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Community First Responder Systems

OHCA
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Goal:
• shorten time to CPR
• improve survival rates accept

reject

not seen
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Community First Responder Systems



Common are retrospective studies. 

Uncommon are studies proactively investigating a system.
What if:
• we recruit more volunteers?
• we optimizing system’s alerting settings?

Previous work

Caroline Jagtenberg



How to quantify the impact of n volunteers on
patient survival?

• What is the arrival-time distribution of the 
first-arriving responder?

Volunteer recruitment

Caroline Jagtenberg



OHCA survival function
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Approach

We’ll model the locations of volunteers as a Poisson Point 
Process.

It may have a different 𝜇 in different parts of the city, 
though.

And recruiting would influence the 𝜇.
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Consider a patient at location l. Let R be the (random) 
response time of the closest available volunteer.

P(R > t minutes) = 
P(0 volunteers within distance dt)  
= e−μ(B(l,t)) 

= exp(−densityl 𝞹 dt
2 )

Response-time distribution

density of accepting 
volunteers (so after 
thinning) around location l



Response time distribution

Assuming volunteers walk at 6 km/h, we obtain an exact expression 
for the on-foot response time of closest volunteer:
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Figure 2 Cumulative distribution function (left) and density (right) of on-foot response time of closest volunteer,

depending on the expected number of available volunteers within 1 kilometer, for a response delay ⌧v

of 3 minutes, a walking pace w of 0.1 km/min and constant volunteer density. The curves on the right

are also known as Rayleigh distributions with parameter �= 1/
p
2µ⇡.

is the probability that a given call arises within the region B. Then, in full generality,

P(Tv  t) =
R
P(Tv(l) t)�(dl).

We subdivide the city into a finite number of regions l 2L= {1,2, . . . , `}, with Region l

being the location of a generic call with probability �l, l 2 L. Hence,
P

l2L �l = 1. Within

each region, we assume that the response-time distribution does not vary, so that P(Tv 
t) =

P
l2L �lP(Tv(l) t). This, together with (4), allows us to compute the (unconditional)

distribution of volunteer response time.

This model assumes that the density of volunteers is constant within each region l 2L,
and moreover that the response-time distribution does not vary as the call location varies

within the region. This is an imperfection in the model, since calls that arise close to the

boundary of a region may receive a volunteer response from a neighboring region where

the volunteer density is di↵erent, but that is not captured. Our model is therefore plausible

when regions are large enough that volunteers outside the region are unlikely to materially

impact survival rates within the region, or in the situation when neighboring regions have

similar volunteer densities.

4. The Ideal Volunteer Distribution

In view of (3), it is clear that for any fixed region B we want µ(B) to be as large as possible.

Recall that µ(B) = n↵⌫(B), where n is the number of volunteers, ↵ is the probability that



First result

Required density of available volunteers 
(per km2) to meet targets

But remember: we have more than just response-time goals. 
We have survival goals.

So we’ll have to integrate the survival function against our 
obtained response-time PDF, to get probability of survival.



Extend to a heterogeneous area (e.g. city)

Partition the city into regions indexed by 𝑙 ∈ {1, … , 𝐿}.

• Let 𝜆𝑙 be the OHCA rate of region l (input).

• Let	𝜈𝑙 be the probability of finding a volunteer in 
region l. (Unknown, but at least	 ∑!"#$ 𝜈! = 1 .)

• Assume volunteer density is uniform within a region.



Case study

We consider an urban area of Auckland, New Zealand
that is discretized into 287 so-called area units.



Extending to a heterogeneous area 
(e.g. city)
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explicitly perform this second step. Rather, we assume that irrespective of the location

within the region, the density of volunteers around the incident location is constant. This

interpretation of our model is admittedly approximate, because incident locations near the

boundary of a region could receive volunteer response from a neighboring region with a

di↵erent volunteer density, and it assumes that volunteer density is constant throughout the

region. Experiments not reported here indicate that the impact on performance measures

of both issues is minimal. A way to appreciate why is to note an analogy with di↵erent

methods to approximate a definite integral with finite sums, such as the trapezoid and

Simpson rules.

