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Community First Responder Systems

Goal:
e shorten time to CPR
 improve survival rates not seen

accept

Caroline Jagtenberg



Community First Responder Systems

lagnu.nl

WHATWEDO  FIRSTAID NEWS&INFO  ABOUT  SHOP  CONTACTUS

D

The GoodSAM (Good Smartphone Activated Medics) app

FIRST AID / GOOD:

FIRST AID COURSES Promoting a community of lifesavers.

COURSE INFORMATION

AEDS - DEFIBRILLATORS

Download the poster for your workplace here.

‘The GoodSAM app is now available in New Zealand,

Mijn HartslagNu is onze nieuwe app. Download hem nu! e .
and the National Cardiac Network. Imagine you
e ff ity s e ety i
. . . cardiac arrest. You were in a position to respond and Support St John in
HartslagNu is het reanimatie oproepsysteem van Nederland GO A it nevie b e otemeyos | Yourcommunity

B . , GOODSAM APP Outcomes from cardiac arrest are best when the patient receives immediate CPR and
en een AED aansluit. Als elke minuut telt, is snelle hulp van levensbelang. Ook jij kunt helpen! defibrillation within the first five minutes, Emergency services can't always arrive

Elke dag krijgen 40 mensen in Nederland buiten het ziekenhuis een hartstilstand. De overlevingskans is het grootst als iemand binnen 6 minuten reanimeert
within five minutes, but it islikely that someone who knows how to perform CPR and o
use an AED is nearby and just unaware that they are close to a patient in cardiacarrest.  IRAINBOW TICKs,
The GoodSAM app

The GoodSAM app is a free app that alerts people that a patient suspected to be in
cardiac arrest is nearby, allowing them to possibly save a life by providing CPR and
using an AED (if available) prior to emergency services arriving.




Previous work

v

Common are retrospective studies.

Uncommon are studies proactively investigating a system.
What if:

- we recruit more volunteers?

- we optimizing system'’s alerting settings?

Caroline Jagtenberg



Volunteer recruitment

How to quantify the impact of n volunteers on
patient survival?

- What is the arrival-time distribution of the
first-arriving responder?

Caroline Jagtenberg



OHCA survival function
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Approach

v

We'll model the locations of volunteers as a Poisson Point
Process.

It may have a different u in different parts of the city,
though.

And recruiting would influence the p.




STAATSLIEDENBUURT

ST

Tolhuistuin 9
(-
\
= T

LS

peu“nnOVN

E| IJPLEIN
- |

.S1UU
|\
&
s
FREDERIK &
HENDRIKBUURT 2
/5
=

108

[s100
(s100)
‘\ }“ D’ksg
Anne Frank Huis \“."" g
$100 JORDAAN NEMO Science Museum
X & NIEUWMARKT /£
%01eng‘3““ & EN LASTAGE @@
Ay ook
Het Scheepvéartmuseum
De 9 Straatjes @ Begi'nhc
@ ' £
% y @ useu%randthuis p BOSIEL
% DA COSTABUURT KADIJ Elkﬁggir
)
¢
ARTIS - Micropia
O Hortus
Botanicus » ARTI
Am ey
OUD-WEST GRACHTENGORDEL c@ g ey
' 7,
H'ART Museum Yy,
o Foam @
: h Wereldmuseum
Holland Casino citizenM/Amstel
Amsterdam Amsterdam
Spiegelgracht Bestibeoordeeld

VONDELPARKBUURT

| < JPON

TS

Amsterdam
Rijksmuseum

(M)
m Lijnbaansgracht
c—

&

Oosterpark— 0!
5112

OOSTERPARKBUURT



ey

-\
Tolhuistuin Ny

) / Sexmuseu Amste@ ‘ Y e
. \ |

; FREDERIK =
HENDRIKBUURT

Anﬁ' “rank

ORDAAN '

/J,m

De 9

/HART Museum

citi enMrA’hT'steI

/ sterdam
Best.beoordeeld

IEUWMARKT ,/
EN LASTAGE v
: = b

2L

' : wuseumiRembrandthuis

IJPLEIN

v

|

N ’
0OSTELI

. VEILANDE!
KADIJK

OOSTER 'ARKBUU



Response-time distribution

v

Consider a patient at location /. Let R be the (random)
response time of the closest available volunteer.

