Round and Bipartize for Vertex Cover Approximation

Danish Kashaev, Guido Schäfer

CWI Amsterdam, APPROX 2023

June 29, 2023

Vertex Cover Problem

Input: Graph $\mathcal{G} = (V, E)$ with weights $w : V \mapsto \mathbb{R}_+$

Goal: Find subset of vertices $U \subset V$ of minimum weight covering all the edges of the graph, i.e.

$$\min\Big\{w(U)\ \Big|\ U\subset V,\ |U\cap\{u,v\}|\geq 1\quad \forall (u,v)\in E\Big\}.$$

Integer Programming Formulation:

$$\begin{split} \min \sum_{v \in V} w_v x_v \\ x_u + x_v \geq 1 \quad \forall (u, v) \in E \\ x_v \in \{0, 1\} \quad \forall v \in V \end{split}$$

Approximation Algorithms

Definition: Approximation Algorithm

An efficient algorithm for a minimization problem is a ϕ -approximation if it returns a solution U such that $w(U) \leq \phi w(\mathsf{OPT})$

Vertex Cover

- NP-Hard
- NP-Hard to approximate within a factor of 1.36 [Dinur, Safra]
- NP-Hard to approximate within 2 − ε for any ε > 0 under the unique games conjecture [Khot, Regev]
- Admits an easy 2-approximation using linear programming

Vertex Cover

Linear Programming Relaxation P(G):

$$\begin{split} \min \sum_{v \in V} w_v x_v \\ x_u + x_v \geq 1 \quad \forall (u, v) \in E \\ x_v \geq 0 \quad \forall v \in V \end{split}$$

Any extreme point solution $x^* \in [0,1]^V$ of $P(\mathcal{G})$ satisfies

- $x^* \in \{0,1\}^V$ for bipartite graphs \mathcal{G}
- $x^* \in \{0, \frac{1}{2}, 1\}^V$ for general graphs \mathcal{G}

Vertex Cover

Linear Programming Relaxation P(G):

$$\begin{split} \min \sum_{v \in V} w_v x_v \\ x_u + x_v \geq 1 \quad \forall (u, v) \in E \\ x_v \geq 0 \quad \forall v \in V \end{split}$$

Any extreme point solution $x^* \in [0,1]^V$ of $P(\mathcal{G})$ satisfies

- $x^* \in \{0,1\}^V$ for bipartite graphs \mathcal{G}
- $x^* \in \{0, \frac{1}{2}, 1\}^V$ for general graphs \mathcal{G}

Bipartite \mathcal{G} : exact algorithm Solve $P(\mathcal{G})$ to get $x^* \in \{0, 1\}^V$ Return $U := \{v \in V \mid x_v^* = 1\}$

Vertex Cover

Linear Programming Relaxation P(G):

$$\begin{split} \min \sum_{v \in V} w_v x_v \\ x_u + x_v \geq 1 \quad \forall (u, v) \in E \\ x_v \geq 0 \quad \forall v \in V \end{split}$$

Any extreme point solution $x^* \in [0,1]^V$ of $P(\mathcal{G})$ satisfies

- $x^* \in \{0,1\}^V$ for bipartite graphs \mathcal{G}
- $x^* \in \{0, \frac{1}{2}, 1\}^V$ for general graphs \mathcal{G}

Bipartite \mathcal{G} : exact algorithm Solve $P(\mathcal{G})$ to get $x^* \in \{0, 1\}^V$ Return $U := \{v \in V \mid x_v^* = 1\}$ General \mathcal{G} : 2-approximation

Solve
$$P(\mathcal{G})$$
 to get $x^* \in \{0, \frac{1}{2}, 1\}^V$
Return $U := \{v \in V \mid x_v^* \ge \frac{1}{2}\}$

$$V_{1} = \{ v \mid x_{v}^{*} = 1 \}$$
$$V_{\frac{1}{2}} = \{ v \mid x_{v}^{*} = \frac{1}{2} \}$$
$$V_{0} = \{ v \mid x_{v}^{*} = 0 \}$$

5 / 27

$$V_{\frac{1}{2}} = \{ v \mid x_v^* = \frac{1}{2} \}$$

 $V_{1} = \{ v \mid x_{v}^{*} = 1 \}$ $V_{\frac{1}{2}} = \{ v \mid x_{v}^{*} = \frac{1}{2} \}$ $V_{0} = \{ v \mid x_{v}^{*} = 0 \}$

 $\mathcal{G}_{1/2}$ is the subgraph induced by the half-integral nodes $\textit{V}_{1/2}.$