4.1. Volunteers only

W e consider the contribution of volunteers to two separate objective functions: 1) coverage

with respect to a fixed response-time threshold, and 2) probability of patient survival.

We are primarily interested in the second of these objectives, but the details are more

straightforward for the first objective so we begin there. Moreover, insights obtained from

the structure of the solution based on the first objective can help explain the solution with

respect to the more complex survival-based objective.

4.1.1. Optimizing Coverage Coverage is defined as the fraction of demand that can be

served within a predefined threshold time ⌧ . For our purpose it is slightly more convenient

to work with the probability that the response time exceeds ⌧ , conditioning on the Region l

in which the call occurs and using (4). Let ⌫l denote the volunteer probability mass within

Region l and let al be the area of Region l in square km. Thus, within Region l, the density

of available volunteers is n↵⌫l/al. Recalling that d⌧ is the distance within which a volunteer

can reach a call within the time threshold ⌧ , we get

P(Tv > ⌧) =
X

l

�lP(Tv(l)> ⌧) =
X

l2L

�l exp
�
�⇡d2⌧n↵⌫l/al

�
. (5)

The expression (5) is (jointly) convex in the probabilities (⌫l : l 2L), yielding

Proposition 1. The probability that the response time is greater than any fixed quantity

⌧ is a convex function of the probabilities (⌫l : l 2L).

A consequence of Proposition 1 is that we can use convex optimization methods to

minimize the probability that the response time is greater than the time threshold ⌧ ,

density

We have good estimates for 𝜆𝑙, but not for 𝜈𝑙

We can make some assumptions on 𝜈𝑙 , for example:
- proportional to inhabitants of location 𝑙

and evaluate this function above. Also transforming this to survival 
probabilities is no problem.



Auckland, 𝜈𝑙	 proportional to inhabitants

…



How to choose 𝜈𝑙

Let’s turn this into an optimization question:

What location measure 𝜐 gives the best survival over 
the whole city? 

• This provides a bounds on what can be achieved 
with n volunteers.

• Can also guide recruitment efforts.



Optimizing where volunteers are in 
the city

Proposition: This function is convex in the probabilities 𝜈$

àCan use convex optimization methods to
 minimize P( T > τ )   ß can even do this exact
      maximize survival          ß exact up to step size ɛ
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explicitly perform this second step. Rather, we assume that irrespective of the location

within the region, the density of volunteers around the incident location is constant. This

interpretation of our model is admittedly approximate, because incident locations near the

boundary of a region could receive volunteer response from a neighboring region with a

di↵erent volunteer density, and it assumes that volunteer density is constant throughout the

region. Experiments not reported here indicate that the impact on performance measures

of both issues is minimal. A way to appreciate why is to note an analogy with di↵erent

methods to approximate a definite integral with finite sums, such as the trapezoid and

Simpson rules.

4.1. Volunteers only

W e consider the contribution of volunteers to two separate objective functions: 1) coverage

with respect to a fixed response-time threshold, and 2) probability of patient survival.

We are primarily interested in the second of these objectives, but the details are more

straightforward for the first objective so we begin there. Moreover, insights obtained from

the structure of the solution based on the first objective can help explain the solution with

respect to the more complex survival-based objective.

4.1.1. Optimizing Coverage Coverage is defined as the fraction of demand that can be

served within a predefined threshold time ⌧ . For our purpose it is slightly more convenient

to work with the probability that the response time exceeds ⌧ , conditioning on the Region l

in which the call occurs and using (4). Let ⌫l denote the volunteer probability mass within

Region l and let al be the area of Region l in square km. Thus, within Region l, the density

of available volunteers is n↵⌫l/al. Recalling that d⌧ is the distance within which a volunteer

can reach a call within the time threshold ⌧ , we get

P(Tv > ⌧) =
X

l

�lP(Tv(l)> ⌧) =
X

l2L

�l exp
�
�⇡d2⌧n↵⌫l/al

�
. (5)

The expression (5) is (jointly) convex in the probabilities (⌫l : l 2L), yielding

Proposition 1. The probability that the response time is greater than any fixed quantity

⌧ is a convex function of the probabilities (⌫l : l 2L).

