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Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm )

Taking S = V4, recovers the standard 2-approximation.

Interpolating the rounding curve of the standard LP from 1 to 2
depending on "how far" the graph is from being bipartite.

Beyond the worst-case understanding of the approximation ratio using
additional parameters.

Algorithms with predictions: a machine learning algorithm could learn
to find a good such set S.

Exploiting TU (or integral) substructure: G’ = G\ S is an induced
bipartite subgraph, for which P(G’) is TU.

New/different view on a heavily studied problem
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High-Level View

@ Weight Space: for which weight functions w : V — R is the solution
(1/2,...,1/2) optimal?

@ Analysis of the algorithm under the assumption that S is a stable set.

@ Generalization to an arbitrary set S.

@ Algorithmic applications to find a good set S.

@ Showing optimality of the analysis.
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Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights
w : V — Ry such that (1/2,...,1/2) is an optimal solution to P(G).
Lemma

(1,...,3) isoptimal for P(G) <= 3y € RE s.t. w, = y(5(v)) Vve V.
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Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights
w : V — Ry such that (1/2,...,1/2) is an optimal solution to P(G).
Lemma

(1,...,3) isoptimal for P(G) <= 3y € RE s.t. w, = y(6(v)) Vv e V.J

w1 = Yo + Y1

y/y&V //\\
d P /

oA N

w3z = Y2 + Y3
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Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights
w : V — Ry such that (1/2,...,1/2) is an optimal solution to P(G).
Lemma

L ..., YY) isoptimal for P(G) <= 3y € RE s.t. w, = y(6(v)) Vv e V.
2 2 +

Proof. By comp. slackness, a primal-dual pair (x, y) is optimal iff

x, >0 = y((v))=w, VveV (1)
Ye>0 = x,+x,=1 Ve=(u,v)€E (2)

— Follows from condition (1)

<= The pair (3,..., 3),y satisfy both conditions (1) and (2)
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Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights
w : V — Ry such that (1/2,...,1/2) is an optimal solution to P(G).
Lemma

L ..., YY) isoptimal for P(G) <= 3y € RE s.t. w, = y(6(v)) Vv e V.
2 2 +

— w(V) = 2¢(E)
The approximation ratio w(U)/w(OPT) is invariant to scaling:
= normalize w(V)=2and y(E) =1
Weight Space
QY :={weRY |3y eRE st y(E)=1and w, = y(§(v)) VveV} ‘
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Lower Bound on OPT

Lemma

Let G = (V, E) be a graph. For any w € QW,

w(OPT(G)) > 1

Proof. Since w € QW, the solution (%, ce %) is an optimal LP solution,
by the previous slide. Its objective value (or cost) is

w(V)/2=1.
Since OPT(G) is a feasible LP solution, we get

w(OPT(G)) > 1.
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High-Level View

@ Weight Space: for which weight functions w : V — R is the solution
(1/2,...,1/2) optimal?

@ Analysis of the algorithm under the assumption that S is a stable set.

@ Generalization to an arbitrary set S.

@ Algorithmic applications to find a good set S.

@ Showing optimality of the analysis.
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Stable Set to Bipartite

G G=¢G/S G =G\S

Definition: parameter p

2p — 1 denotes the odd girth (length of the shortest odd cycle) of G.
Hence, the range is p € [2, o0]

In the above example, p = 3, since the shortest odd cycle has length 5.
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Stable Set to Bipartite
Algorithm /Approximation Ratio

Round on S and solve the integral linear program P(G \ S).

S) + w(OPT(G \ 5))

_ow(
R(w):= w(OPT(G))
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Stable Set to Bipartite
Algorithm /Approximation Ratio
Round on S and solve the integral linear program P(G \ S).

5) + w(OPT(G\ 5))
w(OPT(G))

R(w) := w(

o Every weight function is assumed WLOG to satisfy w € QW
o G = G/S is the graph obtained after contracting S
@ The odd girth of G is denoted by 2p — 1, hence p € [2, x]
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Stable Set to Bipartite
Algorithm /Approximation Ratio
Round on S and solve the integral linear program P(G \ S).

 w(5) + w(OPT(G)\ 5))
Rw) = == (0PT(0))

o Every weight function is assumed WLOG to satisfy w € QW
o G = G/S is the graph obtained after contracting S
@ The odd girth of G is denoted by 2p — 1, hence p € [2, x]

Theorem

Let (G, S) be the input, with S being a stable set. Then

1
Riw) <1+ —
(w) 5

for every w € QY. Equality holds for a convex subset W ¢ QW.
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Tool to get improved bounds
G' =G\ S is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover U C V' \ S of the bipartite graph G’, we define

EU::{(u,v)EE‘UGU, velUor ue U, VES}.