Theorem [Nemhauser-Trotter] Let $x^* \in \{0, \frac{1}{2}, 1\}^V$ be an optimal extreme point solution to $P(\mathcal{G})$. Then, $w(OPT(\mathcal{G}_{1/2})) + w(V_1) = w(OPT(\mathcal{G})).$

 $\mathcal{G}_{1/2}$ is the subgraph induced by the half-integral nodes $\textit{V}_{1/2}.$

Theorem [Nemhauser-Trotter] Let $x^* \in \{0, \frac{1}{2}, 1\}^V$ be an optimal extreme point solution to $P(\mathcal{G})$. Then, $w(OPT(\mathcal{G}_{1/2})) + w(V_1) = w(OPT(\mathcal{G})).$

Corollary

If $S \subset V_{1/2}$ is a ϕ -approximate solution for $\mathcal{G}_{1/2}$, then $S \cup V_1$ is a ϕ -approximate solution for \mathcal{G} .

Proof: $w(S) + w(V_1) \le \phi w(\mathsf{OPT}(\mathcal{G}_{1/2})) + w(V_1) \le \phi w(\mathsf{OPT}(\mathcal{G}))$

Corollary

If $S \subset V_{1/2}$ is a ϕ -approximate solution for $\mathcal{G}_{1/2}$, then $S \cup V_1$ is a ϕ -approximate solution for \mathcal{G} .

 $\rightarrow \text{ We may restrict our attention to } \mathcal{G}_{1/2}.$ $V_1 = \{v \mid x_v^* = 1\}$ $V_{\frac{1}{2}} = \{v \mid x_v^* = \frac{1}{2}\}$ $V_0 = \{v \mid x_v^* = 0\}$

Corollary

If $S \subset V_{1/2}$ is a ϕ -approximate solution for $\mathcal{G}_{1/2}$, then $S \cup V_1$ is a ϕ -approximate solution for \mathcal{G} .

 \rightarrow We may restrict our attention to $\mathcal{G}_{1/2}.$

Corollary

If $S \subset V_{1/2}$ is a ϕ -approximate solution for $\mathcal{G}_{1/2}$, then $S \cup V_1$ is a ϕ -approximate solution for \mathcal{G} .

Question

Possible to exploit some information about $\mathcal{G}_{1/2}$ for better approximation?

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1/2}$, i.e. $\mathcal{G}_{1/2} \setminus S$ is a bipartite graph

- Solve the linear program $P(\mathcal{G})$ to get $V_0, V_1, V_{1/2}$
- Solve the integral linear program $P(\mathcal{G}_{1/2}\setminus S)$ to get $W\subset V_{1/2}$
- **Return:** $V_1 \cup S \cup W$

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1/2}$, i.e. $\mathcal{G}_{1/2}\setminus S$ is a bipartite graph

- Solve the linear program $P(\mathcal{G})$ to get $V_0, V_1, V_{1/2}$
- Solve the integral linear program $P(\mathcal{G}_{1/2} \setminus S)$ to get $\mathcal{W} \subset V_{1/2}$
- **Return**: $V_1 \cup S \cup W$

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1/2}$, i.e. $\mathcal{G}_{1/2} \setminus S$ is a bipartite graph

- Solve the linear program $P(\mathcal{G})$ to get $V_0, V_1, V_{1/2}$
- Solve the integral linear program $P(\mathcal{G}_{1/2} \setminus S)$ to get $\mathcal{W} \subset V_{1/2}$
- **Return**: $V_1 \cup S \cup W$

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1/2}$, i.e. $\mathcal{G}_{1/2}\setminus S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_0, V_1, V_{1/2}$
- Solve the integral linear program $P(\mathcal{G}_{1/2}\setminus S)$ to get $W\subset V_{1/2}$
- **Return**: $V_1 \cup S \cup W$

 $S \subset V_{1/2}$

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1/2}$, i.e. $\mathcal{G}_{1/2} \setminus S$ is a bipartite graph

- Solve the linear program $P(\mathcal{G})$ to get $V_0, V_1, V_{1/2}$
- Solve the integral linear program $P(\mathcal{G}_{1/2}\setminus S)$ to get $W\subset V_{1/2}$
- **Return:** $V_1 \cup S \cup W$

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1/2}$, i.e. $\mathcal{G}_{1/2} \setminus S$ is a bipartite graph

- Solve the linear program $P(\mathcal{G})$ to get $V_0, V_1, V_{1/2}$
- Solve the integral linear program $P(\mathcal{G}_{1/2} \setminus S)$ to get $W \subset V_{1/2}$
- **Return:** $V_1 \cup S \cup W$

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of $\mathcal{G}_{1/2}$, i.e. $\mathcal{G}_{1/2} \setminus S$ is a bipartite graph

New Algorithm

- Solve the linear program $P(\mathcal{G})$ to get $V_0, V_1, V_{1/2}$
- Solve the integral linear program $P(\mathcal{G}_{1/2}\setminus S)$ to get $W\subset V_{1/2}$
- **Return**: $V_1 \cup S \cup W$

 $V_1 \cup S \cup W$

Goal: Fine-grained analysis of the approximation ratio of this algorithm

• Taking $S = V_{1/2}$ recovers the standard 2-approximation.

