Round and Bipartize for Vertex Cover Approximation

Danish Kashaev, Guido Schäfer

CWI Amsterdam, APPROX 2023

June 29, 2023

Vertex Cover Problem

Input: Graph $\mathcal{G}=(V, E)$ with weights $w: V \mapsto \mathbb{R}_{+}$
Goal: Find subset of vertices $U \subset V$ of minimum weight covering all the edges of the graph, i.e:

$$
\min \{w(U)|U \subset V,|U \cap\{u, v\}| \geq 1 \quad \forall(u, v) \in E\} .
$$

Integer Programming Formulation:

$$
\begin{aligned}
\min \sum_{v \in V} w_{v} x_{v} & \\
x_{u}+x_{v} & \geq 1 \quad \forall(u, v) \in E \\
x_{v} & \in\{0,1\} \quad \forall v \in V
\end{aligned}
$$

Approximation Algorithms

Definition: Approximation Algorithm

An efficient algorithm for a minimization problem is a ϕ-approximation if it returns a solution U such that $w(U) \leq \phi w(\mathrm{OPT})$

Vertex Cover

- NP-Hard
- NP-Hard to approximate within a factor of 1.36 [Dinur, Safra]
- NP-Hard to approximate within $2-\epsilon$ for any $\epsilon>0$ under the unique games conjecture [Khot, Regev]
- Admits an easy 2-approximation using linear programming

Vertex Cover

Linear Programming Relaxation $P(\mathcal{G})$:

$$
\begin{aligned}
\min \sum_{v \in V} w_{v} x_{v} & \\
x_{u}+x_{v} & \geq 1 \quad \forall(u, v) \in E \\
x_{v} & \geq 0 \quad \forall v \in V
\end{aligned}
$$

Any extreme point solution $x^{*} \in[0,1]^{V}$ of $P(\mathcal{G})$ satisfies

- $x^{*} \in\{0,1\}^{V}$ for bipartite graphs \mathcal{G}
- $x^{*} \in\left\{0, \frac{1}{2}, 1\right\}^{V}$ for general graphs \mathcal{G}

Vertex Cover

Linear Programming Relaxation $P(\mathcal{G})$:

$$
\begin{aligned}
\min \sum_{v \in V} w_{v} x_{v} & \\
x_{u}+x_{v} & \geq 1 \quad \forall(u, v) \in E \\
x_{v} & \geq 0 \quad \forall v \in V
\end{aligned}
$$

Any extreme point solution $x^{*} \in[0,1]^{V}$ of $P(\mathcal{G})$ satisfies

- $x^{*} \in\{0,1\}^{V}$ for bipartite graphs \mathcal{G}
- $x^{*} \in\left\{0, \frac{1}{2}, 1\right\}^{V}$ for general graphs \mathcal{G}

Bipartite \mathcal{G} : exact algorithm

Solve $P(\mathcal{G})$ to get $x^{*} \in\{0,1\}^{V}$
Return $U:=\left\{v \in V \mid x_{v}^{*}=1\right\}$

Vertex Cover

Linear Programming Relaxation $P(\mathcal{G})$:

$$
\begin{aligned}
\min \sum_{v \in V} w_{v} x_{v} & \\
x_{u}+x_{v} & \geq 1 \quad \forall(u, v) \in E \\
x_{v} & \geq 0 \quad \forall v \in V
\end{aligned}
$$

Any extreme point solution $x^{*} \in[0,1]^{V}$ of $P(\mathcal{G})$ satisfies

- $x^{*} \in\{0,1\}^{V}$ for bipartite graphs \mathcal{G}
- $x^{*} \in\left\{0, \frac{1}{2}, 1\right\}^{V}$ for general graphs \mathcal{G}

Bipartite \mathcal{G} : exact algorithm

Solve $P(\mathcal{G})$ to get $x^{*} \in\{0,1\}^{V}$ Return $U:=\left\{v \in V \mid x_{v}^{*}=1\right\}$

General \mathcal{G} : 2-approximation

Solve $P(\mathcal{G})$ to get $x^{*} \in\left\{0, \frac{1}{2}, 1\right\}^{V}$
Return $U:=\left\{v \in V \left\lvert\, x_{v}^{*} \geq \frac{1}{2}\right.\right\}$

Vertex Cover: LP Relaxation

Vertex Cover: LP Relaxation

$$
\begin{aligned}
& V_{1}=\left\{v \mid x_{v}^{*}=1\right\} \\
& V_{0}=\left\{v \mid x_{v}^{*}=0\right\}
\end{aligned}
$$

Vertex Cover: LP Relaxation

$$
V_{1}=\left\{v \mid x_{v}^{*}=1\right\}
$$

Vertex Cover: LP Relaxation

Vertex Cover: LP Relaxation

$$
\begin{aligned}
V_{1} & =\left\{v \mid x_{v}^{*}=1\right\} \\
V_{\frac{1}{2}} & =\left\{v \left\lvert\, x_{v}^{*}=\frac{1}{2}\right.\right\} \\
V_{0} & =\left\{v \mid x_{v}^{*}=0\right\}
\end{aligned}
$$

