## Set Cover:

## Two (new) Algorithms



## Anupam Gupta (Carnegie Mellon University)

with Greg Kehne (CMU/Harvard $\rightarrow$ ?) and Roie Levin (CMU $\rightarrow$ Tel Aviv $\rightarrow$ ?) Euiwoong Lee (UMichigan) and Jason Li (CMU $\rightarrow$ Berkeley/Simons $\rightarrow$ ?)


## set cover



Goal: pick smallest \# sets to cover all elements.
"weighted" problem: sets have costs, minimize cost of cover

## set cover



Algorithmic Toolbox --- How to Solve Set Cover in x Ways
Credits
Lecturer
Office hours

- Local search algorithms
- Online algorithms in adversarial and random order streams (primal-dual, potential function, and projection based)


## set cover : previous results

set system with $n$ elements, $m$ sets each of size at most $B$
[Johnson 74, Stein 74, Lovasz 75, Chvatal 79]
Set cover of cost $\leq H_{B} \cdot O P T \leq(1+\ln B) \cdot$ OPT in poly-time.

Poly-time $(\ln B-O(\ln \ln B))$-approximation implies $P \approx N P$

## set cover :

set system with $n$ elements, $m$ sets each of size at most $B$

$$
\left(H_{B}-1 / 8 B+\varepsilon\right) \cdot O P T \text { in } \operatorname{poly}(m, n, 1 / \varepsilon) \text { time }
$$

Improves on $H_{B}-1 / B_{B^{8}}$ achieved by variant of greedy [Hassin Levin 05]
$O(\log m n) \cdot$ OPT in random order online model

Extends similar result for i.i.d. samples model
(new?) local-search algorithm

## local search

Given a solution $\delta$, perform any "local move" that improves cost $c(\delta)$

- swap $\leq c$ sets in $\mathcal{S}$ with $\leq c$ new sets; maintain coverage



## non-oblivious local search

Given a solution $\mathcal{S}$, perform any "local move" that improves potential $\Phi(\mathcal{S})$

- swap $\leq c$ sets in $\delta$ with $\leq c$ new sets; maintain coverage

Formalized by [Khanna, Motwani, Sudan and Vazirani 98]
Useful paradigm over past decade:
Submodular maximization [Filmus Ward 14], Steiner forest [Gross et al. 18]
k-Median [Cohen-Addad+ 22], Tree Augmentation and Steiner tree [Traub Zenklusen 22]

## the Rosenthal potential

Solution $\mathcal{S} \subseteq \mathcal{F}$

$$
\Phi(S):=\sum_{S \in S} c(S) H_{|S|}
$$

Fact: $\quad \Phi(S) \geq c(S)$.
Fact: $\quad \Phi(\delta) \leq c(\delta) \log B$ if all sets in $\delta$ of size at most $B$

## for simplicity...

Given set system $(E, \mathcal{F})$, define $\mathcal{F}^{\downarrow}$ to be closure by taking subsets
l.e., add in $S^{\prime} \subseteq S$ for $S \in S$ with cost $c\left(S^{\prime}\right)=c(S)$

We maintain a cover from $\mathcal{F}^{\downarrow}$ (for simplicity)

## our local search algorithm

$$
\Phi(S):=\sum_{S \in \mathcal{S}} c(S) H_{|S|}
$$

Solution $\mathcal{S} \subseteq \mathcal{F}^{\downarrow}$

If $\delta$ is not partition of $U$, drop duplicated elements, reduces potential


## our local search algorithm

 $\Phi(S):=\sum_{s \in S} c(S) H_{[S]}$If there exists $T \in \mathcal{F}$ such that

$$
\mathcal{S}^{\prime}:=\{S \backslash T \mid S \in \mathcal{S}\} \cup\{T\}
$$

has $\Phi\left(\mathcal{S}^{\prime}\right)<\Phi(\mathcal{S})$, move to $\mathcal{S}^{\prime}$.

## our local search algorithm

$$
\Phi(S):=\sum_{S \in S} c(S) H_{|S|}
$$

If there exists $T \in \mathcal{F}$ such that

$$
\mathcal{S}^{\prime}:=\{S \backslash T \mid S \in \mathcal{S}\} \cup\{T\}
$$

has $\Phi\left(\mathcal{S}^{\prime}\right)<\Phi(\delta)$, move to it.

