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Vertex Cover Problem

Input: Graph G = (V ,E ) with weights w : V 7→ R+

Goal: Find subset of vertices U ⊂ V of minimum weight covering all the
edges of the graph, i.e:

min
{
w(U)

∣∣∣ U ⊂ V , |U ∩ {u, v}| ≥ 1 ∀(u, v) ∈ E
}
.

Integer Programming Formulation:

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ∈ {0, 1} ∀v ∈ V
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Approximation Algorithms

Definition: Approximation Algorithm

An efficient algorithm for a minimization problem is a ϕ-approximation if it
returns a solution U such that w(U) ≤ ϕ w(OPT)

Vertex Cover

NP-Hard

NP-Hard to approximate within a factor of 1.36 [Dinur, Safra]

NP-Hard to approximate within 2− ϵ for any ϵ > 0 under the unique
games conjecture [Khot, Regev]

Admits an easy 2-approximation using linear programming
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Vertex Cover

Linear Programming Relaxation P(G):

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ≥ 0 ∀v ∈ V

Any extreme point solution x∗ ∈ [0, 1]V of P(G) satisfies
x∗ ∈ {0, 1}V for bipartite graphs G
x∗ ∈ {0, 12 , 1}V for general graphs G

Bipartite G: exact algorithm
Solve P(G) to get x∗ ∈ {0, 1}V
Return U := {v ∈ V | x∗v = 1}

General G: 2-approximation

Solve P(G) to get x∗ ∈ {0, 12 , 1}V
Return U := {v ∈ V | x∗v ≥ 1

2}
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Vertex Cover: LP Relaxation

V1 = {v | x∗
v = 1}

V0 = {v | x∗
v = 0}
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Nemhauser-Trotter theorem

G1/2 is the subgraph induced by the half-integral nodes V1/2.

Theorem [Nemhauser-Trotter]

Let x∗ ∈ {0, 12 , 1}V be an optimal extreme point solution to P(G). Then,

w(OPT(G1/2)) + w(V1) = w(OPT(G)).

Corollary

If S ⊂ V1/2 is a ϕ-approximate solution for G1/2, then S ∪ V1 is a
ϕ-approximate solution for G.

Proof: w(S) + w(V1) ≤ ϕ w(OPT(G1/2)) + w(V1) ≤ ϕ w(OPT(G))
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Nemhauser-Trotter theorem

Corollary

If S ⊂ V1/2 is a ϕ-approximate solution for G1/2, then S ∪ V1 is a
ϕ-approximate solution for G.

→ We may restrict our attention to G1/2.

V1 = {v | x∗
v = 1}

V 1
2
= {v | x∗

v = 1
2
}

V0 = {v | x∗
v = 0}

Question

Possible to exploit some information about G1/2 for better approximation?
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Our Set-Up

Algorithm: Additional Input

Suppose we have access to an odd cycle transversal S of G1/2,
i.e. G1/2 \ S is a bipartite graph

New Algorithm

Solve the linear program P(G) to get V0,V1,V1/2

Solve the integral linear program P(G1/2 \ S) to get W ⊂ V1/2

Return: V1 ∪ S ∪W

V1 = {v | x∗
v = 1}

V 1
2
= {v | x∗

v = 1
2
}

V0 = {v | x∗
v = 0}
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Motivation

Goal: Fine-grained analysis of the approximation ratio of this algorithm

Taking S = V1/2 recovers the standard 2-approximation.

Interpolating the rounding curve of the standard LP from 1 to 2
depending on ”how far” the graph is from being bipartite.

Beyond the worst-case understanding of the approximation ratio using
additional parameters.

Algorithms with predictions: a machine learning algorithm could learn
to find a good such set S .

Exploiting TU (or integral) substructure: G′ = G \ S is an induced
bipartite subgraph, for which P(G′) is TU.

New/different view on a heavily studied problem
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High-Level View

Weight Space: for which weight functions w : V → R is the solution
(1/2, . . . , 1/2) optimal?