P(R > t minutes) =

P(0 volunteers within distance d,)

= exp(—density, m d?)

density of accepting
volunteers (so after
thinning) around location |




Response time distribution

Assuming volunteers walk at 6 km/h, we obtain an exact expression
for the on-foot response time of closest volunteer:

Expected number of available volunteers within 1 km range
------- 0. —05 ---10 ---20 -—-50 —10.0

0.3

cdf

3 5 7 91113151719

Time (min) Time (min)
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First result

Required density of available volunteers
(per km?) to meet targets

Response-time target (minutes)
3 4 5 6 7 8 9 | 10 | 11 | 12
0.5|22.06 | 5.52 |2.45(1.38 |0.88|0.61|0.45|0.34|0.27 | 0.22
0.7]38.32| 9.58 [4.26 | 2.40|1.53 | 1.06 | 0.78 | 0.60 | 0.47 | 0.38
0.9 |73.29|18.32|8.14 [4.58 | 2.93|2.04 | 1.50 | 1.15| 0.90 | 0.73

Cov.

But remember: we have more than just response-time goals.
We have survival goals.

So we'll have to integrate the survival function against our
obtained response-time PDF, to get probability of survival.




Extend to a heterogeneous area (e.g. city)

Partition the city into regions indexed by [ € {1, ..., L}.
Let A, be the OHCA rate of region / (input).

Let v, be the probability of finding a volunteer in
region /. (Unknown, but at least ¥f_,v; =1.)

Assume volunteer density is uniform within a region.




Case study

v

We consider an urban area of Auckland, New Zealand
that is discretized into 287 so-called area units.

Inh/km2




Extending to a heterogeneous area

(e.g. city)

density
)
|

P(T >T) Z)\l Z)\lexp —7d nowl/a,l)

lel

We have good estimates for 4;, but not for v,

We can make some assumptions on v, , for example:
- proportional to inhabitants of location [

and evaluate this function above. Also transforming this to survival
probabilities is no problem.




Auckland, v, proportional to inhabitants

v
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How to choose v,

Let’s turn this into an optimization question:

What location measure v gives the best survival over
the whole city?

 This provides a bounds on what can be achieved
with n volunteers.
« (Can also guide recruitment efforts.




Optimizing where volunteers are in

the city
|nput density
P(T >T) Z)\l Z)\l exp —7d: noz’m/a,l)
lel
variables

Proposition: This function is convex in the probabilities v;

- Can use convex optimization methods to
minimize P(T> 1) € can even do this exact
maximize survival < exact up to step size €




Volunteer density
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(a) Late arrival, n =500

Volunteer density
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(d) Late arrival, n = 5000

Volunteer density
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(b) Survival, n = 500

Volunteer density
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(e) Survival, n = 5000
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Ambulances + volunteers

0.044-0.3t 0.14(t —t —1
S(tCPRatEMS) _ (1 4+ 0-04+0.3tcpr+ (tems CPR)) |

---tcpr =0
0.4 1\ °-. --- tcpr =3
N ---tcpr =9

) — lcpr = tEMS

S
N

Survival
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Ambulances + volunteers

v

Input:
« Ambulance response-time distribution per area unit
« Total number of volunteers in the city (n)

Variables: how the n volunteers are distributed over
the area units.

Objective: maximize survival.

- Still convex!




Auckland: 25 ambulances

Volunteer density

[ 0,0000 - 0,0005
[ 0,0005 - 0,0010
[ 0,0010 - 0,0020
[ 0,0020 - 0,0030
I 0,0030 -

Volunteer density

[ 0,0000 - 0,0005
10,0005 - 0,0010
[ 0,0010 - 0,0020
[ 0,0020 - 0,0030
I 0,0030 -

Survival, n = 500 Survival, n = 5000




Operational planning

Until now we have discussed strategic planning.

Let’s talk about what we can optimize
for a CFR system in real time.




Phased alerting

v

Problem definition
Which volunteers should be alerted (and when)?

Given a single patient, observe:
- Response time of the ambulance
- Locations of nearby volunteers

Goal: maximize survival
Avoid multiple volunteers arriving on site

VRIJE
UNIVERSITEIT
AMSTERDAM

and Economics
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GoodSAM NZ’s current dispatch policy

Alert in batches of 3

v with 30-second time lags

v until someone has accepted
Never retract alerts

Caroline Jagtenberg



Phased alerting

Response time = min (alert time, + acceptance delay, + travel time,)

y | \

decide stochastic deterministic

# VRIJE School of Business
/lill:‘nWS‘IFET(S[I)lﬂT and Economics
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Phased alerting

Response time = min (alert time, + acceptance delay, + travel time,)
v in accepting volts
Strategy may be adaptive: depending on real-time information (accepts/rejects).
Example: New Zealand’s current policy is adaptive.
But we can imagine even more situation-specific policies.

