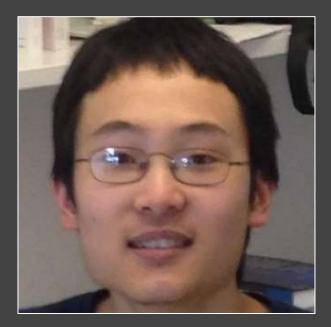
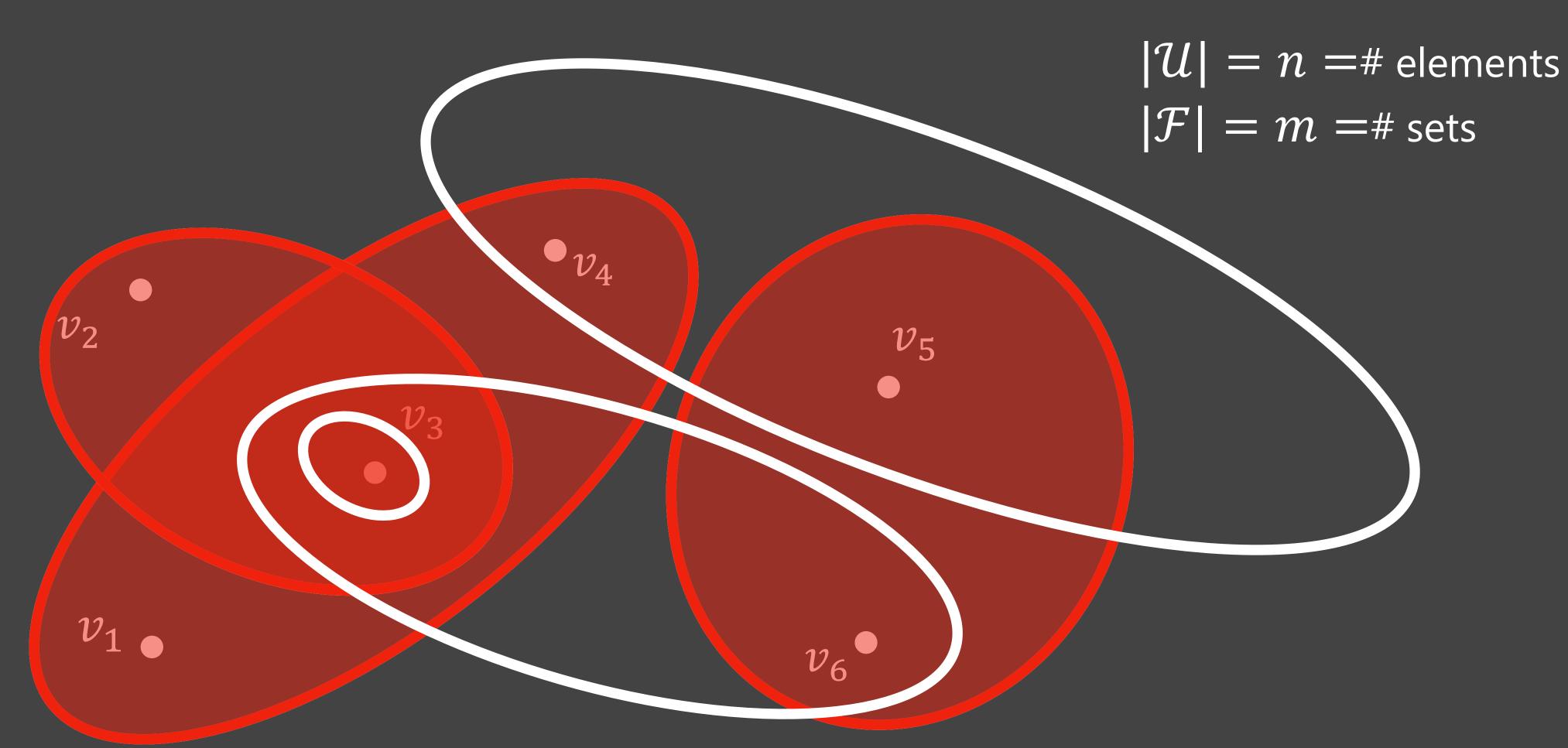
Set Cover: Two (new) Algorithms

Anupam Gupta (Carnegie Mellon University)

with Greg Kehne (CMU/Harvard \rightarrow ?) and Roie Levin (CMU \rightarrow Tel Aviv \rightarrow ?) Euiwoong Lee (UMichigan) and Jason Li (CMU \rightarrow Berkeley/Simons \rightarrow ?)