- Taking $S = V_{1/2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.

- Taking $S = V_{1/2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.
- Beyond the worst-case understanding of the approximation ratio using additional parameters.

- Taking $S = V_{1/2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.
- Beyond the worst-case understanding of the approximation ratio using additional parameters.
- Algorithms with predictions: a machine learning algorithm could learn to find a good such set *S*.

- Taking $S = V_{1/2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.
- Beyond the worst-case understanding of the approximation ratio using additional parameters.
- Algorithms with predictions: a machine learning algorithm could learn to find a good such set *S*.
- Exploiting TU (or integral) substructure: G' = G \ S is an induced bipartite subgraph, for which P(G') is TU.

- Taking $S = V_{1/2}$ recovers the standard 2-approximation.
- Interpolating the rounding curve of the standard LP from 1 to 2 depending on "how far" the graph is from being bipartite.
- Beyond the worst-case understanding of the approximation ratio using additional parameters.
- Algorithms with predictions: a machine learning algorithm could learn to find a good such set *S*.
- Exploiting TU (or integral) substructure: G' = G \ S is an induced bipartite subgraph, for which P(G') is TU.
- New/different view on a heavily studied problem

High-Level View

- Weight Space: for which weight functions $w : V \to \mathbb{R}$ is the solution $(1/2, \ldots, 1/2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set *S*.
- Showing optimality of the analysis.

High-Level View

- Weight Space: for which weight functions $w : V \to \mathbb{R}$ is the solution $(1/2, \ldots, 1/2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set *S*.
- Showing optimality of the analysis.

Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights $w: V \to \mathbb{R}_+$ such that $(1/2, \ldots, 1/2)$ is an optimal solution to $P(\mathcal{G})$.

Lemma

 $(\frac{1}{2},\ldots,\frac{1}{2})$ is optimal for $P(\mathcal{G}) \iff \exists y \in \mathbb{R}^{E}_{+} s.t. w_{v} = y(\delta(v)) \quad \forall v \in V.$

Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights $w: V \to \mathbb{R}_+$ such that $(1/2, \ldots, 1/2)$ is an optimal solution to $P(\mathcal{G})$.

Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights $w: V \to \mathbb{R}_+$ such that $(1/2, \ldots, 1/2)$ is an optimal solution to $P(\mathcal{G})$.

Lemma

$$(\frac{1}{2}, \ldots, \frac{1}{2})$$
 is optimal for $P(\mathcal{G}) \iff \exists y \in \mathbb{R}^{\mathsf{E}}_{+} \text{ s.t. } w_{\mathsf{v}} = y(\delta(\mathsf{v})) \quad \forall \mathsf{v} \in \mathsf{V}.$

Proof. By comp. slackness, a primal-dual pair (x, y) is optimal iff

$$x_{\nu} > 0 \implies y(\delta(\nu)) = w_{\nu} \quad \forall \nu \in V$$
 (1)

$$y_e > 0 \implies x_u + x_v = 1 \quad \forall e = (u, v) \in E$$
 (2)

 \implies Follows from condition (1)

 \leftarrow The pair $(\frac{1}{2}, \dots, \frac{1}{2}), y$ satisfy both conditions (1) and (2)
Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V, E) with weights $w: V \to \mathbb{R}_+$ such that $(1/2, \ldots, 1/2)$ is an optimal solution to $P(\mathcal{G})$.