Covers Uy, ..., Uk are edge-separate if {Ey,, ..., Ey,} are pairwise disjoint.

Remark: Only need to cover E(G') = E \ 6(S), but Ey C E
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Tool to get improved bounds
G' =G\ S is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover U C V' \ S of the bipartite graph G’, we define

EU::{(u,v)GE‘UGU, velUor ue U, VGS}.

Covers Uy, ..., Uk are edge-separate if {Ey,, ..., Ey,} are pairwise disjoint.

Remark: Only need to cover E(G') = E \ 6(S), but Ey C E

Since wy, = y(4(v)), we can count the weight as
w(U) = y(E(9)) + y(Ev)

because E(G’) is counted at least once, by feasibility, with a surplus of Ey
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Tool to get improved bounds
G' =G\ S is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover U C V' \ S of the bipartite graph G’, we define

EU::{(u,v)GE‘UGU, velUor ue U, VGS}.

Covers Uy, ..., Uk are edge-separate if {Ey,, ..., Ey,} are pairwise disjoint.

v

Remark: Only need to cover E(G') = E \ 6(S), but Ey C E

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G’, then

R(W)Sl—i—% vw € QW
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Tool to get improved bounds

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G/, then R(w) <1+1/k VYw e QW.

Proof. Let w € @Y and y € RE s.t. w, = y(6(v)) and y(E) = 1. Let
{U1,..., Uk} be the edge-separate covers.

16/27



Tool to get improved bounds

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G/, then R(w) <1+1/k VYw e QW.

Proof. Let w € @Y and y € RE s.t. w, = y(6(v)) and y(E) = 1. Let
{U1,..., Uk} be the edge-separate covers.
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Tool to get improved bounds

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G/, then R(w) <1+1/k VYw e QW.

Proof. Let w € @Y and y € RE s.t. w, = y(6(v)) and y(E) = 1. Let
{U1,..., Uk} be the edge-separate covers.

w(S) =y(d(5)), w(Ui)=y(E")+y(Ey) Vi€ [k

S)+ w(OPT(G"))

_w(
R(w) = w(OPT(G))

< w(S) + w(OPT(G"))

< w(S) + min w(Uy) = y(3(5)) + y(E)) + min y(Ey)

1
—1+miny(Ey)<1+->
+,_n€1[|p]y( u) < +
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Constructing p covers

Lemma 2

There exists p edge-separate covers of g’ =(AUB,E’), where 2p —1is
the odd girth of the contracted graph G = G/S.
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Constructing p covers

Lemma 2

There exists p edge-separate covers of g’ =(AUB,E’), where 2p —1is
the odd girth of the contracted graph G = G/S.

G=¢G/S

Na(vs)

Np(vs)
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Constructing p covers

Lemma 2
There exists p edge-separate covers of G’ = (AU B, E’), where 2p — 1 is

the odd girth of the contracted graph G = G/S.

G = (Au B,E')




Constructing p covers
Lemma 2

There exists p edge-separate covers of g’ =(AUB,E’), where 2p —1is
the odd girth of the contracted graph G = G/S.

Shortest odd cycle with p = 4

o

O
o

Na(vs)

(|

[}

o

o
o [

NB(Us)

17/27
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Constructing p covers

Lemma 2

There exists p edge-separate covers of g’ =(AUB,E’), where 2p —1is
the odd girth of the contracted graph G = G/S.

L= {veAUB|d(NA(vS),v):i} Vi>0

Na(vs) L1 Lop_3
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Constructing p covers

Lemma 2

There exists p edge-separate covers of g’ =(AUB,E’), where 2p —1is
the odd girth of the contracted graph G = G/S.

Shortest odd cycle with p =4

Na(vs) L1 Lop_3
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Constructing p covers

Lemma 2

There exists p edge-separate covers of g’ =(AUB,E’), where 2p —1is
the odd girth of the contracted graph G = G/S.