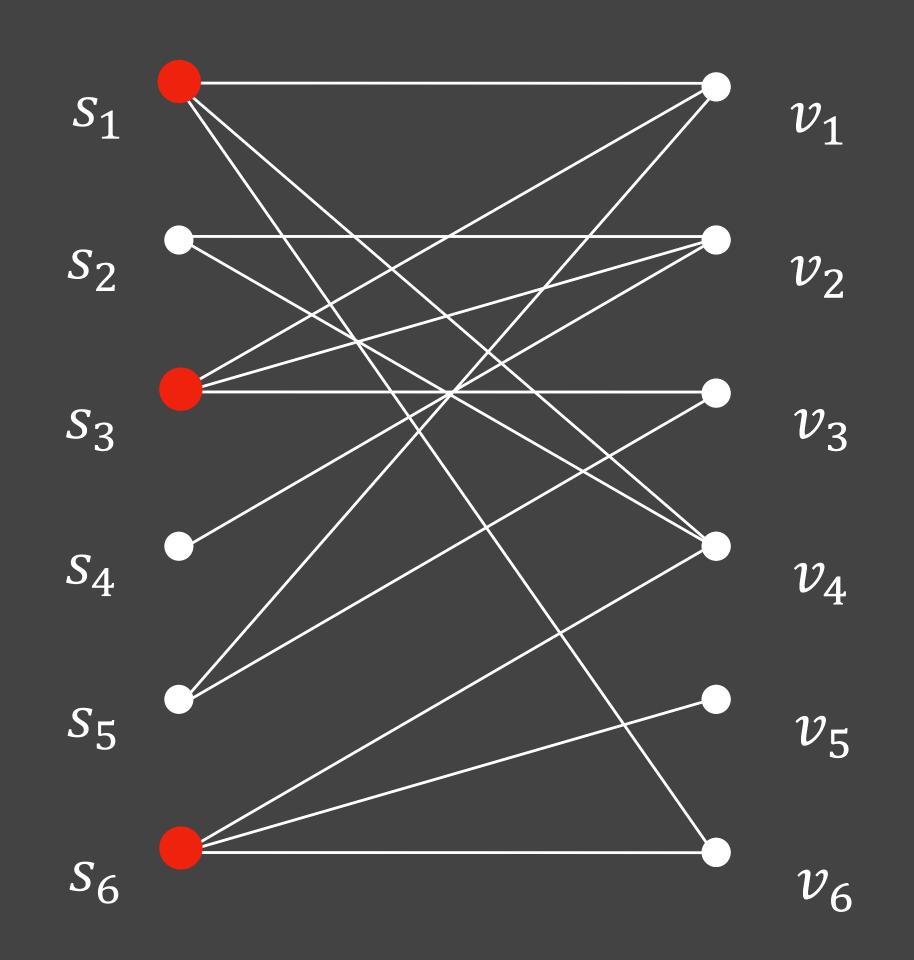
set cover



Goal: pick smallest # sets to cover all elements. "weighted" problem: sets have costs, minimize cost of cover

set cover

 \mathcal{F} *m* sets



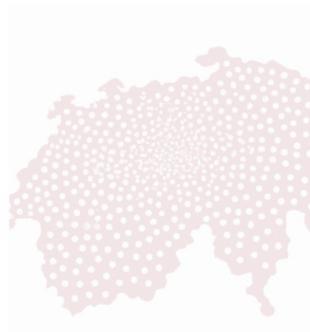
U n elements

Greedy algorithms

Local search algorithms

- Linear programming
- Online algorithms in adversarial and random order streams (primal-dual, potential function, and projection based)

Lecture 1 (Monday February 27): Introduction. Greedy and Local Search Algorithms



set cover : previous results

set system with n elements, m sets each of size at most B

Set cover of cost $\leq H_B \cdot OPT \leq (1 + \ln B) \cdot OPT$ in poly-time.