Lemma

$$(rac{1}{2},\ldots,rac{1}{2})$$
 is optimal for $\mathsf{P}(\mathcal{G})\iff \exists y\in\mathbb{R}^{\mathsf{E}}_{+}$ s.t. $w_{v}=y(\delta(v))\quad \forall v\in V.$

$$\implies w(V) = 2y(E)$$

The approximation ratio w(U)/w(OPT) is invariant to scaling:

$$\implies$$
 normalize $w(V) = 2$ and $y(E) = 1$

Weight Space

$$Q^W := \left\{ w \in \mathbb{R}^V_+ \mid \exists y \in \mathbb{R}^E_+ \text{ s.t. } y(E) = 1 \text{ and } w_v = y(\delta(v)) \quad \forall v \in V \right\}$$

Lower Bound on OPT

Lemma

Let
$$\mathcal{G} = (V, E)$$
 be a graph. For any $w \in Q^W$,

 $w(\mathsf{OPT}(\mathcal{G})) \geq 1$

Proof. Since $w \in Q^W$, the solution $(\frac{1}{2}, \ldots, \frac{1}{2})$ is an optimal LP solution, by the previous slide. Its objective value (or cost) is

$$w(V)/2 = 1.$$

Since $OPT(\mathcal{G})$ is a feasible LP solution, we get

 $w(\mathsf{OPT}(\mathcal{G})) \geq 1.$

High-Level View

- Weight Space: for which weight functions $w : V \to \mathbb{R}$ is the solution $(1/2, \ldots, 1/2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set *S*.
- Algorithmic applications to find a good set *S*.
- Showing optimality of the analysis.

Definition: parameter ρ

 $2\rho - 1$ denotes the *odd girth* (length of the shortest odd cycle) of $\tilde{\mathcal{G}}$. Hence, the range is $\rho \in [2, \infty]$

In the above example, $\rho =$ 3, since the shortest odd cycle has length 5.

Algorithm/Approximation Ratio

Round on S and solve the integral linear program $P(G \setminus S)$.

$${\sf R}(w):=rac{w({\sf S})+w({\sf OPT}({\cal G}\setminus {\sf S}))}{w({\sf OPT}({\cal G}))}$$

Algorithm/Approximation Ratio

Round on S and solve the integral linear program $P(G \setminus S)$.

$${\sf R}(w):=rac{w({\sf S})+w({\sf OPT}({\cal G}\setminus {\sf S}))}{w({\sf OPT}({\cal G}))}$$

- Every weight function is assumed WLOG to satisfy $w \in Q^W$
- $ilde{\mathcal{G}} = \mathcal{G}/S$ is the graph obtained after contracting S
- The odd girth of $ilde{\mathcal{G}}$ is denoted by 2
 ho-1, hence $ho\in [2,\infty]$

Algorithm/Approximation Ratio

Round on S and solve the integral linear program $P(G \setminus S)$.

$${\sf R}(w):=rac{w({\sf S})+w({\sf OPT}({\cal G}\setminus {\sf S}))}{w({\sf OPT}({\cal G}))}$$

- Every weight function is assumed WLOG to satisfy $w \in Q^W$
- $ilde{\mathcal{G}} = \mathcal{G}/S$ is the graph obtained after contracting S
- The odd girth of $ilde{\mathcal{G}}$ is denoted by 2
 ho-1, hence $ho\in [2,\infty]$

Theorem

Let (\mathcal{G}, S) be the input, with S being a stable set. Then

$$R(w) \leq 1 + rac{1}{
ho}$$

for every $w \in Q^W$. Equality holds for a convex subset $\mathcal{W} \subset Q^W$.

 $\mathcal{G}' = \mathcal{G} \setminus S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \setminus S$ of the bipartite graph \mathcal{G}' , we define

$$E_U := \big\{ (u,v) \in E \mid u \in U, \ v \in U \text{ or } u \in U, \ v \in S \big\}.$$

Covers U_1, \ldots, U_k are *edge-separate* if $\{E_{U_1}, \ldots, E_{U_k}\}$ are pairwise disjoint.

Remark: Only need to cover $E(\mathcal{G}') = E \setminus \delta(S)$, but $E_U \subset E$

 $\mathcal{G}' = \mathcal{G} \setminus S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \setminus S$ of the bipartite graph \mathcal{G}' , we define

$$\mathsf{E}_U := \big\{ (u,v) \in \mathsf{E} \mid u \in U, \ v \in U \text{ or } u \in U, \ v \in S \big\}.$$

Covers U_1, \ldots, U_k are *edge-separate* if $\{E_{U_1}, \ldots, E_{U_k}\}$ are pairwise disjoint.

Remark: Only need to cover $E(\mathcal{G}') = E \setminus \delta(S)$, but $E_U \subset E$

 $\mathcal{G}' = \mathcal{G} \setminus S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \setminus S$ of the bipartite graph \mathcal{G}' , we define

$$\mathsf{E}_U := \big\{ (u,v) \in \mathsf{E} \mid u \in U, \ v \in U \text{ or } u \in U, \ v \in S \big\}.$$

Covers U_1, \ldots, U_k are *edge-separate* if $\{E_{U_1}, \ldots, E_{U_k}\}$ are pairwise disjoint.