A consequence of Proposition 1 is that we can use convex optimization methods to

minimize the probability that the response time is greater than the time threshold ⌧ ,

densityinput
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(a) Late arrival, n= 500 (b) Survival, n= 500 (c) Survival, n= 500

(d) Late arrival, n= 5000 (e) Survival, n= 5000 (f) Survival, n= 5000
Figure 7 Optimal volunteer distribution (fraction of volunteers in that region divided by its area) to minimize

late arrivals for ⌧ = 7 min with no ambulance(a and d), to maximize survival without EMS response (b

and e), or to maximize survival with EMS response (c and f) with n= 500 or n= 5000. Darker colors

represent higher volunteer density.

explore the more realistic situation, profile recruitment, where we maximize performance

associated with volunteer profiles using the optimization methods from Section 4.3.

Ideal recruitment Figure 8 plots the optimal volunteer density in each area unit as a

function of the population density, without EMS. We do not depict the solution with EMS

because the proximity of ambulance bases a↵ects the optimal allocation, disguising the

patterns we wish to highlight. For comparison, a solution where volunteer densities are

proportional to population densities is also shown.

With only 500 available volunteers, the optimal solution for late arrivals has no vol-

unteers in areas with low population densities. Moreover, a comparison of Figure 8a and

8b shows that the population density above which a region receives volunteers is smaller



Ambulances + volunteers
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Figure 1 The De Maio et al. (2003) (left) and Waalewijn et al. (2001) Model 1 (right) survival functions. Time

in minutes on the horizontal axis is mapped to predicted survival probability on the vertical axis.

Survival functions have been used in work on ambulance operations in the absence of

volunteer schemes; see Erkut et al. (2008), McLay (2009), Bandara et al. (2012), Za↵ar

et al. (2016).

3. Modelling Volunteer Response

In this section, we argue that volunteer locations are well modeled by a Poisson point

process and thereby derive the distribution of volunteer response times. This distribution,

particularly when complimented with the distribution of EMS response times, allows us to

make statements about the expected gain in patient survival due to volunteers.

Throughout the paper we use the term “city” to refer to the overall area in which

ambulance and volunteer response is modeled. However, our modeling approach applies

whether the area under consideration is a city, a county, a state, or even a nation, at least

in principle.

3.1. Using a Poisson Point Process

We say that a volunteer is available if they are present in the city, have the app running

on their phone, and will accept a notification should it be sent to them. We assume that

available volunteers are distributed throughout the city according to a spatial Poisson

point process. We assume that the set of available volunteers does not depend on call

volume, which is reasonable since typically volunteers are called out on the order of once

per year (Pijls et al. 2019).

Modeling available volunteers as a spatial Poisson point process is reasonable because

of results that justify approximating certain spatial point processes by Poisson point pro-

cesses. For a general introduction to Poisson point processes, including theoretical results

s(tCPR, tEMS) = (1 + e
0.04+0.3tCPR+0.14(tEMS�tCPR))�1

. (1)

3
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Ambulances + volunteers

Input:
• Ambulance response-time distribution per area unit
• Total number of volunteers in the city (n)

Variables: how the n volunteers are distributed over 
the area units.

Objective: maximize survival.
 
à Still convex!



Auckland: 25 ambulances 
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(a) Late arrival, n= 500 (b) Survival, n= 500 (c) Survival, n= 500

(d) Late arrival, n= 5000 (e) Survival, n= 5000 (f) Survival, n= 5000
Figure 7 Optimal volunteer distribution (fraction of volunteers in that region divided by its area) to minimize

late arrivals for ⌧ = 7 min with no ambulance(a and d), to maximize survival without EMS response (b

and e), or to maximize survival with EMS response (c and f) with n= 500 or n= 5000. Darker colors

represent higher volunteer density.

explore the more realistic situation, profile recruitment, where we maximize performance

associated with volunteer profiles using the optimization methods from Section 4.3.