Analysis of the algorithm under the assumption that S is a stable set.

Generalization to an arbitrary set S .

Algorithmic applications to find a good set S .

Showing optimality of the analysis.
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Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V ,E ) with weights
w : V → R+ such that (1/2, . . . , 1/2) is an optimal solution to P(G).
Lemma

(12 , . . . ,
1
2) is optimal for P(G) ⇐⇒ ∃y ∈ RE

+ s.t. wv = y(δ(v)) ∀v ∈ V .
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Lemma

(12 , . . . ,
1
2) is optimal for P(G) ⇐⇒ ∃y ∈ RE

+ s.t. wv = y(δ(v)) ∀v ∈ V .

Proof. By comp. slackness, a primal-dual pair (x , y) is optimal iff

xv > 0 =⇒ y(δ(v)) = wv ∀v ∈ V (1)

ye > 0 =⇒ xu + xv = 1 ∀e = (u, v) ∈ E (2)

=⇒ Follows from condition (1)

⇐= The pair (12 , . . . ,
1
2), y satisfy both conditions (1) and (2)
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Weight Space

By Nemhauser-Trotter, we may focus only on graphs (V ,E ) with weights
w : V → R+ such that (1/2, . . . , 1/2) is an optimal solution to P(G).
Lemma

(12 , . . . ,
1
2) is optimal for P(G) ⇐⇒ ∃y ∈ RE

+ s.t. wv = y(δ(v)) ∀v ∈ V .

=⇒ w(V ) = 2y(E )

The approximation ratio w(U)/w(OPT) is invariant to scaling:

=⇒ normalize w(V ) = 2 and y(E ) = 1

Weight Space

QW :=
{
w ∈ RV

+ | ∃y ∈ RE
+ s.t. y(E ) = 1 and wv = y(δ(v)) ∀v ∈ V

}
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Lower Bound on OPT

Lemma

Let G = (V ,E ) be a graph. For any w ∈ QW ,

w(OPT(G)) ≥ 1

Proof. Since w ∈ QW , the solution (12 , . . . ,
1
2) is an optimal LP solution,

by the previous slide. Its objective value (or cost) is

w(V )/2 = 1.

Since OPT(G) is a feasible LP solution, we get

w(OPT(G)) ≥ 1.
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High-Level View

Weight Space: for which weight functions w : V → R is the solution
(1/2, . . . , 1/2) optimal?
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Stable Set to Bipartite

G

S

G̃ = G/S

vS

G′ = G \ S

Definition: parameter ρ

2ρ− 1 denotes the odd girth (length of the shortest odd cycle) of G̃.
Hence, the range is ρ ∈ [2,∞]

In the above example, ρ = 3, since the shortest odd cycle has length 5.
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Stable Set to Bipartite

Algorithm/Approximation Ratio

Round on S and solve the integral linear program P(G \ S).

R(w) :=
w(S) + w(OPT(G \ S))

w(OPT(G))

Every weight function is assumed WLOG to satisfy w ∈ QW

G̃ = G/S is the graph obtained after contracting S

The odd girth of G̃ is denoted by 2ρ− 1, hence ρ ∈ [2,∞]

Theorem

Let (G,S) be the input, with S being a stable set. Then

R(w) ≤ 1 +
1

ρ

for every w ∈ QW . Equality holds for a convex subset W ⊂ QW .
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Tool to get improved bounds
G′ = G \ S is the bipartite graph obtained after removing S .

Definition

For a feasible vertex cover U ⊂ V \ S of the bipartite graph G′, we define

EU :=
{
(u, v) ∈ E

∣∣ u ∈ U, v ∈ U or u ∈ U, v ∈ S
}
.

Covers U1, . . . ,Uk are edge-separate if {EU1 , . . . ,EUk
} are pairwise disjoint.

Remark: Only need to cover E (G′) = E \ δ(S), but EU ⊂ E
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.