Remark: Only need to cover $E(\mathcal{G}') = E \setminus \delta(S)$, but $E_U \subset E$

 $\mathcal{G}' = \mathcal{G} \setminus S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \setminus S$ of the bipartite graph \mathcal{G}' , we define

$$E_U := \{(u,v) \in E \mid u \in U, v \in U \text{ or } u \in U, v \in S\}.$$

Covers U_1, \ldots, U_k are *edge-separate* if $\{E_{U_1}, \ldots, E_{U_k}\}$ are pairwise disjoint.

Remark: Only need to cover $E(\mathcal{G}') = E \setminus \delta(S)$, but $E_U \subset E$

Since $w_v = y(\delta(v))$, we can count the weight as

$$w(U) = y(E(\mathcal{G}')) + y(E_U)$$

because $E(\mathcal{G}')$ is counted at least once, by feasibility, with a surplus of E_U

 $\mathcal{G}' = \mathcal{G} \setminus S$ is the bipartite graph obtained after removing S.

Definition

For a feasible vertex cover $U \subset V \setminus S$ of the bipartite graph \mathcal{G}' , we define

$$\mathsf{E}_U := \big\{ (u,v) \in \mathsf{E} \mid u \in U, \ v \in U \text{ or } u \in U, \ v \in S \big\}.$$

Covers U_1, \ldots, U_k are *edge-separate* if $\{E_{U_1}, \ldots, E_{U_k}\}$ are pairwise disjoint.

Remark: Only need to cover $E(\mathcal{G}') = E \setminus \delta(S)$, but $E_U \subset E$

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}' , then

$$R(w) \leq 1 + rac{1}{k} \quad orall w \in Q^W$$

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}' , then $R(w) \leq 1 + 1/k \quad \forall w \in Q^W$.

Proof. Let $w \in Q^W$ and $y \in \mathbb{R}^E$ s.t. $w_v = y(\delta(v))$ and y(E) = 1. Let $\{U_1, \ldots, U_k\}$ be the edge-separate covers.

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}' , then $R(w) \leq 1 + 1/k \quad \forall w \in Q^W$.

Proof. Let $w \in Q^W$ and $y \in \mathbb{R}^E$ s.t. $w_v = y(\delta(v))$ and y(E) = 1. Let $\{U_1, \ldots, U_k\}$ be the edge-separate covers.

$$w(S) = y(\delta(S)), \quad w(U_i) = y(E') + y(E_{U_i}) \quad \forall i \in [k]$$

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}' , then $R(w) \leq 1 + 1/k \quad \forall w \in Q^W$.

Proof. Let $w \in Q^W$ and $y \in \mathbb{R}^E$ s.t. $w_v = y(\delta(v))$ and y(E) = 1. Let $\{U_1, \ldots, U_k\}$ be the edge-separate covers.

$$w(S) = y(\delta(S)), \quad w(U_i) = y(E') + y(E_{U_i}) \quad \forall i \in [k]$$

$$R(w) = \frac{w(S) + w(OPT(\mathcal{G}'))}{w(OPT(\mathcal{G}))} \le w(S) + w(OPT(\mathcal{G}'))$$

$$\leq w(S) + \min_{i \in [k]} w(U_i) = y(\delta(S)) + y(E') + \min_{i \in [k]} y(E_{U_i})$$
$$= 1 + \min_{i \in [k]} y(E_{U_i}) \leq 1 + \frac{1}{k}$$

Lemma 2

Lemma 2

$$ilde{\mathcal{G}}=\mathcal{G}/\mathcal{S}$$

Lemma 2

$$\mathcal{G}' = \left(\mathsf{A} \cup \mathsf{B}, \mathsf{E}'
ight)$$

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}' = (A \cup B, E')$, where $2\rho - 1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}} = \mathcal{G}/S$.

Shortest odd cycle with $\rho = 4$

Lemma 2

$$\mathcal{L}_i := \left\{ v \in A \cup B \mid d(N_A(v_S), v) = i
ight\} \quad \forall i \ge 0$$

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}' = (A \cup B, E')$, where $2\rho - 1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}} = \mathcal{G}/S$.

Shortest odd cycle with ho=4

Lemma 2

There exists ρ edge-separate covers of $\mathcal{G}' = (A \cup B, E')$, where $2\rho - 1$ is the odd girth of the contracted graph $\tilde{\mathcal{G}} = \mathcal{G}/S$.