Vertex Cover: LP Relaxation

Vertex Cover: LP Relaxation

Nemhauser-Trotter theorem

$\mathcal{G}_{1 / 2}$ is the subgraph induced by the half-integral nodes $V_{1 / 2}$.
Theorem [Nemhauser-Trotter]
Let $x^{*} \in\left\{0, \frac{1}{2}, 1\right\}^{V}$ be an optimal extreme point solution to $P(\mathcal{G})$. Then,

$$
w\left(\operatorname{OPT}\left(\mathcal{G}_{1 / 2}\right)\right)+w\left(V_{1}\right)=w(\operatorname{OPT}(\mathcal{G}))
$$

Nemhauser-Trotter theorem

$\mathcal{G}_{1 / 2}$ is the subgraph induced by the half-integral nodes $V_{1 / 2}$.
Theorem [Nemhauser-Trotter]
Let $x^{*} \in\left\{0, \frac{1}{2}, 1\right\}^{V}$ be an optimal extreme point solution to $P(\mathcal{G})$. Then,

$$
w\left(\operatorname{OPT}\left(\mathcal{G}_{1 / 2}\right)\right)+w\left(V_{1}\right)=w(\operatorname{OPT}(\mathcal{G}))
$$

Corollary

If $S \subset V_{1 / 2}$ is a ϕ-approximate solution for $\mathcal{G}_{1 / 2}$, then $S \cup V_{1}$ is a ϕ-approximate solution for \mathcal{G}.

Proof: $w(S)+w\left(V_{1}\right) \leq \phi w\left(\operatorname{OPT}\left(\mathcal{G}_{1 / 2}\right)\right)+w\left(V_{1}\right) \leq \phi w(\operatorname{OPT}(\mathcal{G}))$

Nemhauser-Trotter theorem

Corollary

If $S \subset V_{1 / 2}$ is a ϕ-approximate solution for $\mathcal{G}_{1 / 2}$, then $S \cup V_{1}$ is a ϕ-approximate solution for \mathcal{G}.
\rightarrow We may restrict our attention to $\mathcal{G}_{1 / 2}$.

$$
\begin{aligned}
V_{1} & =\left\{v \mid x_{v}^{*}=1\right\} \\
V_{\frac{1}{2}} & =\left\{v \left\lvert\, x_{v}^{*}=\frac{1}{2}\right.\right\} \\
V_{0} & =\left\{v \mid x_{v}^{*}=0\right\}
\end{aligned}
$$

Nemhauser-Trotter theorem

Corollary

If $S \subset V_{1 / 2}$ is a ϕ-approximate solution for $\mathcal{G}_{1 / 2}$, then $S \cup V_{1}$ is a ϕ-approximate solution for \mathcal{G}.
\rightarrow We may restrict our attention to $\mathcal{G}_{1 / 2}$.

$$
V_{\frac{1}{2}}=\left\{v \left\lvert\, x_{v}^{*}=\frac{1}{2}\right.\right\}
$$

Nemhauser-Trotter theorem

Corollary

If $S \subset V_{1 / 2}$ is a ϕ-approximate solution for $\mathcal{G}_{1 / 2}$, then $S \cup V_{1}$ is a ϕ-approximate solution for \mathcal{G}.
\rightarrow We may restrict our attention to $\mathcal{G}_{1 / 2}$.

$$
V_{\frac{1}{2}}=\left\{v \left\lvert\, x_{v}^{*}=\frac{1}{2}\right.\right\}
$$

Question

Possible to exploit some information about $\mathcal{G}_{1 / 2}$ for better approximation?

Our Set-Up

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1 / 2}$, i.e. $\mathcal{G}_{1 / 2} \backslash S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_{0}, V_{1}, V_{1 / 2}$
- Solve the integral linear program $P\left(\mathcal{G}_{1 / 2} \backslash S\right)$ to get $W \subset V_{1 / 2}$
- Return: $V_{1} \cup S \cup W$

Our Set-Up

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1 / 2}$, i.e. $\mathcal{G}_{1 / 2} \backslash S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_{0}, V_{1}, V_{1 / 2}$
- Solve the integral linear program $P\left(\mathcal{G}_{1 / 2} \backslash S\right)$ to get $W \subset V_{1 / 2}$
- Return: $V_{1} \cup S \cup W$

$$
\begin{aligned}
V_{1} & =\left\{v \mid x_{v}^{*}=1\right\} \\
V_{\frac{1}{2}} & =\left\{v \left\lvert\, x_{v}^{*}=\frac{1}{2}\right.\right\} \\
V_{0} & =\left\{v \mid x_{v}^{*}=0\right\}
\end{aligned}
$$

Our Set-Up

Algorithm: Additional Input
Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1 / 2}$, i.e. $\mathcal{G}_{1 / 2} \backslash S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_{0}, V_{1}, V_{1 / 2}$
- Solve the integral linear program $P\left(\mathcal{G}_{1 / 2} \backslash S\right)$ to get $W \subset V_{1 / 2}$
- Return: $V_{1} \cup S \cup W$

$$
V_{\frac{1}{2}}=\left\{v \left\lvert\, x_{v}^{*}=\frac{1}{2}\right.\right\}
$$