Covers U1, . . . ,Uk are edge-separate if {EU1 , . . . ,EUk
} are pairwise disjoint.

Remark: Only need to cover E (G′) = E \ δ(S), but EU ⊂ E

Since wv = y(δ(v)), we can count the weight as

w(U) = y(E (G′)) + y(EU)

because E (G′) is counted at least once, by feasibility, with a surplus of EU
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Remark: Only need to cover E (G′) = E \ δ(S), but EU ⊂ E

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G′, then
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k
∀w ∈ QW
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Tool to get improved bounds

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G′, then R(w) ≤ 1 + 1/k ∀w ∈ QW .

Proof. Let w ∈ QW and y ∈ RE s.t. wv = y(δ(v)) and y(E ) = 1. Let
{U1, . . . ,Uk} be the edge-separate covers.

w(S) = y(δ(S)), w(Ui ) = y(E ′) + y(EUi
) ∀i ∈ [k]

R(w) =
w(S) + w(OPT (G′))

w(OPT (G)) ≤ w(S) + w(OPT (G′))

≤ w(S) + min
i∈[k]

w(Ui ) = y(δ(S)) + y(E ′) + min
i∈[k]

y(EUi
)

= 1 + min
i∈[k]

y(EUi
) ≤ 1 +

1

k
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Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of G′ = (A ∪ B,E ′), where 2ρ− 1 is
the odd girth of the contracted graph G̃ = G/S .
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Li :=

{
v ∈ A ∪ B | d(NA(vS), v) = i

}
∀i ≥ 0
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Constructing ρ covers

Lemma 2

There exists ρ edge-separate covers of G′ = (A ∪ B,E ′), where 2ρ− 1 is
the odd girth of the contracted graph G̃ = G/S .

U1, . . . ,Uρ pairwise edge-separate covers of G ′:

EU1 = EA = δA(vS) EU2 = EB = δB(vS)

EU3 = E[L1,L2] EU4 = E[L3,L4]
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1 + 1/ρ approximation

Theorem (Upper Bound)

Let (G, S) be the input, with S being a stable set. Then R(w) ≤ 1 + 1/ρ
for every w ∈ QW , where 2ρ− 1 is the odd girth of G̃.

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G′, then R(w) ≤ 1 + 1/k ∀w ∈ QW .

Lemma 2

There exists ρ pairwise edge-separate covers of G′.

Question.

Are there weight functions for which this bound is tight?

18 / 27



1 + 1/ρ approximation

Theorem (Upper Bound)

Let (G, S) be the input, with S being a stable set. Then R(w) ≤ 1 + 1/ρ
for every w ∈ QW , where 2ρ− 1 is the odd girth of G̃.

Lemma 1

Let (G, S) be the input, with S being a stable set. If there exists k
edge-separate covers of G′, then R(w) ≤ 1 + 1/k ∀w ∈ QW .

Lemma 2

There exists ρ pairwise edge-separate covers of G′.

Question.

Are there weight functions for which this bound is tight?

18 / 27



Tightness

Theorem

∃ W ⊂ QW such that R(w) = 1 + 1/ρ for every w ∈ W.

Let C be all the shortest odd cycles (of length 2ρ− 1) of the graph G̃.
Basic weight function corresponding to C ∈ C

∀C ∈ C, yC : Ẽ → R+ :

Set both dual edges incident to vS to 1/ρ and then alternatingly set the
dual edges to 0 and 1/ρ along the odd cycle on G̃.

1/3

1/3

1/3

G

1/3

1/3

1/3

G̃

yC
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Tightness

Theorem

∃ W ⊂ QW such that R(w) = 1 + 1/ρ for every w ∈ W.

Y :=
{
y ∈ RE | y =

∑
C∈C

λCyC ,
∑
C∈C

λC = 1, λC ≥ 0 ∀C ∈ C
}

W :=
{
w ∈ RV | wv = y(δ(v)) ∀v ∈ V ,∀y ∈ Y

}
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Integrality gap and fractional chromatic number

Improved tight bounds on the integrality gap of P(G) and fractional
chromatic number for 3-colorable graphs.