 U_1, \ldots, U_{ρ} pairwise edge-separate covers of \mathcal{G}' :

$1+1/\rho$ approximation

Theorem (Upper Bound)

Let (\mathcal{G}, S) be the input, with S being a stable set. Then $R(w) \leq 1 + 1/\rho$ for every $w \in Q^W$, where $2\rho - 1$ is the odd girth of $\tilde{\mathcal{G}}$.

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}' , then $R(w) \leq 1 + 1/k \quad \forall w \in Q^W$.

Lemma 2

There exists ρ pairwise edge-separate covers of \mathcal{G}' .

$1+1/\rho$ approximation

Theorem (Upper Bound)

Let (\mathcal{G}, S) be the input, with S being a stable set. Then $R(w) \leq 1 + 1/\rho$ for every $w \in Q^W$, where $2\rho - 1$ is the odd girth of $\tilde{\mathcal{G}}$.

Lemma 1

Let (\mathcal{G}, S) be the input, with S being a stable set. If there exists k edge-separate covers of \mathcal{G}' , then $R(w) \leq 1 + 1/k \quad \forall w \in Q^W$.

Lemma 2

There exists ρ pairwise edge-separate covers of \mathcal{G}' .

Question.

Are there weight functions for which this bound is tight?

$$\exists \ \mathcal{W} \subset Q^{\mathcal{W}}$$
 such that $R(w) = 1 + 1/\rho$ for every $w \in \mathcal{W}$.

Theorem

$$\exists \ \mathcal{W} \subset \mathcal{Q}^{\mathcal{W}}$$
 such that $\mathcal{R}(w) = 1 + 1/
ho$ for every $w \in \mathcal{W}.$

Let $\mathcal C$ be all the shortest odd cycles (of length 2
ho-1) of the graph $ilde{\mathcal G}$.

Theorem

$$\exists \; \mathcal{W} \subset \mathcal{Q}^{\mathcal{W}}$$
 such that $\mathit{R}(w) = 1 + 1/
ho$ for every $w \in \mathcal{W}.$

Let ${\cal C}$ be all the shortest odd cycles (of length 2
ho-1) of the graph ${ ilde {\cal G}}.$

Basic weight function corresponding to $C \in C$

$$\forall C \in \mathcal{C}, \quad y^C : \tilde{E} \to \mathbb{R}_+:$$

Set both dual edges incident to v_S to $1/\rho$ and then alternatingly set the dual edges to 0 and $1/\rho$ along the odd cycle on $\tilde{\mathcal{G}}$.

Theorem

$$\exists \; \mathcal{W} \subset \mathcal{Q}^{\mathcal{W}}$$
 such that $\mathit{R}(w) = 1 + 1/
ho$ for every $w \in \mathcal{W}.$

Let ${\cal C}$ be all the shortest odd cycles (of length 2
ho-1) of the graph ${ ilde {\cal G}}.$

Basic weight function corresponding to $C \in C$

$$\forall C \in \mathcal{C}, \quad y^C : \tilde{E} \to \mathbb{R}_+:$$

Set both dual edges incident to v_S to $1/\rho$ and then alternatingly set the dual edges to 0 and $1/\rho$ along the odd cycle on $\tilde{\mathcal{G}}$.

$$\exists \; \mathcal{W} \subset \mathcal{Q}^{\mathcal{W}}$$
 such that $\mathcal{R}(w) = 1 + 1/
ho$ for every $w \in \mathcal{W}.$

$$\begin{split} \mathcal{Y} &:= \left\{ y \in \mathbb{R}^{E} \mid y = \sum_{C \in \mathcal{C}} \lambda^{C} y^{C}, \quad \sum_{C \in \mathcal{C}} \lambda^{C} = 1, \quad \lambda^{C} \geq 0 \quad \forall C \in \mathcal{C} \right\} \\ \mathcal{W} &:= \left\{ w \in \mathbb{R}^{V} \mid w_{v} = y(\delta(v)) \qquad \forall v \in V, \forall y \in \mathcal{Y} \right\} \end{split}$$

$$\exists \; \mathcal{W} \subset \mathcal{Q}^{\mathcal{W}}$$
 such that $\mathcal{R}(w) = 1 + 1/
ho$ for every $w \in \mathcal{W}.$

$$\begin{aligned} \mathcal{Y} &:= \left\{ y \in \mathbb{R}^{E} \mid y = \sum_{C \in \mathcal{C}} \lambda^{C} y^{C}, \quad \sum_{C \in \mathcal{C}} \lambda^{C} = 1, \quad \lambda^{C} \ge 0 \quad \forall C \in \mathcal{C} \right\} \\ \mathcal{W} &:= \left\{ w \in \mathbb{R}^{V} \mid w_{v} = y(\delta(v)) \qquad \forall v \in V, \forall y \in \mathcal{Y} \right\} \end{aligned}$$