Our Set-Up

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1 / 2}$, i.e. $\mathcal{G}_{1 / 2} \backslash S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_{0}, V_{1}, V_{1 / 2}$
- Solve the integral linear program $P\left(\mathcal{G}_{1 / 2} \backslash S\right)$ to get $W \subset V_{1 / 2}$
- Return: $V_{1} \cup S \cup W$

$$
S \subset V_{1 / 2}
$$

Our Set-Up

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1 / 2}$, i.e. $\mathcal{G}_{1 / 2} \backslash S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_{0}, V_{1}, V_{1 / 2}$
- Solve the integral linear program $P\left(\mathcal{G}_{1 / 2} \backslash S\right)$ to get $W \subset V_{1 / 2}$
- Return: $V_{1} \cup S \cup W$

Our Set-Up

Algorithm: Additional Input
Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1 / 2}$, i.e. $\mathcal{G}_{1 / 2} \backslash S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_{0}, V_{1}, V_{1 / 2}$
- Solve the integral linear program $P\left(\mathcal{G}_{1 / 2} \backslash S\right)$ to get $W \subset V_{1 / 2}$
- Return: $V_{1} \cup S \cup W$

0
0

$$
W=\mathrm{OPT}(\mathcal{G} \backslash S)
$$

Our Set-Up

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1 / 2}$, i.e. $\mathcal{G}_{1 / 2} \backslash S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_{0}, V_{1}, V_{1 / 2}$
- Solve the integral linear program $P\left(\mathcal{G}_{1 / 2} \backslash S\right)$ to get $W \subset V_{1 / 2}$
- Return: $V_{1} \cup S \cup W$

$$
V_{1} \cup S \cup W
$$

Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm

- Taking $S=V_{1 / 2}$ recovers the standard 2-approximation.

Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm

- Taking $S=V_{1 / 2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.

Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm

- Taking $S=V_{1 / 2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.
- Beyond the worst-case understanding of the approximation ratio using additional parameters.

Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm

- Taking $S=V_{1 / 2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.
- Beyond the worst-case understanding of the approximation ratio using additional parameters.
- Algorithms with predictions: a machine learning algorithm could learn to find a good such set S.

Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm

- Taking $S=V_{1 / 2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.
- Beyond the worst-case understanding of the approximation ratio using additional parameters.
- Algorithms with predictions: a machine learning algorithm could learn to find a good such set S.
- Exploiting TU (or integral) substructure: $\mathcal{G}^{\prime}=\mathcal{G} \backslash S$ is an induced bipartite subgraph, for which $P\left(\mathcal{G}^{\prime}\right)$ is TU.

Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm

- Taking $S=V_{1 / 2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.
- Beyond the worst-case understanding of the approximation ratio using additional parameters.
- Algorithms with predictions: a machine learning algorithm could learn to find a good such set S.
- Exploiting TU (or integral) substructure: $\mathcal{G}^{\prime}=\mathcal{G} \backslash S$ is an induced bipartite subgraph, for which $P\left(\mathcal{G}^{\prime}\right)$ is TU.
- New/different view on a heavily studied problem

High-Level View

- Weight Space: for which weight functions $w: V \rightarrow \mathbb{R}$ is the solution $(1 / 2, \ldots, 1 / 2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set S.
- Showing optimality of the analysis.

High-Level View

- Weight Space: for which weight functions $w: V \rightarrow \mathbb{R}$ is the solution $(1 / 2, \ldots, 1 / 2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set S.
- Showing optimality of the analysis.

Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights $w: V \rightarrow \mathbb{R}_{+}$such that $(1 / 2, \ldots, 1 / 2)$ is an optimal solution to $P(\mathcal{G})$.

Lemma
$\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is optimal for $P(\mathcal{G}) \Longleftrightarrow \exists y \in \mathbb{R}_{+}^{E}$ s.t. $w_{v}=y(\delta(v)) \quad \forall v \in V$.

Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights $w: V \rightarrow \mathbb{R}_{+}$such that $(1 / 2, \ldots, 1 / 2)$ is an optimal solution to $P(\mathcal{G})$.

Lemma

$\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is optimal for $P(\mathcal{G}) \Longleftrightarrow \exists y \in \mathbb{R}_{+}^{E}$ s.t. $w_{v}=y(\delta(v)) \quad \forall v \in V$.

Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights $w: V \rightarrow \mathbb{R}_{+}$such that $(1 / 2, \ldots, 1 / 2)$ is an optimal solution to $P(\mathcal{G})$.
Lemma
$\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is optimal for $P(\mathcal{G}) \Longleftrightarrow \exists y \in \mathbb{R}_{+}^{E}$ s.t. $w_{v}=y(\delta(v)) \quad \forall v \in V$.
Proof. By comp. slackness, a primal-dual pair (x, y) is optimal iff

$$
\begin{align*}
& x_{v}>0 \Longrightarrow y(\delta(v))=w_{v} \quad \forall v \in V \tag{1}\\
& y_{e}>0 \Longrightarrow x_{u}+x_{v}=1 \quad \forall e=(u, v) \in E \tag{2}
\end{align*}
$$

\Longrightarrow Follows from condition (1)
\Longleftarrow The pair $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right), y$ satisfy both conditions (1) and (2)

Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights $w: V \rightarrow \mathbb{R}_{+}$such that $(1 / 2, \ldots, 1 / 2)$ is an optimal solution to $P(\mathcal{G})$.
Lemma
$\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is optimal for $P(\mathcal{G}) \Longleftrightarrow \exists y \in \mathbb{R}_{+}^{E}$ s.t. $w_{v}=y(\delta(v)) \quad \forall v \in V$.

$$
\Longrightarrow w(V)=2 y(E)
$$

The approximation ratio $w(U) / w(\mathrm{OPT})$ is invariant to scaling:
\Longrightarrow normalize $w(V)=2$ and $y(E)=1$

Weight Space

$$
Q^{W}:=\left\{w \in \mathbb{R}_{+}^{V} \mid \exists y \in \mathbb{R}_{+}^{E} \text { s.t. } y(E)=1 \text { and } w_{v}=y(\delta(v)) \quad \forall v \in V\right\}
$$

Lower Bound on OPT

Lemma

Let $\mathcal{G}=(V, E)$ be a graph. For any $w \in Q^{W}$,

$$
w(\mathrm{OPT}(\mathcal{G})) \geq 1
$$

Proof. Since $w \in Q^{W}$, the solution $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is an optimal LP solution, by the previous slide. Its objective value (or cost) is

$$
w(V) / 2=1
$$

Since $\operatorname{OPT}(\mathcal{G})$ is a feasible LP solution, we get

$$
w(\mathrm{OPT}(\mathcal{G})) \geq 1
$$

High-Level View

- Weight Space: for which weight functions $w: V \rightarrow \mathbb{R}$ is the solution $(1 / 2, \ldots, 1 / 2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set S.
- Showing optimality of the analysis.

Stable Set to Bipartite

\mathcal{G}

$\tilde{\mathcal{G}}=\mathcal{G} / S$

$\mathcal{G}^{\prime}=\mathcal{G} \backslash S$

Definition: parameter ρ

$2 \rho-1$ denotes the odd girth (length of the shortest odd cycle) of $\tilde{\mathcal{G}}$. Hence, the range is $\rho \in[2, \infty]$

In the above example, $\rho=3$, since the shortest odd cycle has length 5 .

Stable Set to Bipartite

Algorithm/Approximation Ratio

Round on S and solve the integral linear program $P(\mathcal{G} \backslash S)$.

$$
R(w):=\frac{w(S)+w(\operatorname{OPT}(\mathcal{G} \backslash S))}{w(\operatorname{OPT}(\mathcal{G}))}
$$

Stable Set to Bipartite

Algorithm/Approximation Ratio

Round on S and solve the integral linear program $P(\mathcal{G} \backslash S)$.

$$
R(w):=\frac{w(S)+w(\operatorname{OPT}(\mathcal{G} \backslash S))}{w(\operatorname{OPT}(\mathcal{G}))}
$$

- Every weight function is assumed WLOG to satisfy $w \in Q^{W}$
- $\tilde{\mathcal{G}}=\mathcal{G} / S$ is the graph obtained after contracting S
- The odd girth of $\tilde{\mathcal{G}}$ is denoted by $2 \rho-1$, hence $\rho \in[2, \infty]$

Stable Set to Bipartite

Algorithm/Approximation Ratio

Round on S and solve the integral linear program $P(\mathcal{G} \backslash S)$.

$$
R(w):=\frac{w(S)+w(\operatorname{OPT}(\mathcal{G} \backslash S))}{w(\operatorname{OPT}(\mathcal{G}))}
$$

- Every weight function is assumed WLOG to satisfy $w \in Q^{W}$
- $\tilde{\mathcal{G}}=\mathcal{G} / S$ is the graph obtained after contracting S
- The odd girth of $\tilde{\mathcal{G}}$ is denoted by $2 \rho-1$, hence $\rho \in[2, \infty]$

Theorem

Let (\mathcal{G}, S) be the input, with S being a stable set. Then

$$
R(w) \leq 1+\frac{1}{\rho}
$$

for every $w \in Q^{W}$. Equality holds for a convex subset $\mathcal{W} \subset Q^{W}$.

Tool to get improved bounds

$\mathcal{G}^{\prime}=\mathcal{G} \backslash S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \backslash S$ of the bipartite graph \mathcal{G}^{\prime}, we define

$$
E_{U}:=\{(u, v) \in E \mid u \in U, v \in U \text { or } u \in U, v \in S\} .
$$

Covers U_{1}, \ldots, U_{k} are edge-separate if $\left\{E_{U_{1}}, \ldots, E_{U_{k}}\right\}$ are pairwise disjoint.
Remark: Only need to cover $E\left(\mathcal{G}^{\prime}\right)=E \backslash \delta(S)$, but $E_{U} \subset E$

Tool to get improved bounds

$\mathcal{G}^{\prime}=\mathcal{G} \backslash S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \backslash S$ of the bipartite graph \mathcal{G}^{\prime}, we define

$$
E_{U}:=\{(u, v) \in E \mid u \in U, v \in U \text { or } u \in U, v \in S\} .
$$

Covers U_{1}, \ldots, U_{k} are edge-separate if $\left\{E_{U_{1}}, \ldots, E_{U_{k}}\right\}$ are pairwise disjoint.
Remark: Only need to cover $E\left(\mathcal{G}^{\prime}\right)=E \backslash \delta(S)$, but $E_{U} \subset E$

