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set cover

|ℱ| = 𝑚 =# sets

|𝒰| = 𝑛 =# elements

Goal: pick smallest # sets to cover all elements.

“weighted” problem: sets have costs, minimize cost of cover
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set cover : previous results

set system with 𝑛 elements, 𝑚 sets each of size at most 𝐵

“Easyness” Theorem:

Set cover of cost ≤ 𝐻𝐵 ⋅ 𝑂𝑃𝑇 ≤ (1 + ln𝐵) ⋅ 𝑂𝑃𝑇 in poly-time.

“Hardness” Theorem: 

Poly-time (ln 𝐵 − 𝑂(ln ln𝐵))-approximation implies 𝑃 ≈ 𝑁𝑃

[Lund Yannakakis 94, Feige 98, Trevisan 01, Dinur Steurer 13]

[Johnson 74, Stein 74, Lovasz 75, Chvatal 79]



set cover : two new results

set system with 𝑛 elements, 𝑚 sets each of size at most 𝐵

Local Search  Theorem:

𝐻𝐵 − Τ1 8𝐵 + 𝜀 ⋅ 𝑂𝑃𝑇 in  poly(𝑚, 𝑛, 1/𝜀) time

Random Order Theorem: 

𝑂 log 𝑚𝑛 ⋅ 𝑂𝑃𝑇 in random order online model

[Gupta Kehne Levin FOCS 2021]

[Gupta Lee Li SOSA 2023]

Improves on 𝐻𝐵 − Τ1 𝐵8 achieved by variant of greedy [Hassin Levin 05]

Extends similar result for i.i.d. samples model 

[Grandoni Gupta Leonardi Miettinen Sankowski Singh 08]



(new?) local-search algorithm



local search

Given a solution 𝒮, perform any “local move” that improves cost 𝑐(𝒮)

- swap ≤ 𝑐 sets in 𝒮 with ≤ 𝑐 new sets; maintain coverage

…

𝒮 = big set costs 𝑀 ≫ 𝑛each singleton not in 𝒮 costs 1

unbounded 

“locality gap”!



non-oblivious local search

Given a solution 𝒮, perform any “local move” that improves potential 𝚽(𝓢)

- swap ≤ 𝑐 sets in 𝒮 with ≤ 𝑐 new sets; maintain coverage

Formalized by [Khanna, Motwani, Sudan and Vazirani 98]

Useful paradigm over past decade:

Submodular maximization [Filmus Ward 14], Steiner forest [Gross et al. 18]

k-Median [Cohen-Addad+ 22], Tree Augmentation and Steiner tree [Traub Zenklusen 22]



the Rosenthal potential

Solution 𝒮 ⊆ ℱ

Φ 𝒮 ≔ 

𝑆∈𝒮

𝑐 𝑆 𝐻 𝑆

Fact:   Φ 𝒮 ≥ 𝑐 𝒮 .

Fact:   Φ 𝒮 ≤ 𝑐 𝒮 log𝐵 if all sets in 𝒮 of size at most 𝐵

[Rosenthal 73]



for simplicity…

Given set system (𝐸, ℱ), define ℱ↓ to be closure by taking subsets

I.e., add in 𝑆′ ⊆ 𝑆 for 𝑆 ∈ 𝒮 with cost 𝑐 𝑆′ = 𝑐(𝑆)

We maintain a cover from ℱ↓ (for simplicity)



our local search algorithm

Solution 𝒮 ⊆ ℱ↓

If 𝒮 is not partition of 𝑈, drop duplicated elements, reduces potential

If there exists 𝑇 ∈ ℱ such that 

𝒮′ ≔ { 𝑆 ∖ 𝑇 | 𝑆 ∈ 𝒮 } ∪ {𝑇}

has Φ 𝒮′ < Φ 𝒮 , move to 𝒮′.

Φ 𝒮 ≔ 

𝑆∈𝒮

𝑐 𝑆 𝐻 𝑆

Drop sets that are empty!

𝒮′ also a partition

[Gupta Lee Li SOSA 2023]

Add sets only from ℱ, so poly-time to check for move



our local search algorithm

If there exists 𝑇 ∈ ℱ such that 

𝒮′ ≔ { 𝑆 ∖ 𝑇 | 𝑆 ∈ 𝒮 } ∪ {𝑇}

has Φ 𝒮′ < Φ 𝒮 , move to 𝒮′.

Φ 𝒮 ≔ 

𝑆∈𝒮

𝑐 𝑆 𝐻 𝑆

[Gupta Lee Li SOSA 2023]



our local search algorithm Φ 𝒮 ≔ 

𝑆∈𝒮

𝑐 𝑆 𝐻 𝑆

If there exists 𝑇 ∈ ℱ such that 

𝒮′ ≔ { 𝑆 ∖ 𝑇 | 𝑆 ∈ 𝒮 } ∪ {𝑇}

has Φ 𝒮′ < Φ 𝒮 , move to it.