$$\exists \; \mathcal{W} \subset \mathcal{Q}^{\mathcal{W}}$$
 such that $\mathcal{R}(w) = 1 + 1/
ho$ for every $w \in \mathcal{W}.$

$$\begin{aligned} \mathcal{Y} &:= \left\{ y \in \mathbb{R}^{E} \mid y = \sum_{C \in \mathcal{C}} \lambda^{C} y^{C}, \quad \sum_{C \in \mathcal{C}} \lambda^{C} = 1, \quad \lambda^{C} \ge 0 \quad \forall C \in \mathcal{C} \right\} \\ \mathcal{W} &:= \left\{ w \in \mathbb{R}^{V} \mid w_{v} = y(\delta(v)) \qquad \forall v \in V, \forall y \in \mathcal{Y} \right\} \end{aligned}$$

Integrality gap and fractional chromatic number

- Improved tight bounds on the integrality gap of P(G) and fractional chromatic number for 3-colorable graphs.
- Exact formulas for *G*̃.
- Proof based on the layer decomposition.

Theorem

$$\chi^{f}(\tilde{\mathcal{G}}) = 2 + \frac{1}{\rho - 1}, \quad IG(P(\tilde{\mathcal{G}})) = 1 + \frac{1}{2\rho - 1}$$

 \rightarrow highlights importance of the odd girth parameter ρ

High-Level View

- Weight Space: for which weight functions $w : V \to \mathbb{R}$ is the solution $(1/2, \ldots, 1/2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set *S*.
- Algorithmic applications to find a good set S.
- Showing optimality of the analysis.

Arbitrary Set to Bipartite

Additional parameter

$$\alpha := y(E[S]) \in [0,1]$$

Arbitrary Set to Bipartite

Additional parameter

$$\alpha := y(E[S]) \in [0,1]$$

Theorem

Let (\mathcal{G}, S) be the input, where S is arbitrary odd cycle transversal. Then

$$R(w) \leq \left(1 + \frac{1}{\rho}\right)(1 - \alpha) + 2\alpha$$

for every $w \in Q^W$. This bound is tight for any $\alpha \in [0, 1]$ and $\rho \in [2, \infty]$.

- Interpolating "rounding curve" of the standard LP.
- Worst-case (standard 2-approximation): $\alpha = 1$ for $S = V_{1/2}$.
- Best-case (bipartite graphs): $\rho = \infty, \alpha = 0.$
- In-between (e.g. 3-colorable graphs): $\rho < \infty, \alpha = 0$.

Arbitrary Set to Bipartite

Figure: Plot of R(w) with respect to $\alpha \in [0, 1]$
Arbitrary Set to Bipartite

Proof. Decompose the weight of S with respect to the dual variables:

$$w(S) = 2\alpha + y(\delta(S))$$

Arbitrary Set to Bipartite

Proof. Decompose the weight of *S* with respect to the dual variables:

$$w(S) = 2\alpha + y(\delta(S))$$

By Lemma 2, $\exists \
ho$ edge-separate covers of \mathcal{G}' , called $U_1,\ldots,U_{
ho}$

$$w(\mathsf{OPT}(\mathcal{G} \setminus S)) \leq \min_{i \in [\rho]} w(U_i) = y(E') + \min_{i \in [\rho]} y(E_{U_i}) \leq y(E') + \frac{1 - \alpha}{\rho}$$

Arbitrary Set to Bipartite

Proof. Decompose the weight of *S* with respect to the dual variables:

$$w(S) = 2\alpha + y(\delta(S))$$

By Lemma 2, $\exists \
ho$ edge-separate covers of \mathcal{G}' , called $U_1, \ldots, U_{
ho}$

$$w(\mathsf{OPT}(\mathcal{G} \setminus S)) \leq \min_{i \in [\rho]} w(U_i) = y(E') + \min_{i \in [\rho]} y(E_{U_i}) \leq y(E') + \frac{1 - \alpha}{\rho}$$

$$egin{aligned} & \mathcal{R}(w) = rac{w(S) + w(\mathsf{OPT}(\mathcal{G} \setminus S))}{w(\mathsf{OPT}(\mathcal{G}))} \leq w(S) + w(\mathsf{OPT}(\mathcal{G} \setminus S)) \ & \leq 2lpha + y(\delta(S)) + y(E') + rac{1-lpha}{
ho} \ & = 1 + lpha + rac{1-lpha}{
ho} = \left(1 + rac{1}{
ho}
ight)(1-lpha) + 2lpha. \end{aligned}$$

High-Level View

- Weight Space: for which weight functions $w : V \to \mathbb{R}$ is the solution $(1/2, \ldots, 1/2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set *S*.
- Algorithmic applications to find a good set *S*.
- Showing optimality of the analysis.