Ideal recruitment Figure 8 plots the optimal volunteer density in each area unit as a

function of the population density, without EMS. We do not depict the solution with EMS

because the proximity of ambulance bases a↵ects the optimal allocation, disguising the

patterns we wish to highlight. For comparison, a solution where volunteer densities are

proportional to population densities is also shown.

With only 500 available volunteers, the optimal solution for late arrivals has no vol-

unteers in areas with low population densities. Moreover, a comparison of Figure 8a and

8b shows that the population density above which a region receives volunteers is smaller
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(a) Late arrival, n= 500 (b) Survival, n= 500 (c) Survival, n= 500

(d) Late arrival, n= 5000 (e) Survival, n= 5000 (f) Survival, n= 5000
Figure 7 Optimal volunteer distribution (fraction of volunteers in that region divided by its area) to minimize

late arrivals for ⌧ = 7 min with no ambulance(a and d), to maximize survival without EMS response (b

and e), or to maximize survival with EMS response (c and f) with n= 500 or n= 5000. Darker colors

represent higher volunteer density.

explore the more realistic situation, profile recruitment, where we maximize performance

associated with volunteer profiles using the optimization methods from Section 4.3.

Ideal recruitment Figure 8 plots the optimal volunteer density in each area unit as a

function of the population density, without EMS. We do not depict the solution with EMS

because the proximity of ambulance bases a↵ects the optimal allocation, disguising the

patterns we wish to highlight. For comparison, a solution where volunteer densities are

proportional to population densities is also shown.

With only 500 available volunteers, the optimal solution for late arrivals has no vol-

unteers in areas with low population densities. Moreover, a comparison of Figure 8a and

8b shows that the population density above which a region receives volunteers is smaller



Operational planning

Until now we have discussed strategic planning.

Let’s talk about what we can optimize 
for a CFR system in real time.



Problem definition
Which volunteers should be alerted (and when)?

Given a single patient, observe:
• Response time of the ambulance
• Locations of nearby volunteers

Goal: maximize survival 
Avoid multiple volunteers arriving on site

Phased alerting

Caroline Jagtenberg



GoodSAM NZ’s current dispatch policy

Caroline Jagtenberg

Alert in batches of 3 
ü with 30-second time lags 
ü until someone has accepted
Never retract alerts

1km



Response time = min (alert timev + acceptance delayv + travel timev)
         v in volts

          
       decide  stochastic  deterministic

Phased alerting

Caroline Jagtenberg



Response time = min (alert timev + acceptance delayv + travel timev)
            v in accepting volts

Strategy may be adaptive: depending on real-time information (accepts/rejects).
Example: New Zealand’s current policy is adaptive.
But we can imagine even more situation-specific policies.

Phased alerting

Caroline Jagtenberg



Time between the alert and the reaction (accept/reject). 
Based on 12,591 observations from GoodSam NZ.

Volunteer reactions from empirical data

Caroline Jagtenberg

Figure 2: Historical view delays and acceptance probabilities as observed on GoodSAM in New Zealand.

travel time of 0 seconds. We discretized the distances in 100-meter blocks and for each block, took the
median speed of all volunteer responses in the data. We excluded the data for responses between 0 and
100 meters as we considered these less reliable. We then performed linear regression on the remaining
medians to estimate the relationship between distance and speed.

2.2. Policies

We consider so-called alerting policies, which may base the decision to send an alert on the amount
of time that has passed, and/or the responses that are received from previously alerted volunteers.
Our policies only alert a more distant volunteer when all closer volunteers are already alerted. This
helps to narrow down the set of all policies to realistic and promising ones. We further assume that
no alerts are sent out after a volunteer accepts an alert, or 10 minutes have passed after GoodSAM
activation, whichever comes first.