Poly-time $(\ln B - O(\ln \ln B))$ -approximation implies $P \approx NP$

[Johnson 74, Stein 74, Lovasz 75, Chvatal 79]

[Lund Yannakakis 94, Feige 98, Trevisan 01, Dinur Steurer 13]

set cover : two new results

set system with n elements, m sets each of size at most B

 $(H_R - \frac{1}{8R} + \varepsilon) \cdot OPT$ in poly $(m, n, 1/\varepsilon)$ time

 $O(\log mn) \cdot OPT$ in random order online model

Extends similar result for i.i.d. samples model [Grandoni Gupta Leonardi Miettinen Sankowski Singh 08]

[Gupta Lee Li SOSA 2023]

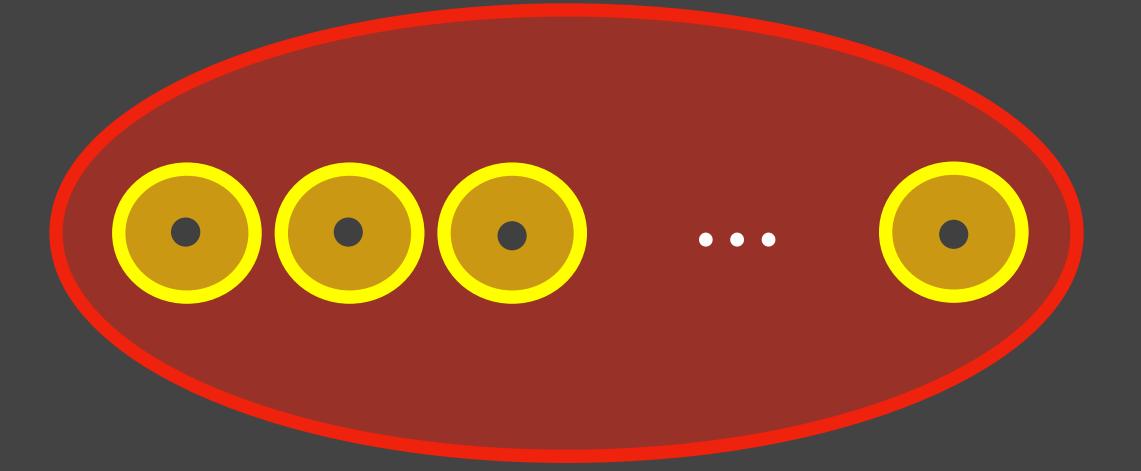
Improves on $H_B - \frac{1}{R^8}$ achieved by variant of greedy [Hassin Levin 05]

[Gupta Kehne Levin FOCS 2021]

(new?) local-search algorithm

local search

Given a solution S, perform any "local move" that improves cost c(S)- swap $\leq c$ sets in S with $\leq c$ new sets; maintain coverage



each singleton not in S costs 1

unbounded "locality gap"!

non-oblivious local search

Given a solution S, perform any "local move" that improves potential $\Phi(S)$

- swap $\leq c$ sets in S with $\leq c$ new sets; maintain coverage

Formalized by [Khanna, Motwani, Sudan and Vazirani 98]

Useful paradigm over past decade:

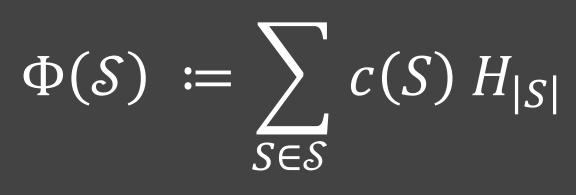
Submodular maximization [Filmus Ward 14], Steiner forest [Gross et al. 18] k-Median [Cohen-Addad+ 22], Tree Augmentation and Steiner tree [Traub Zenklusen 22]

the Rosenthal potential

Solution $\mathcal{S} \subseteq \mathcal{F}$

Fact: $\Phi(S) \ge c(S)$.

Fact: $\Phi(S) \le c(S) \log B$ if all sets in S of size at most B



for simplicity...

Given set system (*E*, \mathcal{F}), define \mathcal{F}^{\downarrow} to be closure by taking subsets

I.e., add in $S' \subseteq S$ for $S \in S$ with cost c(S') = c(S)

We maintain a cover from \mathcal{F}^{\downarrow} (for simplicity)

our local search algorithm

Solution $S \subseteq \mathcal{F}^{\downarrow}$

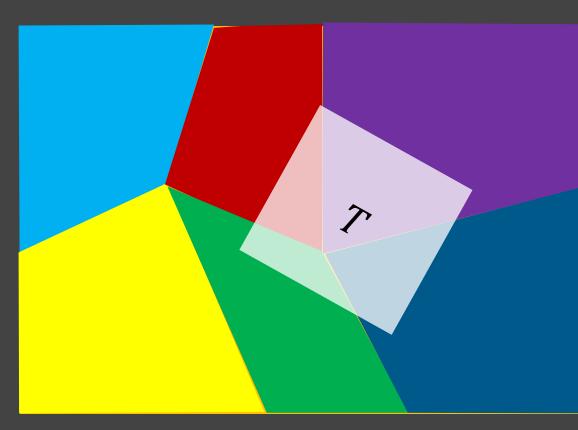
If S is not partition of U, drop duplicated elements, reduces potential