Tool to get improved bounds

$\mathcal{G}^{\prime}=\mathcal{G} \backslash S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \backslash S$ of the bipartite graph \mathcal{G}^{\prime}, we define

$$
E_{U}:=\{(u, v) \in E \mid u \in U, v \in U \text { or } u \in U, v \in S\} .
$$

Covers U_{1}, \ldots, U_{k} are edge-separate if $\left\{E_{U_{1}}, \ldots, E_{U_{k}}\right\}$ are pairwise disjoint.
Remark: Only need to cover $E\left(\mathcal{G}^{\prime}\right)=E \backslash \delta(S)$, but $E_{U} \subset E$

Tool to get improved bounds

$\mathcal{G}^{\prime}=\mathcal{G} \backslash S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \backslash S$ of the bipartite graph \mathcal{G}^{\prime}, we define

$$
E_{U}:=\{(u, v) \in E \mid u \in U, v \in U \text { or } u \in U, v \in S\} .
$$

Covers U_{1}, \ldots, U_{k} are edge-separate if $\left\{E_{U_{1}}, \ldots, E_{U_{k}}\right\}$ are pairwise disjoint.
Remark: Only need to cover $E\left(\mathcal{G}^{\prime}\right)=E \backslash \delta(S)$, but $E_{U} \subset E$

Since $w_{v}=y(\delta(v))$, we can count the weight as

$$
w(U)=y\left(E\left(\mathcal{G}^{\prime}\right)\right)+y\left(E_{U}\right)
$$

because $E\left(\mathcal{G}^{\prime}\right)$ is counted at least once, by feasibility, with a surplus of E_{U}

Tool to get improved bounds

$\mathcal{G}^{\prime}=\mathcal{G} \backslash S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \backslash S$ of the bipartite graph \mathcal{G}^{\prime}, we define

$$
E_{U}:=\{(u, v) \in E \mid u \in U, v \in U \text { or } u \in U, v \in S\} .
$$

Covers U_{1}, \ldots, U_{k} are edge-separate if $\left\{E_{U_{1}}, \ldots, E_{U_{k}}\right\}$ are pairwise disjoint.
Remark: Only need to cover $E\left(\mathcal{G}^{\prime}\right)=E \backslash \delta(S)$, but $E_{U} \subset E$

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}^{\prime}, then

$$
R(w) \leq 1+\frac{1}{k} \quad \forall w \in Q^{w}
$$

Tool to get improved bounds

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}^{\prime}, then $R(w) \leq 1+1 / k \quad \forall w \in Q^{W}$.

Proof. Let $w \in Q^{W}$ and $y \in \mathbb{R}^{E}$ s.t. $w_{v}=y(\delta(v))$ and $y(E)=1$. Let $\left\{U_{1}, \ldots, U_{k}\right\}$ be the edge-separate covers.

Tool to get improved bounds

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}^{\prime}, then $R(w) \leq 1+1 / k \quad \forall w \in Q^{W}$.

Proof. Let $w \in Q^{W}$ and $y \in \mathbb{R}^{E}$ s.t. $w_{v}=y(\delta(v))$ and $y(E)=1$. Let $\left\{U_{1}, \ldots, U_{k}\right\}$ be the edge-separate covers.

$$
w(S)=y(\delta(S)), \quad w\left(U_{i}\right)=y\left(E^{\prime}\right)+y\left(E_{U_{i}}\right) \quad \forall i \in[k]
$$

Tool to get improved bounds

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}^{\prime}, then $R(w) \leq 1+1 / k \quad \forall w \in Q^{w}$.

Proof. Let $w \in Q^{W}$ and $y \in \mathbb{R}^{E}$ s.t. $w_{v}=y(\delta(v))$ and $y(E)=1$. Let $\left\{U_{1}, \ldots, U_{k}\right\}$ be the edge-separate covers.

$$
\begin{aligned}
& w(S)=y(\delta(S)), \quad w\left(U_{i}\right)=y\left(E^{\prime}\right)+y\left(E_{U_{i}}\right) \quad \forall i \in[k] \\
& R(w)=\frac{w(S)+w\left(O P T\left(\mathcal{G}^{\prime}\right)\right)}{w(\operatorname{OPT}(\mathcal{G}))} \leq w(S)+w\left(O P T\left(\mathcal{G}^{\prime}\right)\right) \\
& \leq w(S)+\min _{i \in[k]} w\left(U_{i}\right)=y(\delta(S))+y\left(E^{\prime}\right)+\min _{i \in[k]} y\left(E_{U_{i}}\right) \\
&=1+\min _{i \in[k]} y\left(E_{U_{i}}\right) \leq 1+\frac{1}{k}
\end{aligned}
$$

Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}^{\prime}=\left(A \cup B, E^{\prime}\right)$, where $2 \rho-1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}}=\mathcal{G} / S$.

Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}^{\prime}=\left(A \cup B, E^{\prime}\right)$, where $2 \rho-1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}}=\mathcal{G} / S$.

$$
\tilde{\mathcal{G}}=\mathcal{G} / S
$$

Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}^{\prime}=\left(A \cup B, E^{\prime}\right)$, where $2 \rho-1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}}=\mathcal{G} / S$.

$$
\mathcal{G}^{\prime}=\left(A \cup B, E^{\prime}\right)
$$

Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}^{\prime}=\left(A \cup B, E^{\prime}\right)$, where $2 \rho-1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}}=\mathcal{G} / S$.

Shortest odd cycle with $\rho=4$

Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}^{\prime}=\left(A \cup B, E^{\prime}\right)$, where $2 \rho-1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}}=\mathcal{G} / S$.

$$
\mathcal{L}_{i}:=\left\{v \in A \cup B \mid d\left(N_{A}\left(v_{S}\right), v\right)=i\right\} \quad \forall i \geq 0
$$

$$
N_{A}\left(v_{S}\right) \quad \mathcal{L}_{1} \quad \ldots \quad \mathcal{L}_{2 \rho-3}
$$

Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}^{\prime}=\left(A \cup B, E^{\prime}\right)$, where $2 \rho-1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}}=\mathcal{G} / S$.

Shortest odd cycle with $\rho=4$

Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}^{\prime}=\left(A \cup B, E^{\prime}\right)$, where $2 \rho-1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}}=\mathcal{G} / S$.
U_{1}, \ldots, U_{ρ} pairwise edge-separate covers of \mathcal{G}^{\prime} :

$$
E_{U_{1}}=E_{A}=\delta_{A}\left(v_{S}\right)
$$

$$
E_{U_{3}}=E\left[\mathcal{L}_{1}, \mathcal{L}_{2}\right]
$$

$$
E_{U_{2}}=E_{B}=\delta_{B}\left(v_{S}\right)
$$

$E_{U_{4}}=E\left[\mathcal{L}_{3}, \mathcal{L}_{4}\right]$

$1+1 / \rho$ approximation

Theorem (Upper Bound)

Let (\mathcal{G}, S) be the input, with S being a stable set. Then $R(w) \leq 1+1 / \rho$ for every $w \in Q^{W}$, where $2 \rho-1$ is the odd girth of $\tilde{\mathcal{G}}$.

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}^{\prime}, then $R(w) \leq 1+1 / k \quad \forall w \in Q^{W}$.

Lemma 2

There exists ρ pairwise edge-separate covers of \mathcal{G}^{\prime}.

$1+1 / \rho$ approximation

Theorem (Upper Bound)

Let (\mathcal{G}, S) be the input, with S being a stable set. Then $R(w) \leq 1+1 / \rho$ for every $w \in Q^{W}$, where $2 \rho-1$ is the odd girth of $\tilde{\mathcal{G}}$.

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}^{\prime}, then $R(w) \leq 1+1 / k \quad \forall w \in Q^{W}$.

Lemma 2

There exists ρ pairwise edge-separate covers of \mathcal{G}^{\prime}.

Question.

Are there weight functions for which this bound is tight?

Tightness

Theorem
$\exists \mathcal{W} \subset Q^{W}$ such that $R(w)=1+1 / \rho$ for every $w \in \mathcal{W}$.

Tightness

Theorem
$\exists \mathcal{W} \subset Q^{W}$ such that $R(w)=1+1 / \rho$ for every $w \in \mathcal{W}$.
Let \mathcal{C} be all the shortest odd cycles (of length $2 \rho-1$) of the graph $\tilde{\mathcal{G}}$.

Tightness

Theorem

$\exists \mathcal{W} \subset Q^{W}$ such that $R(w)=1+1 / \rho$ for every $w \in \mathcal{W}$.
Let \mathcal{C} be all the shortest odd cycles (of length $2 \rho-1$) of the graph $\tilde{\mathcal{G}}$.
Basic weight function corresponding to $C \in \mathcal{C}$

$$
\forall C \in \mathcal{C}, \quad y^{C}: \tilde{E} \rightarrow \mathbb{R}_{+}:
$$

Set both dual edges incident to v_{S} to $1 / \rho$ and then alternatingly set the dual edges to 0 and $1 / \rho$ along the odd cycle on $\tilde{\mathcal{G}}$.

Tightness

Theorem

$\exists \mathcal{W} \subset Q^{W}$ such that $R(w)=1+1 / \rho$ for every $w \in \mathcal{W}$.
Let \mathcal{C} be all the shortest odd cycles (of length $2 \rho-1$) of the graph $\tilde{\mathcal{G}}$.
Basic weight function corresponding to $C \in \mathcal{C}$

$$
\forall C \in \mathcal{C}, \quad y^{C}: \tilde{E} \rightarrow \mathbb{R}_{+}:
$$

Set both dual edges incident to v_{S} to $1 / \rho$ and then alternatingly set the dual edges to 0 and $1 / \rho$ along the odd cycle on $\tilde{\mathcal{G}}$.