Caroline Jagtenberg



Volunteer reactions from empirical data
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Time between the alert and the reaction (accept/reject).
Based on 12,591 observations from GoodSam NZ.
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Monte Carlo Simulation

v

Compare a number of policies:
« Send all at time O

« Send n at time O

« Keep-n-active

* NZ current policy

Generate distances by drawing volunteer locations uniformly at random in a
1-km circle around the patient.

Sample from GoodSAM data: view delays and accept/rejects, distance-
dependent travel speed.

Fix EMS time at 12 minutes.

Simulate (often enough to reduce confidence intervals to almost zero).

Caroline Jagtenberg



Monte Carlo Simulation

v

Shows trade-offs between three metrics (for 10 volunteers in the circle):

Policy Survivors per year Redundant arrivals
Send all at time O. 191 0.918
Keep 6 alerts active. 178 0.453
Keep 7 alerts active. 184 0.587
Keep 8 alerts active. 188 0.718
Keep 9 alerts active. 190 0.834
Keep 10 alerts active. 191 0.918
Send 7 alerts at time 0. 179 0.498
Send 8 alerts at time 0. 184 0.630
Send 9 alerts at time 0. 188 0.771
Send 10 alerts at time O. 191 0.918
NZ current strategy. 181 0.574

VRIJE
V U UNIVERSITEIT
N> AMSTERDAM
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Monte Carlo Simulation

v

Shows trade-offs between three metrics (for 100 volunteers in the circle):

Policy Survivors per year Redundant arrivals
Send all at time 0. 259 16.768
Keep 7 alerts active. 222 0.595
Keep 8 alerts active. 228 0.743
Keep 9 alerts active. 233 0.897
Keep 10 alerts active. 237 1.056
Send 1 alerts at time O. 129 0.000
Send 5 alerts at time 0. 196 0.265
Send 10 alerts at time O. 231 0.918
Send 15 alerts at time O. 246 1.718
NZ current strategy. 229 1.021

VRIJE
V U UNIVERSITEIT
N> AMSTERDAM
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Insight

v

You can choose your favorite policy from this list and
always do that.

But, you may also do something more clever: decide your
policy after having observed where the volunteers are.

Caroline Jagtenberg



Machine Learning

Pre-define a list of 40 dispatch strategies, e.g.:
Send all
Send n
Keep n active
For various n.

Objective: patient survival - w * redundant arrivals

Generate lots of scenarios (e.g. Is5, 129, 300, 499, 540 ,588]), Simulate all strategies.
Store the best strategy.

Example:  [55, 129, 300, 499, 540, 588], #37
[71,120,136, 377,520, 578], #21
[32, 129, 300, 499, 540, 588] , #4
[85, 190, 298, 360, 387, 440] , #1
[55, 182, 209, 361, 405, 540] , #37
Build a tree that predicts which of the 40 strategies is best, depending on

scenario. (Multiclass classification)

Caroline Jagtenberg



Small case study

v

Let's keep it simple: study the process when we have
exactly 6 volunteers in the circle.

Generate 500 random scenarios microseconds
For each scenario, evaluate each 20 mins
alerting strategy by simulating it

10.000 times

Store the strategy that performed
best.

Build tree (Python sklearn) seconds

Caroline Jagtenberg



Small case study

) 4
Result:

volt 4
< 7.4 min?
volt 5 volt 3
<7.9min? = 8.7.min?

< 6.7min?

volt 4
< 6.7 min?

% VRIJE School of Business
:rﬁws‘::E’:(S[I;ﬂT and Economics
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THREE WAYS FORWARD

More realistic
input scenarios

Better
trees

Is our finite list of
policies covering
enough options?




Compare against Dynamic Programming

v

How many volunteers to alert when, is a (stochastic) optimization problem.
Formulate it as a finite-horizon Markov Decision Problem.
5-second time epochs.

To allow a smaller state space, pretend the duration until a volunteer
replies yes/no is memoryless.

Actions are how many volunteers to alert (assumed always choose the
next-closest one).

Solve by dynamic programming.

Caroline Jagtenberg



DP versus best-in-the-list

0.028 A

o
o
N
o

0.024 -

0.022 -

Dynamic Program

0.020 -

0.018 -

0.(518 0.0|20 0.0|22 O.OIZ4 0.626 O.OIZS
Best policy in the list
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THREE WAYS FORWARD

More realistic
input scenarios

Is our finite list of Better
policies covering trees
enough options?




More realistic input scenarios

v

We don’t always see exactly 6 people in the 1-km ball.

How to get a realistic estimate?

Caroline Jagtenberg



More realistic input scenarios

Auckland with a 0.1% signup rate.