Add sets only from \mathcal{F} , so poly-time to check for move

If there exists $T \in \mathcal{F}$ such that $\mathcal{S}' \coloneqq \{S \setminus T \mid S \in \mathcal{S}\} \cup \{T\}$ has $\Phi(\mathcal{S}') < \Phi(\mathcal{S})$, move to \mathcal{S}' . [Gupta Lee Li SOSA 2023]

$$\Phi(\mathcal{S}) \coloneqq \sum_{S \in \mathcal{S}} c(S) H_{|S|}$$

Drop sets that are empty!



our local search algorithm

If there exists $T \in \mathcal{F}$ such that $\mathcal{S}' \coloneqq \{S \setminus T \mid S \in \mathcal{S}\} \cup \{T\}$ has $\Phi(\mathcal{S}') < \Phi(\mathcal{S})$, move to \mathcal{S}' .

[Gupta Lee Li SOSA 2023]

 $\Phi(S) \coloneqq \sum_{S \in S} c(S) H_{|S|}$

our local search algorithm

[Gupta Lee Li SOSA 2023]

$$\Phi(\mathcal{S}) \coloneqq \sum_{S \in \mathcal{S}} c(S) H_{|S|}$$

If there exists $T \in \mathcal{F}$ such that $\mathcal{S}' \coloneqq \{S \setminus T \mid S \in \mathcal{S}\} \cup \{T\}$ has $\Phi(\mathcal{S}') < \Phi(\mathcal{S})$, move to it.

local optima are good

Theorem: If $S \subseteq \mathcal{F}^{\downarrow}$ is a local optimum, then $c(\mathcal{S}) \leq c(\mathcal{S}^*) \cdot H_B$

Proof: For $T \in S^*$, $0 \leq \Delta \Phi = c(T) H_{|T|} - \sum_{S \in \mathcal{S}} c(S) \left[H_{|S|} - H_{|S \setminus T|} \right]$



[Gupta Lee Li SOSA 2023]

$$\Phi(\mathcal{S}) \coloneqq \sum_{S \in \mathcal{S}} c(S) H_{|S|}$$

If there exists $T \in \mathcal{F}$ such that $\mathcal{S}' \coloneqq \{ S \setminus T \mid S \in \mathcal{S} \} \cup \{T\}$ has $\Phi(\mathcal{S}') < \Phi(\mathcal{S})$, move to it.

local optima are good

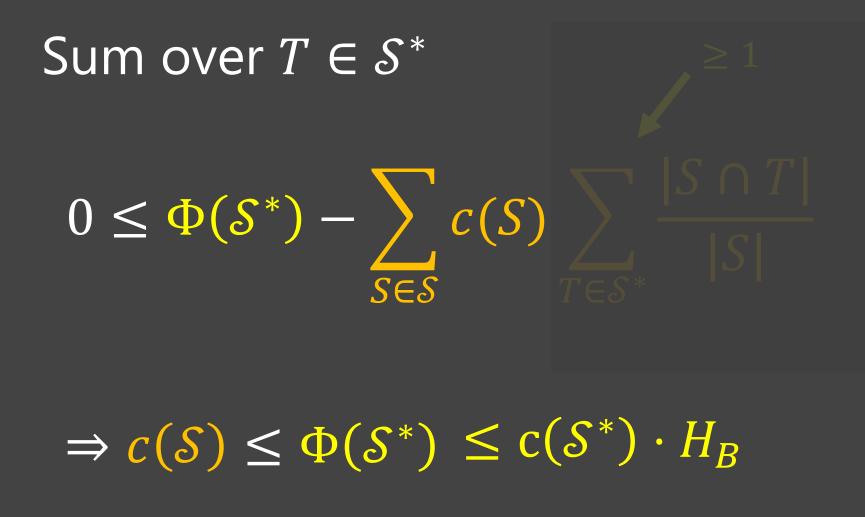
Theorem: If $\mathcal{S} \subseteq \mathcal{F}^{\downarrow}$ is a local optimum, then $c(\mathcal{S}) \leq c(\mathcal{S}^*) \cdot H_B$

Proof: For $T \in S^*$, $0 \leq \Delta \Phi = c(T) H_{|T|} - \sum_{S \in \mathcal{S}} c(S) \left[H_{|S|} - H_{|S \setminus T|} \right]$