Ui, ..., U, pairwise edge-separate covers of G":
= FEp = (55(1)5
E[Ly, L2] E[L3, L4]
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1+ 1/p approximation

Theorem (Upper Bound)

Let (G, S) be the input, with S being a stable set. Then R(w) <1+1/p
for every w € QW where 2p — 1 is the odd girth of G.

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G/, then R(w) <1+1/k VYw e QW.

Lemma 2

There exists p pairwise edge-separate covers of G'.
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1+ 1/p approximation

Theorem (Upper Bound)

Let (G, S) be the input, with S being a stable set. Then R(w) <1+1/p
for every w € QW where 2p — 1 is the odd girth of G.

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G/, then R(w) <1+1/k VYw e QW.

Lemma 2

There exists p pairwise edge-separate covers of G'.

Question.

Are there weight functions for which this bound is tight?
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Tightness

Theorem
IW C QW such that R(w) =1+ 1/p for every w € W. J
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Tightness

Theorem

IW C QW such that R(w) =1+ 1/p for every w € W.

Let C be all the shortest odd cycles (of length 2p — 1) of the graph G
Basic weight function corresponding to C € C

vCelC, y“:E-R,:

Set both dual edges incident to vs to 1/p and then alternatingly set the
dual edges to 0 and 1/p along the odd cycle on G.
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Tightness

Theorem
IW C QW such that R(w) =1+ 1/p for every w € W. J

y::{yERE|y:ZAC €, Y a=1, A°=0 VCEC}
cecC ceC

W= {WERV|WV:y(5(v)) Vv € V,Vyey}
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Tightness

Theorem
IW C QW such that R(w) =1+ 1/p for every w € W. J

Yi={yeRE|y =329 D A=1 A>0 vcec]
ceC ceC

W = {WERV|WV:y(6(v)) Vv € V,Vyey}

0 1 A1
P
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Tightness

Theorem
IW C QW such that R(w) =1+ 1/p for every w € W. J

Yi={yeRE|y =329 D A=1 A>0 vcec]
ceC ceC

W = {WERV|WV:y(5(v)) Vv € V,Vyey}

A
) p

weW: ;/O\ -

o=
=

?

'
D=
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Integrality gap and fractional chromatic number

@ Improved tight bounds on the integrality gap of P(G) and fractional
chromatic number for 3-colorable graphs.

@ Exact formulas for G.

@ Proof based on the layer decomposition.

Theorem
1
2p—1

V(@) =2+ =5, IG(PE@) =1+

— highlights importance of the odd girth parameter p
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High-Level View

@ Weight Space: for which weight functions w : V — R is the solution
(1/2,...,1/2) optimal?

@ Analysis of the algorithm under the assumption that S is a stable set.

@ Generalization to an arbitrary set S.

@ Algorithmic applications to find a good set S.

@ Showing optimality of the analysis.
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Arbitrary Set to Bipartite

Additional parameter
o := y(E[S]) € [0,1] J
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Arbitrary Set to Bipartite
Additional parameter

o = y(E[S]) € [0,1]

Theorem
Let (G, S) be the input, where S is arbitrary odd cycle transversal. Then

R(w) < <1+;> (1-a)+2a

for every w € QW This bound is tight for any o € [0,1] and p € [2, 00].

@ Interpolating "rounding curve” of the standard LP.

e Worst-case (standard 2-approximation): a =1 for S = V1.
@ Best-case (bipartite graphs): p = oco,a = 0.

@ In-between (e.g. 3-colorable graphs): p < co,a = 0.
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Arbitrary Set to Bipartite

2 2
1+1/p
1 44444444444444444444444444444444444444444444444444444444444444444444444444444444
0 1 0 1
p =00 p < 00

Figure: Plot of R(w) with respect to « € [0, 1]
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Arbitrary Set to Bipartite

Proof. Decompose the weight of S with respect to the dual variables:

w(S) = 20+ y(5(S))
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Arbitrary Set to Bipartite

Proof. Decompose the weight of S with respect to the dual variables:

w(S) = 20+ y(5(S))

By Lemma 2, 3 p edge-separate covers of G', called Uy, ..., U,
1 _
w(OPT(G\ S)) < min w(U;) = y(E') + min y(Ey;) < y(E') + —
i€lp] i€[p] P
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Arbitrary Set to Bipartite

Proof. Decompose the weight of S with respect to the dual variables:
w(S) = 2a + y(4(S))

By Lemma 2, 3 p edge-separate covers of G', called Uy, ..., U,

w(OPT(G\ §)) < min w(Us) = y(E') + min y(Ey,) < y(E") + -2
i€[p] i€[p] P

5) +w(OPT(G\ 5))
w(OPT(G))

<20+ y(5(S)) + y(E') + -

R(w) = w( < w(S) + w(OPT(G\ S))

—

11—«

1
=l4+a+ :(1+>(1—a)—i—2a.
p p
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@ Weight Space: for which weight functions w : V — R is the solution
(1/2,...,1/2) optimal?