120 Taking into account where the people live.

Inh/km2
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Input now looks like this

\_4

Example:  [55, 129, 300, 499, 540], #37
[55, 102, 225, 369, 499, 540, 588] , #4
[75, 190], #1
[55, 187,300, 477, 545] , #37

Caroline Jagtenberg



Ambulance response times

Inh/km2

Obviously, it’s not always 12 minutes.

Use realistic estimates that vary across the region.

Caroline Jagtenberg



Input now looks like this

\_4

Example:  [55, 129, 300, 499, 540], 672, #30
[55, 102, 225, 369, 499, 540, 588], 590, #4
[/75,190], 274, #2
[55, 187,300, 477, 545] , 588, #37

D |

Volunteers EMS time best policy

Caroline Jagtenberg



Triage time affects survival

know how long you've triaged!

04\ ---tcpr =3
_ ---tcpr =5
g —tcpr = tEMS
S
Z 02|
= 0.

-
~
~o ~o
~o -
-
-~
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Input now looks like this

\_4

Example:  [55, 129, 300, 499, 540], 601, 45, #19
[55, 102, 225, 369, 499, 540, 588], 590, 77, #24
[75,190], 274, 126, #3
[55, 187,300, 477, 545], 588 189, #25

Volunteers EMS time \~ triage time best policy

Caroline Jagtenberg



Result (accuracy 0.83)

voll <= 3.557
entropy = 1.629
samples = 700
value =[13, 338, 242,99, 6, 1, 1]
class = Send 0 at time O

triage <= 2.308 voll <= 54.763
entropy = 1.649 entropy = 0.676
samples = 485 samples = 215
value = [2, 149, 228, 98, 6, 1, 1] value = [11, 189, 14, 1, 0, 0, 0]
class = Send 1 at time 0 class = Send 0 at time 0
vol2 <= 2.989 triage <= 3.508 triage <= 1.375 —
entropy = 1.361 entropy = 1.074 entropy = 0.405 gg;:o?gs;oig
samples = 281 samples = 204 samples = 204 value = [11p 0.0,0,0,0,0]
value = [2, 10, 171, 90, 6, 1, 1] value = [0, 139, 57, 8, 0, 0, 0] value = [0, 189, 14, 1, 0, 0, 0] Class = Send all at time 0
class = Send 1 at time 0 class = Send 0 at time 0 class = Send 0 at time 0
entropy = 0.893 entropy = 0.795 entropy = 1.314 entropy = 0.316 entropy = 0.832 entropy = 0.0
samples = 87 samples = 194 samples = 99 samples = 105 samples = 69 samples = 135
value = [0, 0, 6, 73, 6, 1, 1] value = [2, 10, 165, 17, 0, 0, 0] value = [0, 40, 51, 8, 0, 0, 0] value = [0, 99, 6, 0, 0, 0, 0] value = [0, 54, 14, 1, 0, 0, 0] value = [0, 135, 0, 0, 0, 0, 0]
class = Send 2 at time 0 class = Send 1 at time 0 class = Send 1 at time 0 class = Send 0 at time 0 class = Send 0 at time 0 class = Send 0 at time 0




THREE WAYS FORWARD

Better
trees

More realistic Is our finite list of
input scenarios policies covering
enough options?
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v
Who is familiar with Optimal trees by Dimitris

Bertsimas & Jack Dunn?

“Classification and Regression Trees (CART) build the decision tree using a
recursive approach based on a greedy heuristic. We study the benefits of an
optimal decision tree approach, which creates the entire decision tree at once

using Mixed Integer Optimization”.

Benefits:

- A better performing tree (at least true in-sample, hopefully
also out-of-sample)

- Allows complex error functions (more than just the % of
misclassifications)

- Allows hyperplane splits 4x+7y—8z<17.5

VVVVV

and Economics
AAAAAAAA

Caroline Jagtenberg



Optimal trees

Cool? Yes
Easy? No

Not quick to solve, even using commercial MIP
solvers

Tips:
- Generate a bunch of potentially decent trees using
conventional ML packages

Use these as warm-starts for the MIP solver

Terminate while there is still an optimality gap
End with a local search around the best-found solution

Caroline Jagtenberg



Four papers

v

c
"EJ Volunteer recruitment Management
= « Modeling the Impact of Community Science 2024
S First Responders
L

The alerting question ,

 Alerting in batches with time lags in %ﬁ;ﬂg%ozz

between?

2’ Simulation |
£« Phased alerting of community first Submitted to
k7] . Annals of Emergency
© responders for cardiac arrest. Medicine

Optimization

« DP &ML Work in progress

k VRIJE School of Business
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Future work

- CFR beyond the scope of cardiac arrest

Caroline Jagtenberg



Thank you!

Questions ?

Caroline Jagtenberg