We evaluate the following policies:

1. Send all at time 0 : alert all available volunteers within the dispatch radius immediately upon
GoodSAM activation, which we call time 0.

2. Send n at time 0 : Alert n volunteers immediately at time 0, and send no alerts after.
3. Keep-n-active: Alert n volunteers at time 0 and replace every incoming reject with an additional

alert.
4. NZ current policy : Alert 3 volunteers at time 0 and 3 additional volunteers every 30 seconds

until one volunteer accepts the alert, or 10 minutes have passed.

For send n at time 0, we consider the values of n between 1 and 15. For keep-n-active we consider
values of n between 1 and 10. This gives a total of 27 policies.

2.3. Simulation

To estimate performance for the di↵erent policies, we applied Monte Carlo simulation, considering
two sources of uncertainty: 1) the distance between the volunteers and the patient, and 2) the view
delay and reply of alerted volunteers. The simulation evaluates 1,000 di↵erent OHCAs. For each
OHCA, their CFR view delays and corresponding replies were bootstrapped 10,000 times from the
empirical data. Each view delay and reply were jointly sampled to maintain the statistical dependence
between the time a volunteer takes to respond and the likelihood that the reply is ‘accept’ (see Figure
2). This calculation estimates all KPIs with very narrow confidence intervals.

2.4. Performance metrics

We consider two KPIs related to the quality of care and two KPIs related to the inconvenience
caused to volunteers.

Coverage: fraction of incidents that receive a CFR response within a given time threshold. We
define this on the ‘GoodSAM response time’ (see Figure 1) and use a threshold of 5 minutes.
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Monte Carlo Simulation

Caroline Jagtenberg

Compare a number of policies:
• Send all at time 0
• Send n at time 0 
• Keep-n-active
• NZ current policy 

Generate distances by drawing volunteer locations uniformly at random in a 
1-km circle around the patient.

Sample from GoodSAM data: view delays and accept/rejects, distance-
dependent travel speed.

Fix EMS time at 12 minutes.

Simulate (often enough to reduce confidence intervals to almost zero).



Monte Carlo Simulation 
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Shows trade-offs between three metrics (for 10 volunteers in the circle):

Policy Coverage Survivors per year Nr of alerts Redundant arrivals
Send all at time 0. 0.428 191 10.0 0.918
Keep 6 alerts active. 0.381 178 7.0 0.453
Keep 7 alerts active. 0.399 184 8.0 0.587
Keep 8 alerts active. 0.413 188 8.8 0.718
Keep 9 alerts active. 0.422 190 9.5 0.834
Keep 10 alerts active. 0.428 191 10.0 0.918
Send 7 alerts at time 0. 0.399 179 7.0 0.498
Send 8 alerts at time 0. 0.413 184 8.0 0.630
Send 9 alerts at time 0. 0.422 188 9.0 0.771
Send 10 alerts at time 0. 0.428 191 10.0 0.918
NZ current strategy. 0.283 181 8.1 0.574

Table 1: Results for n = 10 volunteers within 1 km, based on 1000 simulated volunteer locations, with 10000 view delay

and acceptance simulations each. The maximum confidence interval halfwidth as a fraction of the mean among all these

numbers was 0.013 (ignoring those cases where the mean was zero). Policies that send more than 10 alerts at time 0 are

omitted, as there are only 10 eligible volunteers in this situation.
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Keep 7 alerts active. 0.399 184 8.0 0.587
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and acceptance simulations each. The maximum confidence interval halfwidth as a fraction of the mean among all these
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omitted, as there are only 10 eligible volunteers in this situation.
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omitted, as there are only 10 eligible volunteers in this situation.