@ Analysis of the algorithm under the assumption that S is a stable set.

@ Generalization to an arbitrary set S.

@ Algorithmic applications to find a good set S.

@ Showing optimality of the analysis.
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Algorithmic Applications

How to find a good such set S algorithmically?

Question. J

@ Run an approximation/FPT algorithm for the min odd cycle
transversal problem.

@ Find a cut of the graph and take nodes incident to uncut edges.

@ Find a k-coloring and take k — 2 color classes.
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How to find a good such set S algorithmically?

@ Run an approximation/FPT algorithm for the min odd cycle
transversal problem.

@ Find a cut of the graph and take nodes incident to uncut edges.

@ Find a k-coloring and take k — 2 color classes.

Algorithm using coloring
@ Find a k-coloring of G with stable sets V4 U--- U Vj
@ Order w(Vi) < w(Va)--- < w(Vk)
@ Return S .= Vi U---U Vi 5
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Algorithmic Applications
Question. J

How to find a good such set S algorithmically?

@ Run an approximation/FPT algorithm for the min odd cycle
transversal problem.

@ Find a cut of the graph and take nodes incident to uncut edges.

@ Find a k-coloring and take k — 2 color classes.

Algorithm using coloring
@ Find a k-coloring of G with stable sets V4 U--- U Vj
@ Order w(Vi) < w(Va)--- < w(Vk)
@ Return S .= Vi U---U Vi 5

Theorem
Can find an o := y(E[S]) <1-—4/k
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High-Level View

@ Weight Space: for which weight functions w : V — R is the solution
(1/2,...,1/2) optimal?

Analysis of the algorithm under the assumption that S is a stable set.
Generalization to an arbitrary set S.

Algorithmic applications to find a good set S.

Showing optimality of the analysis.
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Optimality

Integrality gap of P(G)

Worst-case integrality gap (/G) for a graph G with n nodes is attained on
the complete graph K, with IG(K,) =2 —2/n.
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Optimality

Integrality gap of P(G)

Worst-case integrality gap (/G) for a graph G with n nodes is attained on
the complete graph K, with IG(K,) =2 —2/n.

Hardness

— No approximation algorithm working with P(G) can do better than
2 —2/n in the worst case.
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Optimality

Integrality gap of P(G)

Worst-case integrality gap (/G) for a graph G with n nodes is attained on
the complete graph K, with IG(K,) =2 —2/n.

Hardness

— No approximation algorithm working with P(G) can do better than
2 —2/n in the worst case.

Our worst-case bounds:

p=2 a=1—4/n

Matching approximation

R(w) < (1+%) (1-a)+2a :g

S|
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Conclusion

Conclusion
@ Beyond the worst-case analysis
@ Interpolating the rounding curve of the standard LP from 1 to 2
@ Motivation coming from algorithms with predictions
e Can compute improvement in the ratio once S is found/given
@ Matches integrality gap in the worst case
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@ Motivation coming from algorithms with predictions
e Can compute improvement in the ratio once S is found/given
@ Matches integrality gap in the worst case

Future work ideas
@ Similar ideas for other combinatorial optimization problems

Other algorithms to find good odd cycle transversals S

°
@ Improved approximation guarantees on subclasses of graphs
°

Other prediction assumptions / other natural graph parameters
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Conclusion

Conclusion
@ Beyond the worst-case analysis
@ Interpolating the rounding curve of the standard LP from 1 to 2
@ Motivation coming from algorithms with predictions
e Can compute improvement in the ratio once S is found/given
@ Matches integrality gap in the worst case

Future work ideas
@ Similar ideas for other combinatorial optimization problems

Other algorithms to find good odd cycle transversals S

°
@ Improved approximation guarantees on subclasses of graphs
°

Other prediction assumptions / other natural graph parameters

Thanks!
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