Algorithmic Applications

Question.

How to find a good such set S algorithmically?

- Run an approximation/FPT algorithm for the min odd cycle transversal problem.
- Find a cut of the graph and take nodes incident to uncut edges.
- Find a k-coloring and take k 2 color classes.

Algorithmic Applications

Question.

How to find a good such set S algorithmically?

- Run an approximation/FPT algorithm for the min odd cycle transversal problem.
- Find a cut of the graph and take nodes incident to uncut edges.
- Find a k-coloring and take k 2 color classes.

Algorithm using coloring

- Find a k-coloring of $\mathcal G$ with stable sets $V_1\cup\cdots\cup V_k$
- Order $w(V_1) \leq w(V_2) \cdots \leq w(V_k)$
- Return $S := V_1 \cup \cdots \cup V_{k-2}$

Algorithmic Applications

Question.

How to find a good such set S algorithmically?

- Run an approximation/FPT algorithm for the min odd cycle transversal problem.
- Find a cut of the graph and take nodes incident to uncut edges.
- Find a k-coloring and take k 2 color classes.

Algorithm using coloring

- Find a k-coloring of \mathcal{G} with stable sets $V_1 \cup \cdots \cup V_k$
- Order $w(V_1) \leq w(V_2) \cdots \leq w(V_k)$
- Return $S := V_1 \cup \cdots \cup V_{k-2}$

Theorem

Can find an
$$\alpha := y(E[S]) \le 1 - 4/k$$

High-Level View

- Weight Space: for which weight functions $w : V \to \mathbb{R}$ is the solution $(1/2, \ldots, 1/2)$ optimal?
- Analysis of the algorithm under the assumption that S is a stable set.
- Generalization to an arbitrary set S.
- Algorithmic applications to find a good set S.
- Showing optimality of the analysis.

Optimality

Integrality gap of $P(\mathcal{G})$

Worst-case integrality gap (*IG*) for a graph \mathcal{G} with *n* nodes is attained on the complete graph K_n , with $IG(K_n) = 2 - 2/n$.

Optimality

Integrality gap of $P(\mathcal{G})$

Worst-case integrality gap (*IG*) for a graph \mathcal{G} with *n* nodes is attained on the complete graph K_n , with $IG(K_n) = 2 - 2/n$.

Hardness

 \rightarrow No approximation algorithm working with $P(\mathcal{G})$ can do better than 2-2/n in the worst case.

Optimality

Integrality gap of $P(\mathcal{G})$

Worst-case integrality gap (*IG*) for a graph \mathcal{G} with *n* nodes is attained on the complete graph K_n , with $IG(K_n) = 2 - 2/n$.

Hardness

 \to No approximation algorithm working with $P(\mathcal{G})$ can do better than 2-2/n in the worst case.

Our worst-case bounds:

$$\rho = 2$$
 $\alpha = 1 - 4/n$

Matching approximation

$$R(w) \leq \left(1 + \frac{1}{\rho}\right)(1 - \alpha) + 2\alpha = \frac{3}{2}\frac{4}{n} + 2 - \frac{8}{n} = 2 - \frac{2}{n}$$

Conclusion

Conclusion

- Beyond the worst-case analysis
- Interpolating the rounding curve of the standard LP from 1 to 2
- Motivation coming from algorithms with predictions
- Can compute improvement in the ratio once S is found/given
- Matches integrality gap in the worst case

Conclusion

Conclusion

- Beyond the worst-case analysis
- Interpolating the rounding curve of the standard LP from 1 to 2
- Motivation coming from algorithms with predictions
- Can compute improvement in the ratio once S is found/given
- Matches integrality gap in the worst case

Future work ideas

- Similar ideas for other combinatorial optimization problems
- Other algorithms to find good odd cycle transversals S
- Improved approximation guarantees on subclasses of graphs
- Other prediction assumptions / other natural graph parameters

Conclusion

Conclusion

- Beyond the worst-case analysis
- Interpolating the rounding curve of the standard LP from 1 to 2
- Motivation coming from algorithms with predictions
- Can compute improvement in the ratio once S is found/given
- Matches integrality gap in the worst case

Future work ideas

- Similar ideas for other combinatorial optimization problems
- Other algorithms to find good odd cycle transversals S
- Improved approximation guarantees on subclasses of graphs
- Other prediction assumptions / other natural graph parameters