[Gupta Lee Li SOSA 2023]

$$\Phi(\mathcal{S}) \coloneqq \sum_{S \in \mathcal{S}} c(S) H_{|S|}$$

If there exists $T \in \mathcal{F}$ such that $\mathcal{S}' \coloneqq \{ S \setminus T \mid S \in \mathcal{S} \} \cup \{T\}$ has $\Phi(\mathcal{S}') < \Phi(\mathcal{S})$, move to it.



extensions

Theorem: Can find solution $c(S) \leq OPT \cdot (H_B + \varepsilon)$ in poly-time

Extension: add two sets at a time. $(H_B - \frac{1}{B^2} + \varepsilon) \cdot OPT$ via careful analysis $(H_B - \frac{1}{8B} + \varepsilon) \cdot OPT$ via refined potential

Extension: add **B** sets at a time. $(H_B - \frac{\log B}{B^2} + \varepsilon) \cdot OPT$

[Gupta Lee Li SOSA 2023]

Can we get $H_B - \Omega(1)$? $H_B - \omega(1)$?

today's plan

new local search algorithm

new algorithm for set cover in the random order online model

Online Set Cover

Set system. n elements arrive over time, want to maintain a cover.

Goal: minimize cost of sets picked

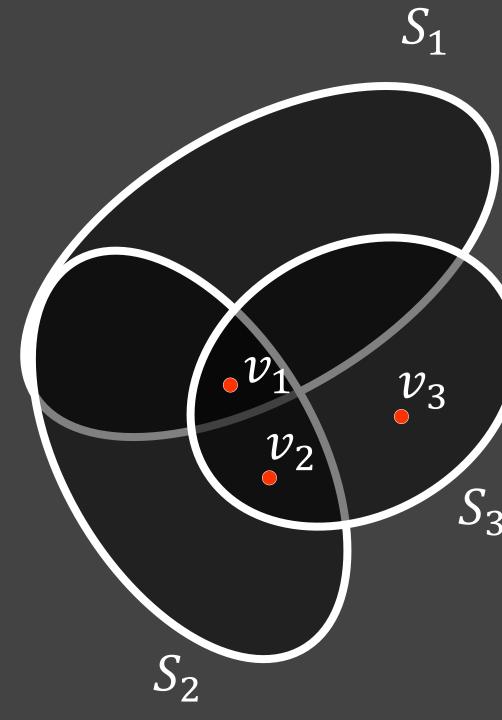
Competitive ratio of algorithm A:

cost of algorithm *A* on instance *I* optimal cost to serve I

max instances I

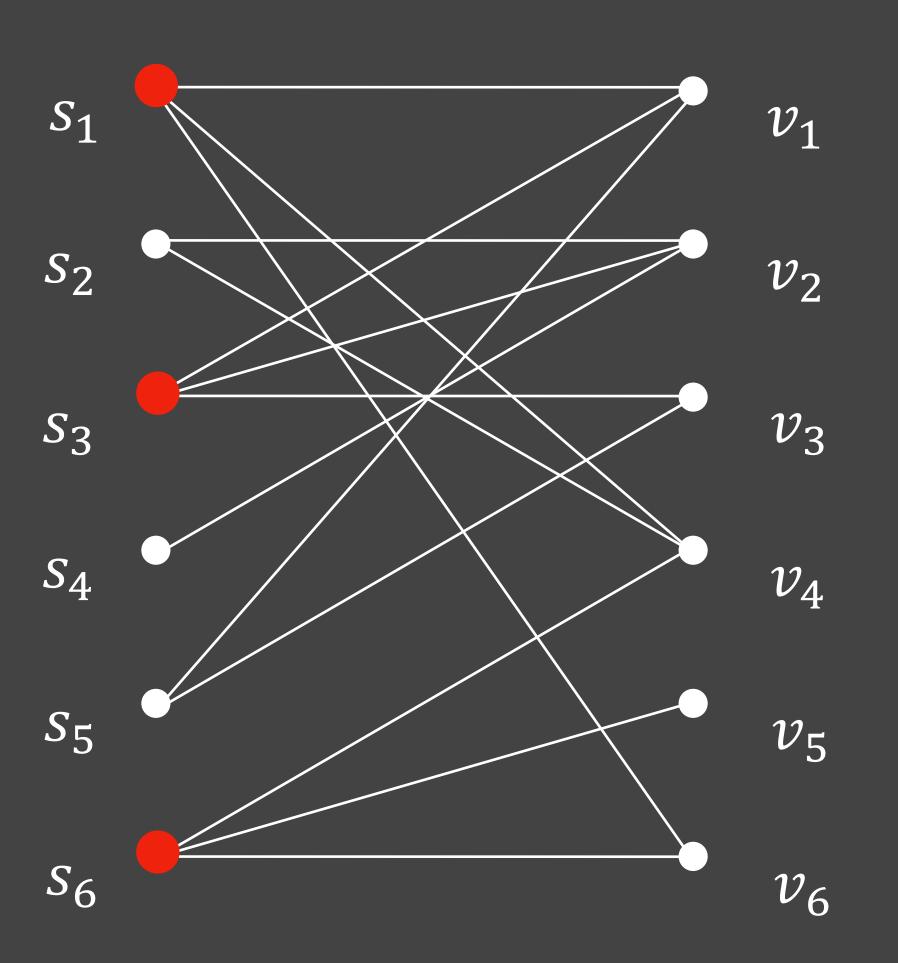
Want to minimize the competitive ratio.