Tightness

Theorem
$\exists \mathcal{W} \subset Q^{W}$ such that $R(w)=1+1 / \rho$ for every $w \in \mathcal{W}$.

$$
\begin{aligned}
\mathcal{Y} & :=\left\{y \in \mathbb{R}^{E} \mid y=\sum_{C \in \mathcal{C}} \lambda^{C} y^{C}, \quad \sum_{C \in \mathcal{C}} \lambda^{C}=1, \quad \lambda^{C} \geq 0 \quad \forall C \in \mathcal{C}\right\} \\
\mathcal{W} & :=\left\{w \in \mathbb{R}^{v} \mid w_{v}=y(\delta(v)) \quad \forall v \in V, \forall y \in \mathcal{Y}\right\}
\end{aligned}
$$

Tightness

Theorem
$\exists \mathcal{W} \subset Q^{W}$ such that $R(w)=1+1 / \rho$ for every $w \in \mathcal{W}$.

$$
\begin{aligned}
& \mathcal{Y}:=\left\{y \in \mathbb{R}^{E} \mid y=\sum_{C \in \mathcal{C}} \lambda^{C} y^{C}, \quad \sum_{C \in \mathcal{C}} \lambda^{C}=1, \quad \lambda^{C} \geq 0 \quad \forall C \in \mathcal{C}\right\} \\
& \mathcal{W}:=\left\{w \in \mathbb{R}^{V} \mid w_{v}=y(\delta(v)) \quad \forall v \in V, \forall y \in \mathcal{Y}\right\}
\end{aligned}
$$

Tightness

Theorem

$\exists \mathcal{W} \subset Q^{W}$ such that $R(w)=1+1 / \rho$ for every $w \in \mathcal{W}$.

$$
\begin{aligned}
& \mathcal{Y}:=\left\{y \in \mathbb{R}^{E} \mid y=\sum_{C \in \mathcal{C}} \lambda^{C} y^{C}, \quad \sum_{C \in \mathcal{C}} \lambda^{C}=1, \quad \lambda^{C} \geq 0 \quad \forall C \in \mathcal{C}\right\} \\
& \mathcal{W}:=\left\{w \in \mathbb{R}^{v} \mid w_{v}=y(\delta(v)) \quad \forall v \in V, \forall y \in \mathcal{Y}\right\} \\
& w \in \mathcal{W}:
\end{aligned}
$$

Integrality gap and fractional chromatic number

- Improved tight bounds on the integrality gap of $P(\mathcal{G})$ and fractional chromatic number for 3-colorable graphs.
- Exact formulas for $\tilde{\mathcal{G}}$.
- Proof based on the layer decomposition.

Theorem

$$
\chi^{f}(\tilde{\mathcal{G}})=2+\frac{1}{\rho-1}, \quad \operatorname{IG}(P(\tilde{\mathcal{G}}))=1+\frac{1}{2 \rho-1}
$$

\rightarrow highlights importance of the odd girth parameter ρ

High-Level View

- Weight Space: for which weight functions $w: V \rightarrow \mathbb{R}$ is the solution $(1 / 2, \ldots, 1 / 2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set S.
- Showing optimality of the analysis.

Arbitrary Set to Bipartite

Additional parameter

$$
\alpha:=y(E[S]) \in[0,1]
$$

Arbitrary Set to Bipartite

Additional parameter

$$
\alpha:=y(E[S]) \in[0,1]
$$

Theorem

Let (\mathcal{G}, S) be the input, where S is arbitrary odd cycle transversal. Then

$$
R(w) \leq\left(1+\frac{1}{\rho}\right)(1-\alpha)+2 \alpha
$$

for every $w \in Q^{W}$. This bound is tight for any $\alpha \in[0,1]$ and $\rho \in[2, \infty]$.

- Interpolating "rounding curve" of the standard LP.
- Worst-case (standard 2-approximation): $\alpha=1$ for $S=V_{1 / 2}$.
- Best-case (bipartite graphs): $\rho=\infty, \alpha=0$.
- In-between (e.g. 3-colorable graphs): $\rho<\infty, \alpha=0$.

Arbitrary Set to Bipartite

Figure: Plot of $R(w)$ with respect to $\alpha \in[0,1]$

Arbitrary Set to Bipartite

Proof. Decompose the weight of S with respect to the dual variables:

$$
w(S)=2 \alpha+y(\delta(S))
$$

Arbitrary Set to Bipartite

Proof. Decompose the weight of S with respect to the dual variables:

$$
w(S)=2 \alpha+y(\delta(S))
$$

By Lemma $2, \exists \rho$ edge-separate covers of \mathcal{G}^{\prime}, called U_{1}, \ldots, U_{ρ}

$$
w(\mathrm{OPT}(\mathcal{G} \backslash S)) \leq \min _{i \in[\rho]} w\left(U_{i}\right)=y\left(E^{\prime}\right)+\min _{i \in[\rho]} y\left(E_{U_{i}}\right) \leq y\left(E^{\prime}\right)+\frac{1-\alpha}{\rho}
$$