Monte Carlo Simulation 
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Shows trade-offs between three metrics (for 100 volunteers in the circle):

Policy Coverage Survivors per year Nr of alerts Redundant arrivals
Send all at time 0. 0.996 259 100.0 16.768
Keep 7 alerts active. 0.657 222 8.1 0.595
Keep 8 alerts active. 0.698 228 9.2 0.743
Keep 9 alerts active. 0.733 233 10.2 0.897
Keep 10 alerts active. 0.763 237 11.2 1.056
Send 1 alerts at time 0. 0.145 129 1.0 0.000
Send 5 alerts at time 0. 0.515 196 5.0 0.265
Send 10 alerts at time 0. 0.740 231 10.0 0.918
Send 15 alerts at time 0. 0.851 246 15.0 1.718
NZ current strategy. 0.615 229 11.4 1.021

Table 3: Results for n = 100 volunteers within 1 km, based on 1000 simulated volunteer locations, with 10000 view delay

and acceptance simulations each. The maximum confidence interval halfwidth as a fraction of the mean among all these

numbers was 0.005 (ignoring those cases where the mean was zero.)
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You can choose your favorite policy from this list and 
always do that.

But, you may also do something more clever: decide your 
policy after having observed where the volunteers are.

Insight

Caroline Jagtenberg



Machine Learning

Caroline Jagtenberg

Pre-define a list of 40 dispatch strategies, e.g.:
• Send all
• Send n
• Keep n active
For various n. 

Objective: patient survival – w * redundant arrivals

Generate lots of scenarios (e.g. [55, 129, 300, 499, 540 ,588]), simulate all strategies. 
Store the best strategy.

Example:  [55, 129, 300, 499, 540, 588] , #37 
                       [71, 120, 136, 377, 520, 578] , #21    
                       [32, 129, 300, 499, 540, 588] , #4
  [85, 190, 298, 360, 387, 440] , #1
  [55, 182, 209, 361, 405, 540] , #37
Build a tree that predicts which of the 40 strategies is best, depending on 
scenario. (Multiclass classification)



Let’s keep it simple: study the process when we have 
exactly 6 volunteers in the circle. 

Small case study

Caroline Jagtenberg

Step Runtime

Generate 500 random scenarios microseconds

For each scenario, evaluate each 
alerting strategy by simulating it 
10.000 times

20 mins

Store the strategy that performed 
best.

-

Build tree (Python sklearn) seconds



Result: 

Small case study

Caroline Jagtenberg

Keep 3 Send 4

Send 2Send 3

Keep 3Keep 4

volt 4 
≤ 7.4 min?

volt 3 
≤ 8.7 min?

volt 5 
≤ 7.9 min?

volt 4 
≤ 6.7 min?

Ja Nee

volt 4 
≤ 6.7min?

yes no



THREE WAYS FORWARD 

More realistic 
input scenarios

Better 
trees

Is our finite list of 
policies covering 
enough options?



Compare against Dynamic Programming

Caroline Jagtenberg

How many volunteers to alert when, is a (stochastic) optimization problem.

Formulate it as a finite-horizon Markov Decision Problem. 

5-second time epochs.

To allow a smaller state space, pretend the duration until a volunteer 
replies yes/no is memoryless.

Actions are how many volunteers to alert (assumed always choose the 
next-closest one).

Solve by dynamic programming. 

Slow: can handle just 

5 volunteers



DP versus best-in-the-list

Caroline Jagtenberg
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We don’t always see exactly 6 people in the 1-km ball.

How to get a realistic estimate?

More realistic input scenarios

Caroline Jagtenberg



More realistic input scenarios

Caroline Jagtenberg

Nr of volunteers in the 1-km ball

Auckland with a 0.1% signup rate.

   Taking into account where the people live.

   

van den Berg et al.: Modeling EMS Volunteer Response
20 Preprint posted on SSRN

(a) Population density
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(b) Incidents versus population

Figure 3 Left: The population density per area unit in Auckland, New Zealand, measured in inhabitants per

square kilometer. Right: Scatter plot of the number of cardiac arrests between 2013 and 2020 and the

population over all area units. The three points in the upper-right correspond to two area units in the

central business district and one area unit that contains Auckland International Airport.