[Alon Awerbuch Azar Buchbinder Naor 03]



Online Set Cover

 \mathcal{F} *m* sets



[Alon Awerbuch Azar Buchbinder Naor 03]

U *n* elements

Online Set Cover

Algorithm: $O(\log n \log m)$ competitive

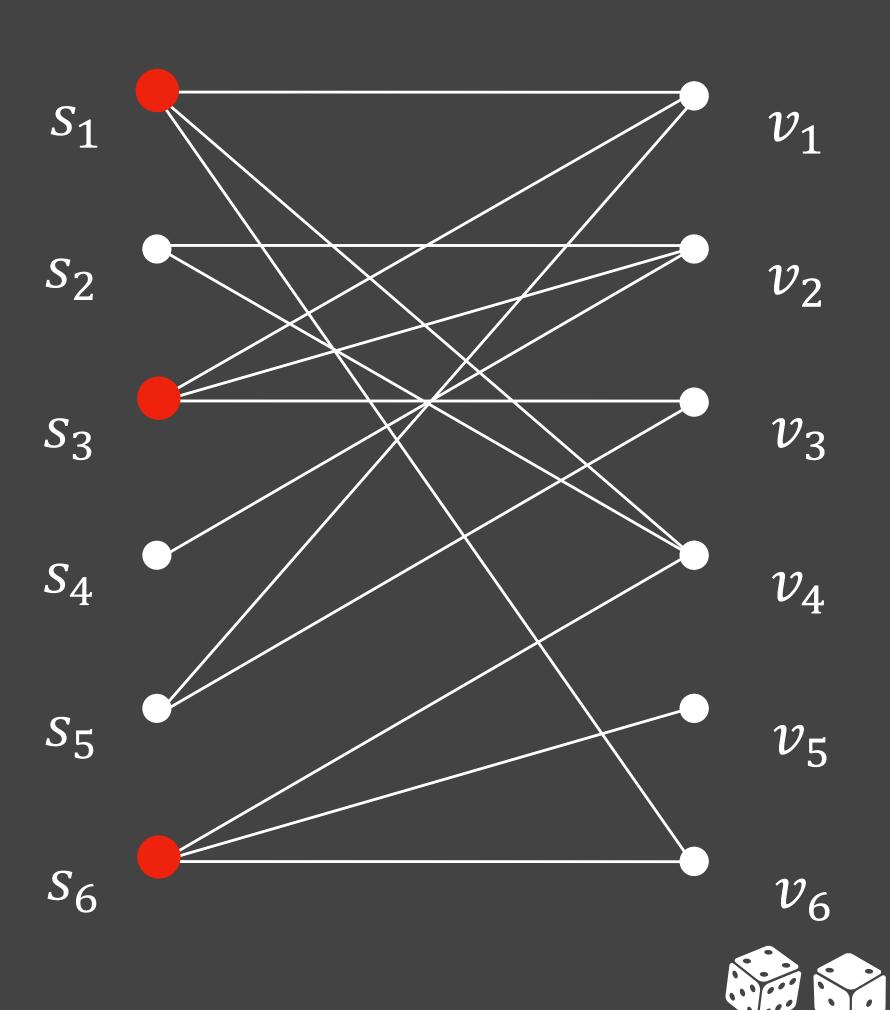
CR: $\Omega(\log n \log m)$ for deterministic algos and for poly-time algos

[Alon Awerbuch Azar Buchbinder Naor 03, Feige Korman 05]

Q: What happens beyond the worst case?