[Gupta Lee Li SOSA 2023]



local optima are good

Theorem: If 𝒮 ⊆ ℱ↓ is a local optimum, 

then 𝑐 𝒮 ≤ 𝑐(𝒮∗) ⋅ 𝐻𝐵

Proof: For 𝑇 ∈ 𝒮∗, 

0 ≤ ΔΦ = 𝑐 𝑇 𝐻|𝑇| − σ𝑆∈𝒮 𝑐 𝑆 𝐻 𝑆 −𝐻 𝑆∖𝑇

Φ 𝒮 ≔ 

𝑆∈𝒮

𝑐 𝑆 𝐻 𝑆

If there exists 𝑇 ∈ ℱ such that 

𝒮′ ≔ { 𝑆 ∖ 𝑇 | 𝑆 ∈ 𝒮 } ∪ {𝑇}

has Φ 𝒮′ < Φ 𝒮 , move to it.

[Gupta Lee Li SOSA 2023]
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local optima are good

Theorem: If 𝒮 ⊆ ℱ↓ is a local optimum, 

then 𝑐 𝒮 ≤ 𝑐(𝒮∗) ⋅ 𝐻𝐵

Proof: For 𝑇 ∈ 𝒮∗, 

0 ≤ ΔΦ = 𝑐 𝑇 𝐻|𝑇| − σ𝑆∈𝒮 𝑐 𝑆 𝐻 𝑆 −𝐻 𝑆∖𝑇

Φ 𝒮 ≔ 

𝑆∈𝒮

𝑐 𝑆 𝐻 𝑆

If there exists 𝑇 ∈ ℱ such that 

𝒮′ ≔ { 𝑆 ∖ 𝑇 | 𝑆 ∈ 𝒮 } ∪ {𝑇}

has Φ 𝒮′ < Φ 𝒮 , move to it.

≥

𝑆∈𝒮

𝑐 𝑆 ⋅
𝑆 ∩ 𝑇

𝑆

0 ≤ Φ 𝒮∗ −

𝑆∈𝒮

𝑐(𝑆) 

𝑇∈𝒮∗

|𝑆 ∩ 𝑇|

|𝑆|

Sum over 𝑇 ∈ 𝒮∗

⇒ 𝑐 𝒮 ≤ Φ 𝒮∗ ≤ c 𝒮∗ ⋅ 𝐻𝐵

[Gupta Lee Li SOSA 2023]

≥ 1



extensions

Theorem: Can find solution 𝑐 𝒮 ≤ 𝑂𝑃𝑇 ⋅ (𝐻𝐵+𝜀) in poly-time

Extension: add two sets at a time. 𝐻𝐵 − Τ1 𝐵2 + 𝜀 ⋅ 𝑂𝑃𝑇 via careful analysis

𝐻𝐵 − Τ1 8𝐵 + 𝜀 ⋅ 𝑂𝑃𝑇 via refined potential

Extension: add B sets at a time.     𝐻𝐵 − ൗlog 𝐵
𝐵2 + 𝜀 ⋅ 𝑂𝑃𝑇

[Gupta Lee Li SOSA 2023]

Can we get 𝐻𝐵 − Ω(1)?    𝐻𝐵 − 𝜔(1)?



today’s plan

new local search algorithm 

new algorithm for set cover in the random order online model



Online Set Cover

Set system. n elements arrive over time, want to maintain a cover.

Goal: minimize cost of sets picked

Competitive ratio of algorithm 𝐴:     

max
instances 𝐼

cost of algorithm 𝐴 on instance 𝐼

optimal cost to serve 𝐼

Want to minimize the competitive ratio.
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[Alon Awerbuch Azar Buchbinder Naor 03]
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Online Set Cover

Algorithm:  

𝑂(log 𝑛 log 𝑚)
competitive

Q: What happens beyond the worst case?

[Alon Awerbuch Azar Buchbinder Naor 03, Feige Korman 05]

CR:  Ω(log 𝑛 log 𝑚)
for deterministic algos

and for poly-time algos



𝑠1

Random Order (RO)

ℱ
𝑚 sets

𝒰
𝑛 elements

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6



LearnOrCover
(Unit cost, exp time)

“hands” of possible solutions

𝑚
𝑘

when random element 𝑣 arrives

2. remove “hands” that don’t cover 𝑣

1. select random remaining hand

pick any set covering 𝑣

pick random set from it

if 𝑣 not already covered, in parallel:

Q: do ½ of remaining hands cover ½ of uncovered elements?

Yes: random set covers many uncovered  elements!