All emergency calls in the Auckland region are handled by the St. John Ambulance

Service (SJAS), which also runs the volunteer program. We have obtained data from the

SJAS on volunteer operations since the inception of the program in December of 2017.

Since December 2017, 6749 volunteer alerts were sent out in 2827 OHCA incidents. We

estimate the fraction ↵ of alerts that are accepted by volunteers by the observed fraction,

0.14, in the data. The modest number of OHCA incidents relative to the number of area

units we use means that while we can obtain estimates of OHCA incidence from the data,

those estimates are not precise. We are separately exploring the use of a longer history

of OHCA incidents to estimate OHCA incidence directly. Importantly, we cannot reliably

estimate the volunteer distribution ⌫ from this data.

Figure 4a provides a histogram of the distances between OHCA incidents and alerted

volunteers over the 6749 alerts in the data. For comparison, the theoretical distribution

of the distance to any volunteer, whether alerted or not, in a Poisson point process with

constant intensity is triangular. The data has more mass near shorter distances than a

triangular distribution, which is expected since alerted volunteers are those closest to an

OHCA incident. (We do not have data on the location of all volunteers at the time of an

OHCA incident due to privacy restrictions.) Figure 4b provides a histogram of the distances

to the closest volunteer just within two area units in the central business district (CBD).

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3825060
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Input now looks like this

Caroline Jagtenberg

Example:  [55, 129, 300, 499, 540] , #37    
                       [55, 102, 225, 369, 499, 540, 588] , #4
  [75, 190] , #1
  [55, 187, 300, 477, 545] , #37



Ambulance response times

Caroline Jagtenberg

Obviously, it’s not always 12 minutes.

Use realistic estimates that vary across the region.

van den Berg et al.: Modeling EMS Volunteer Response
20 Preprint posted on SSRN

(a) Population density
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(b) Incidents versus population

Figure 3 Left: The population density per area unit in Auckland, New Zealand, measured in inhabitants per

square kilometer. Right: Scatter plot of the number of cardiac arrests between 2013 and 2020 and the

population over all area units. The three points in the upper-right correspond to two area units in the

central business district and one area unit that contains Auckland International Airport.

All emergency calls in the Auckland region are handled by the St. John Ambulance

Service (SJAS), which also runs the volunteer program. We have obtained data from the

SJAS on volunteer operations since the inception of the program in December of 2017.

Since December 2017, 6749 volunteer alerts were sent out in 2827 OHCA incidents. We

estimate the fraction ↵ of alerts that are accepted by volunteers by the observed fraction,

0.14, in the data. The modest number of OHCA incidents relative to the number of area

units we use means that while we can obtain estimates of OHCA incidence from the data,

those estimates are not precise. We are separately exploring the use of a longer history

of OHCA incidents to estimate OHCA incidence directly. Importantly, we cannot reliably

estimate the volunteer distribution ⌫ from this data.

Figure 4a provides a histogram of the distances between OHCA incidents and alerted

volunteers over the 6749 alerts in the data. For comparison, the theoretical distribution

of the distance to any volunteer, whether alerted or not, in a Poisson point process with

constant intensity is triangular. The data has more mass near shorter distances than a

triangular distribution, which is expected since alerted volunteers are those closest to an

OHCA incident. (We do not have data on the location of all volunteers at the time of an

OHCA incident due to privacy restrictions.) Figure 4b provides a histogram of the distances

to the closest volunteer just within two area units in the central business district (CBD).