Random Order (RO)

F m sets



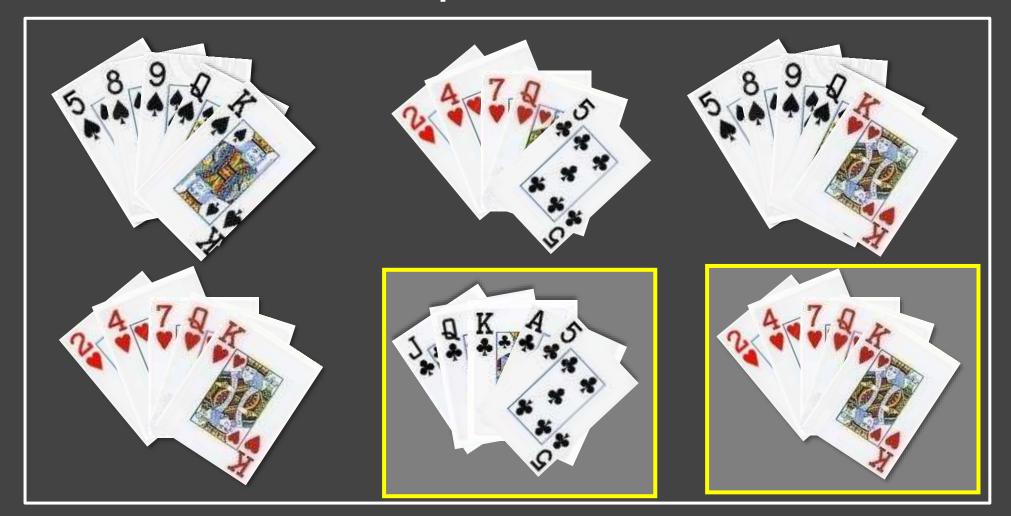
U n elements

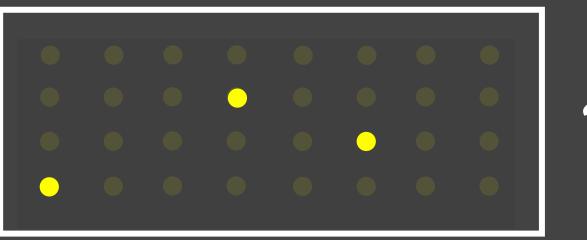
LearnOrCover (Unit cost, exp time)

when random element v arrives
if v not already covered, in parallel:
1. select random remaining hand
pick random set from it
2. remove "hands" that don't cover v
pick any set covering v

Q: do ½ of remaining hands cover ½ of uncovered elements?
 Yes: random set covers many uncovered elements! Sol *R*:
 No: random element removes many hands!!

"hands" of possible solutions





U

Case 1: $\geq 1/2$ of $P \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

R covers $\frac{|\mathcal{U}|}{4k}$ in expectation.

 \mathcal{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $P \in \mathcal{P}$ pruned w.p. 1/2.

 \mathcal{P} shrinks by 3/4 in expectation.

[Gupta Kehne Levin FOCS 21]

$|\mathcal{U}|$ initially n $\Rightarrow O(k \log n)$ COVER steps suffice.

$|\mathcal{P}|$ initially $\binom{m}{k} \approx m^k$ $\Rightarrow O(k \log m)$ LEARN steps suffice.

 $\Rightarrow O(k \log mn)$ steps suffice.

LearnOrCover (Unit cost, exp time)

Case 1: (COVER)

 \mathcal{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

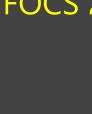
<u>Claim 1</u>: $\Phi(0) = O(\log mn)$ and $\Phi(t) \ge 0$. **<u>Claim 2</u>**: If v uncovered, then $E[\Delta \Phi] \le -\Omega\left(\frac{1}{k}\right)$. [Gupta Kehne Levin FOCS 21]

Case 2: (LEARN)

\mathcal{P} shrinks by 3/4 in expectation.

How to make polytime?

Can we reuse LEARN/COVER intuition?



LearnOrCover (Unit cost)

Init. $x \leftarrow 1/m$. @ time t, element v arrives: If v covered, do nothing. Else: () Buy random $R \sim x$. (1) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/|| x ||_1$ Buy arbitrary set to cover \mathcal{V} .

 $|f \mathbb{E}_{v}[x_{v}] > \frac{1}{4} \Rightarrow \mathbb{E}_{R}[k \Delta \log |\mathcal{U}^{t}|] \text{ drops by } \Omega(1).$ Else $\mathbb{E}_{v}[k \Delta KL]$ drops by $\Omega(1)$.