No: random element removes many hands!!

Sol 𝑅:

𝒰

𝒫

[Gupta Kehne Levin FOCS 21]



𝒰 shrinks by 1 −
1

4𝑘
in expectation.

𝒫 shrinks by Τ3 4 in expectation.

Case 2:   > 1/2 of  𝑃 ∈ 𝒫 cover < 1/2 of   𝒰.

Case 1:   ≥ 1/2 of  𝑃 ∈ 𝒫 cover ≥ 1/2 of   𝒰.

𝑅 covers   
|𝒰|

4𝑘
in expectation.

≥ 1/2 of  𝑃 ∈ 𝒫 pruned w.p. Τ1 2. 

|𝒰| initially 𝑛
⇒ 𝑂(𝑘 log𝑛) COVER steps suffice. 

|𝒫| initially 
𝑚
𝑘

≈ 𝑚𝑘

⇒ 𝑂(𝑘 log𝑚) LEARN steps suffice.

⇒ 𝑂(𝑘 log 𝑚𝑛) steps suffice.

[Gupta Kehne Levin FOCS 21]



𝒰 shrinks by 1 −
1

4𝑘
in expectation. 𝒫 shrinks by Τ3 4 in expectation.

Case 2: (LEARN)Case 1: (COVER)

How to make polytime?

Can we reuse

LEARN/COVER intuition?

Claim 1: Φ(0) = 𝑂(log 𝑚𝑛) and  Φ(𝑡) ≥ 0.

Claim 2: If 𝑣 uncovered, then  𝐸[ΔΦ] ≤ −Ω
1

𝑘
.

Φ = +
1

𝑘
log|𝒫| log|𝒰|

LearnOrCover
(Unit cost, exp time)

[Gupta Kehne Levin FOCS 21]



LearnOrCover

Idea: Measure convergence with potential function

Claim 1: Φ(0) = 𝑂(log 𝑚𝑛), and  Φ(𝑡) ≥ 0.

Claim 2: If 𝑣 uncovered, then  𝐸[ΔΦ] ≤ −
1

𝑘
. 

Φ(𝑡) = 𝑐1 KL(𝑥
∗||𝑥𝑡) +𝑐2 log|𝒰

𝑡|

𝒰𝑡 := uncovered elements @ time 𝑡

Init. 𝑥 ← 1/𝑚.

@ time 𝑡, element  𝑣 arrives:

If  𝑣 covered, do nothing. 

Else:

(I) Buy random 𝑅 ∼ 𝑥.

(II) ∀𝑆 ∋ 𝑣,  set  𝑥𝑆 ← 𝑒 ⋅ 𝑥𝑆.

Renormalize  𝑥 ← 𝑥/∥ 𝑥 ∥1.

Buy arbitrary set to cover 𝑣.

𝑥∗ := uniform distribution on OPT 

(Recall 𝑘 = |𝑂𝑃𝑇|)

(Unit cost)

σ
𝑆
𝑥𝑆
∗log

𝑥𝑆
∗

𝑥𝑆
𝑡

If 𝔼𝑣 𝑥𝑣 >
1

4
⇒ 𝔼𝑅[𝑘 Δlog|𝒰𝑡|] drops by Ω 1 .

Else 𝔼𝑣[𝑘 Δ𝐾𝐿] drops by Ω 1 .

[Gupta Kehne Levin FOCS 21]



𝑐(𝑥) = 𝑐(𝑂𝑃𝑇)

LearnOrCover
(Some philosophy)

Perspective 1:

[Alon+ 03]
LearnOrCover

Perspective 2:

Define

𝑓(𝑥):= σ
𝑣

max 0,1 − σ
𝑆∋𝑣

𝑥𝑆

(Goal is to minimize 𝑓 in smallest # of steps)

𝛻𝑓|𝑆(𝑥) = # uncovered elements in 𝑆

RO reveals stochastic gradient…

Projection 

in KL

∝ 𝐸[ {𝑣 ∈ 𝑆 ∣ 𝑣 uncovered}]11

[Buchbinder G. Molinaro Naor 19]

[Gupta Kehne Levin FOCS 21]



extensions

similar ideas work for:

- “prophet” model where requests drawn from known distributions

- covering LPs in random order

- non-metric facility location

Q1: Harder covering problems? Covering IPs w/ box constraints?

Q2: Unified theory? Reinterpret old RO results as LearnOrCover?



last slide

many interesting algorithms for basic problems still to be found

beyond-worst-case perspective behind these two results

- local search    from focus on small B case

- LearnOrCover from focus on random order model

Q3: Close the ln 𝐵 ± 𝑂(ln ln𝐵) gap for set cover?

Q4: use weaker random assumption than RO model?

Thanks!!!
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