Exact formulas for G̃.
Proof based on the layer decomposition.

Theorem

χf (G̃) = 2 +
1

ρ− 1
, IG (P(G̃)) = 1 +

1

2ρ− 1

→ highlights importance of the odd girth parameter ρ
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High-Level View

Weight Space: for which weight functions w : V → R is the solution
(1/2, . . . , 1/2) optimal?

Analysis of the algorithm under the assumption that S is a stable set.

Generalization to an arbitrary set S .

Algorithmic applications to find a good set S .

Showing optimality of the analysis.
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Arbitrary Set to Bipartite

Additional parameter

α := y(E [S ]) ∈ [0, 1]

Theorem

Let (G,S) be the input, where S is arbitrary odd cycle transversal. Then

R(w) ≤
(
1 +

1

ρ

)
(1− α) + 2α

for every w ∈ QW . This bound is tight for any α ∈ [0, 1] and ρ ∈ [2,∞].

Interpolating ”rounding curve” of the standard LP.

Worst-case (standard 2-approximation): α = 1 for S = V1/2.

Best-case (bipartite graphs): ρ = ∞, α = 0.

In-between (e.g. 3-colorable graphs): ρ < ∞, α = 0.
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Arbitrary Set to Bipartite

0

1

2

1

ρ = ∞
0

1 + 1/ρ

2

1

ρ < ∞

Figure: Plot of R(w) with respect to α ∈ [0, 1]
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Arbitrary Set to Bipartite
Proof. Decompose the weight of S with respect to the dual variables:

w(S) = 2α+ y(δ(S))

By Lemma 2, ∃ ρ edge-separate covers of G′, called U1, . . . ,Uρ

w(OPT(G \ S)) ≤ min
i∈[ρ]

w(Ui ) = y(E ′) + min
i∈[ρ]

y(EUi
) ≤ y(E ′) +

1− α

ρ

R(w) =
w(S) + w(OPT(G \ S))

w(OPT(G)) ≤ w(S) + w(OPT(G \ S))

≤ 2α+ y(δ(S)) + y(E ′) +
1− α

ρ

= 1 + α+
1− α

ρ
=

(
1 +

1

ρ

)
(1− α) + 2α.
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Algorithmic Applications

Question.

How to find a good such set S algorithmically?

Run an approximation/FPT algorithm for the min odd cycle
transversal problem.

Find a cut of the graph and take nodes incident to uncut edges.

Find a k-coloring and take k − 2 color classes.

Algorithm using coloring

Find a k-coloring of G with stable sets V1 ∪ · · · ∪ Vk

Order w(V1) ≤ w(V2) · · · ≤ w(Vk)

Return S := V1 ∪ · · · ∪ Vk−2

Theorem

Can find an α := y(E [S ]) ≤ 1− 4/k
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Optimality

Integrality gap of P(G)
Worst-case integrality gap (IG ) for a graph G with n nodes is attained on
the complete graph Kn, with IG (Kn) = 2− 2/n.

Hardness

→ No approximation algorithm working with P(G) can do better than
2− 2/n in the worst case.

Our worst-case bounds:

ρ = 2 α = 1− 4/n

Matching approximation

R(w) ≤
(
1 +

1

ρ

)
(1− α) + 2α =

3

2

4

n
+ 2− 8

n
= 2− 2

n
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Conclusion

Conclusion

Beyond the worst-case analysis

Interpolating the rounding curve of the standard LP from 1 to 2

Motivation coming from algorithms with predictions

Can compute improvement in the ratio once S is found/given

Matches integrality gap in the worst case

Future work ideas

Similar ideas for other combinatorial optimization problems

Other algorithms to find good odd cycle transversals S

Improved approximation guarantees on subclasses of graphs

Other prediction assumptions / other natural graph parameters

Thanks!
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