Idea: Measure convergence with potential function

 $\Phi(t) = c_1 KL(x^* | x^t) + c_2 \log |\mathcal{U}^t|$

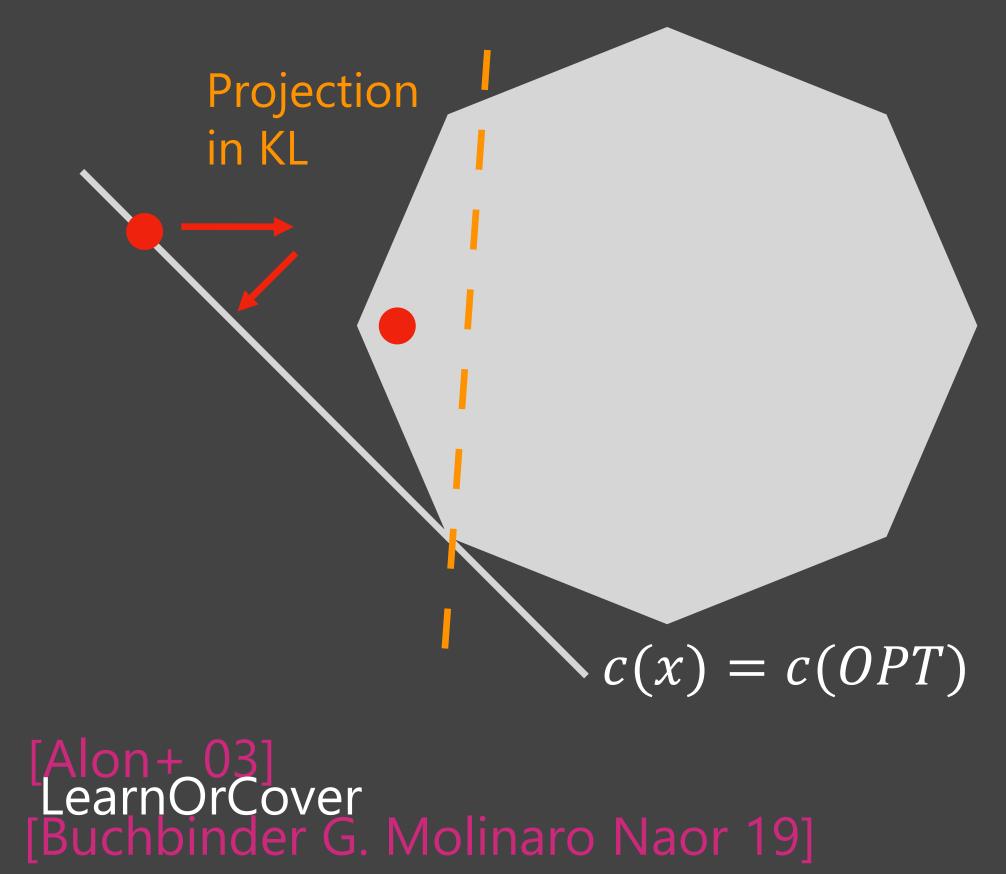
 $\mathcal{U}^t :=$ uncovered elements @ time t $x^* :=$ uniform distribution on OPT

<u>Claim 1:</u> $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$. <u>Claim 2:</u> If \mathcal{V} uncovered, then $E[\Delta \Phi] \leq -\frac{1}{\nu}$.

(Recall k = |OPT|)

LearnOrCover (Some philosophy)

Perspective 1:



[Gupta Kehne Levin FOCS 21]

Perspective 2:

Define

$$f(x) := \sum_{v} \max\left(0, 1 - \sum_{S \ni v} x_{S}\right)$$

(Goal is to minimize f in smallest # of steps)

 $\nabla f|_{S}(x) = # \text{ uncovered elements in } S$ $\propto E[\mathbf{1}\{v \in S \mid v \text{ uncovered}\}]$

RO reveals stochastic gradient...

extensions

similar ideas work for:

- "prophet" model where requests drawn from known distributions
- covering LPs in random order
- non-metric facility location

Q1: Harder covering problems? Covering IPs w/ box constraints?

Q2: Unified theory? Reinterpret old RO results as LearnOrCover?

last slide

- many interesting algorithms for basic problems still to be found
- beyond-worst-case perspective behind these two results
- local search from focus on small B case
- LearnOrCover from focus on random order model

- **Q3:** Close the $\ln B \pm O(\ln \ln B)$ gap for set cover?
- **Q4:** use weaker random assumption than RO model?