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3825060
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Input now looks like this

Caroline Jagtenberg

Example:  [55, 129, 300, 499, 540] , 672, #30    
                       [55, 102, 225, 369, 499, 540, 588] , 590, #4
  [75, 190] , 274, #2
  [55, 187, 300, 477, 545] , 588, #37

Volunteers                    EMS time           best policy



Triage time affects survival

Caroline Jagtenberg

van den Berg et al.: Modeling EMS Volunteer Response

8 Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)

5 10 15

0.1

0.2

0.3

t

S
u
rv
iv
al

5 10 15

0.2

0.4

tEMS

S
u
rv
iv
al

tCPR = 0
tCPR = 3
tCPR = 5
tCPR = tEMS

Figure 1 The De Maio et al. (2003) (left) and Waalewijn et al. (2001) Model 1 (right) survival functions. Time

in minutes on the horizontal axis is mapped to predicted survival probability on the vertical axis.

Survival functions have been used in work on ambulance operations in the absence of

volunteer schemes; see Erkut et al. (2008), McLay (2009), Bandara et al. (2012), Za↵ar

et al. (2016).

3. Modelling Volunteer Response

In this section, we argue that volunteer locations are well modeled by a Poisson point

process and thereby derive the distribution of volunteer response times. This distribution,

particularly when complimented with the distribution of EMS response times, allows us to

make statements about the expected gain in patient survival due to volunteers.

Throughout the paper we use the term “city” to refer to the overall area in which

ambulance and volunteer response is modeled. However, our modeling approach applies

whether the area under consideration is a city, a county, a state, or even a nation, at least

in principle.

3.1. Using a Poisson Point Process

We say that a volunteer is available if they are present in the city, have the app running

on their phone, and will accept a notification should it be sent to them. We assume that

available volunteers are distributed throughout the city according to a spatial Poisson

point process. We assume that the set of available volunteers does not depend on call

volume, which is reasonable since typically volunteers are called out on the order of once

per year (Pijls et al. 2019).

Modeling available volunteers as a spatial Poisson point process is reasonable because

of results that justify approximating certain spatial point processes by Poisson point pro-

cesses. For a general introduction to Poisson point processes, including theoretical results

By the time you send the alert, you 
know how long you’ve triaged!



Input now looks like this

Caroline Jagtenberg

Example:  [55, 129, 300, 499, 540] , 601, 45, #19    
                       [55, 102, 225, 369, 499, 540, 588] , 590, 77, #24
  [75, 190] , 274, 126, #3
  [55, 187, 300, 477, 545] , 588, 189, #25

Volunteers               EMS time              triage time          best policy



Result (accuracy 0.83)

Caroline Jagtenberg

yes no



THREE WAYS FORWARD 

More realistic 
input scenarios

Better 
trees

Is our finite list of 
policies covering 
enough options?



Who is familiar with Optimal trees by Dimitris 
Bertsimas & Jack Dunn?

“Classification and Regression Trees (CART) build the decision tree using a 
recursive approach based on a greedy heuristic. We study the benefits of an 
optimal decision tree approach, which creates the entire decision tree at once 
using Mixed Integer Optimization”.

Benefits:
• A better performing tree (at least true in-sample, hopefully 

also out-of-sample)
• Allows complex error functions (more than just the % of 

misclassifications)
• Allows hyperplane splits    4x + 7y – 8z < 17.5

Optimal Trees

Caroline Jagtenberg



• Cool? Yes
• Easy? No

• Not quick to solve, even using commercial MIP 
solvers

• Tips:
• Generate a bunch of potentially decent trees using 

conventional ML packages
• Use these as warm-starts for the MIP solver
• Terminate while there is still an optimality gap
• End with a local search around the best-found solution

Optimal trees

Caroline Jagtenberg



Submitted to 
Annals of Emergency 

Medicine

Four papers

Queueing 
Systems 2022

Volunteer recruitment
• Modeling the Impact of Community 

First Responders

The alerting question
• Alerting in batches with time lags in 

between?

Simulation
• Phased alerting of community first 

responders for cardiac arrest. 

Optimization 
• DP & ML

Management 
Science 2024

Work in progress
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• Modeling AED pickups
• Or….

• CFR beyond the scope of cardiac arrest

Future work

Caroline Jagtenberg



Thank you!

Questions ?

Caroline Jagtenberg