Arbitrary Set to Bipartite

Proof. Decompose the weight of S with respect to the dual variables:

$$
w(S)=2 \alpha+y(\delta(S))
$$

By Lemma $2, \exists \rho$ edge-separate covers of \mathcal{G}^{\prime}, called U_{1}, \ldots, U_{ρ}

$$
\begin{aligned}
& w(\mathrm{OPT}(\mathcal{G} \backslash S)) \leq \min _{i \in[\rho]} w\left(U_{i}\right)=y\left(E^{\prime}\right)+\min _{i \in[\rho]} y\left(E_{U_{i}}\right) \leq y\left(E^{\prime}\right)+\frac{1-\alpha}{\rho} \\
& R(w)=\frac{w(S)+w(\operatorname{OPT}(\mathcal{G} \backslash S))}{w(\operatorname{OPT}(\mathcal{G}))} \leq w(S)+w(\operatorname{OPT}(\mathcal{G} \backslash S)) \\
& \leq 2 \alpha+y(\delta(S))+y\left(E^{\prime}\right)+\frac{1-\alpha}{\rho} \\
&=1+\alpha+\frac{1-\alpha}{\rho}=\left(1+\frac{1}{\rho}\right)(1-\alpha)+2 \alpha
\end{aligned}
$$

High-Level View

- Weight Space: for which weight functions $w: V \rightarrow \mathbb{R}$ is the solution $(1 / 2, \ldots, 1 / 2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set S.
- Showing optimality of the analysis.

Algorithmic Applications

Question.

How to find a good such set S algorithmically?

- Run an approximation/FPT algorithm for the min odd cycle transversal problem.
- Find a cut of the graph and take nodes incident to uncut edges.
- Find a k-coloring and take $k-2$ color classes.

Algorithmic Applications

Question.

How to find a good such set S algorithmically?

- Run an approximation/FPT algorithm for the min odd cycle transversal problem.
- Find a cut of the graph and take nodes incident to uncut edges.
- Find a k-coloring and take $k-2$ color classes.

Algorithm using coloring

- Find a k-coloring of \mathcal{G} with stable sets $V_{1} \cup \cdots \cup V_{k}$
- Order $w\left(V_{1}\right) \leq w\left(V_{2}\right) \cdots \leq w\left(V_{k}\right)$
- Return $S:=V_{1} \cup \cdots \cup V_{k-2}$

Algorithmic Applications

Question.

How to find a good such set S algorithmically?

- Run an approximation/FPT algorithm for the min odd cycle transversal problem.
- Find a cut of the graph and take nodes incident to uncut edges.
- Find a k-coloring and take $k-2$ color classes.

Algorithm using coloring

- Find a k-coloring of \mathcal{G} with stable sets $V_{1} \cup \cdots \cup V_{k}$
- Order $w\left(V_{1}\right) \leq w\left(V_{2}\right) \cdots \leq w\left(V_{k}\right)$
- Return $S:=V_{1} \cup \cdots \cup V_{k-2}$

Theorem

Can find an $\alpha:=y(E[S]) \leq 1-4 / k$

High-Level View

- Weight Space: for which weight functions $w: V \rightarrow \mathbb{R}$ is the solution $(1 / 2, \ldots, 1 / 2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set S.
- Showing optimality of the analysis.

Optimality

Integrality gap of $P(\mathcal{G})$

Worst-case integrality gap (IG) for a graph \mathcal{G} with n nodes is attained on the complete graph K_{n}, with $I G\left(K_{n}\right)=2-2 / n$.

Optimality

Integrality gap of $P(\mathcal{G})$

Worst-case integrality gap (IG) for a graph \mathcal{G} with n nodes is attained on the complete graph K_{n}, with $I G\left(K_{n}\right)=2-2 / n$.

Hardness

\rightarrow No approximation algorithm working with $P(\mathcal{G})$ can do better than $2-2 / n$ in the worst case.

Optimality

Integrality gap of $P(\mathcal{G})$

Worst-case integrality gap (IG) for a graph \mathcal{G} with n nodes is attained on the complete graph K_{n}, with $\operatorname{IG}\left(K_{n}\right)=2-2 / n$.

Hardness

\rightarrow No approximation algorithm working with $P(\mathcal{G})$ can do better than $2-2 / n$ in the worst case.

Our worst-case bounds:

$$
\rho=2 \quad \alpha=1-4 / n
$$

Matching approximation

$$
R(w) \leq\left(1+\frac{1}{\rho}\right)(1-\alpha)+2 \alpha=\frac{3}{2} \frac{4}{n}+2-\frac{8}{n}=2-\frac{2}{n}
$$

Conclusion

Conclusion

- Beyond the worst-case analysis
- Interpolating the rounding curve of the standard LP from 1 to 2
- Motivation coming from algorithms with predictions
- Can compute improvement in the ratio once S is found/given
- Matches integrality gap in the worst case

Conclusion

Conclusion

- Beyond the worst-case analysis
- Interpolating the rounding curve of the standard LP from 1 to 2
- Motivation coming from algorithms with predictions
- Can compute improvement in the ratio once S is found/given
- Matches integrality gap in the worst case

Future work ideas

- Similar ideas for other combinatorial optimization problems
- Other algorithms to find good odd cycle transversals S
- Improved approximation guarantees on subclasses of graphs
- Other prediction assumptions / other natural graph parameters

Conclusion

Conclusion

- Beyond the worst-case analysis
- Interpolating the rounding curve of the standard LP from 1 to 2
- Motivation coming from algorithms with predictions
- Can compute improvement in the ratio once S is found/given
- Matches integrality gap in the worst case

Future work ideas

- Similar ideas for other combinatorial optimization problems
- Other algorithms to find good odd cycle transversals S
- Improved approximation guarantees on subclasses of graphs
- Other prediction assumptions / other natural graph parameters