## local optima are good

$$
\Phi(S):=\sum_{S \in \mathcal{S}} c(S) H_{|S|}
$$

If there exists $T \in \mathcal{F}$ such that

$$
\mathcal{S}^{\prime}:=\{S \backslash T \mid S \in \mathcal{S}\} \cup\{T\}
$$

If $\delta \subseteq \mathcal{F}^{\downarrow}$ is a local optimum, then $c(S) \leq c\left(\delta^{*}\right) \cdot H_{B}$

Proof: For $T \in \mathcal{S}^{*}$,

$$
\begin{aligned}
& 0 \leq \Delta \Phi=c(T) H_{|T|}-\sum_{S \in S} c(S) \underbrace{\left[H_{|S|}-H_{|S \backslash T|}\right]} \\
&\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{|S \backslash T|}+\frac{1}{|S \backslash T|+1}+\cdots+\frac{1}{|S|}\right)
\end{aligned}
$$

## local optima are good

$$
\Phi(S):=\sum_{S \in \mathcal{S}} c(S) H_{|S|}
$$

If $S \subseteq \mathcal{F}^{\downarrow}$ is a local optimum, then $c(\delta) \leq c\left(\delta^{*}\right) \cdot H_{B}$

If there exists $T \in \mathcal{F}$ such that

$$
\mathcal{S}^{\prime}:=\{S \backslash T \mid S \in \mathcal{S}\} \cup\{T\}
$$

has $\Phi\left(\delta^{\prime}\right)<\Phi(S)$, move to it.

Proof: For $T \in \mathcal{S}^{*}$,

$$
\begin{aligned}
0 \leq \Delta \Phi=c(T) H_{|T|} & -\underbrace{\sum_{S \in S} c(S)\left[H_{|S|}-H_{|S \backslash T|}\right]} \\
& \geq \sum_{S \in S} c(S) \cdot \frac{|S \cap T|}{|S|}
\end{aligned}
$$

Sum over $T \in \mathcal{S}^{*}$

$$
\begin{aligned}
& 0 \leq \Phi\left(\delta^{*}\right)-\sum_{S \in S} c(S) \\
& \Rightarrow c(S) \leq \Phi\left(\delta^{*}\right) \leq c\left(S^{*}\right) \cdot H_{B}
\end{aligned}
$$

## extensions

Can find solution $c(\delta) \leq O P T \cdot\left(H_{B}+\varepsilon\right)$ in poly-time
add two sets at a time. $\left(H_{B}-1 / B^{2}+\varepsilon\right) \cdot$ OPT via careful analysis

$$
\left(H_{B}-1 / 8 B+\varepsilon\right) \cdot O P T \text { via refined potential }
$$

add B sets at a time. $\left(H_{B}-\log B /_{B^{2}}+\varepsilon\right) \cdot O P T$

$$
\text { Can we get } H_{B}-\Omega(1) ? \quad H_{B}-\omega(1) ?
$$

## today's plan

## new local search algorithm

new algorithm for set cover in the random order online model

## Online Set Cover

Set system. n elements arrive over time, want to maintain a cover.
Goal: minimize cost of sets picked

Competitive ratio of algorithm $A$ :

$$
\begin{array}{ll}
\max & \frac{\text { cost of algorithm } A \text { on instance } I}{\text { optimal cost to serve } I}
\end{array}
$$

Want to minimize the competitive ratio.


## Online Set Cover



## Online Set Cover

Algorithm:
$O(\log n \log m)$
competitive

CR: $\Omega(\log n \log m)$ for deterministic algos and for poly-time algos

Q: What happens beyond the worst case?

## Random Order (RO)



## LearnOrCover

(Unit cost, exp time)
when random element $v$ arrives
if $v$ not already covered, in parallel:

1. select random remaining hand pick random set from it
2. remove "hands" that don't cover $v$ pick any set covering $v$
"hands" of possible solutions



Q: do $1 / 2$ of remaining hands cover $1 / 2$ of uncovered elements?
Yes: random set covers many uncovered elements!
Sol $R$ :
No: random element removes many hands!!


Case 1: $\geq 1 / 2$ of $P \in \mathcal{P}$ cover $\geq 1 / 2$ of $U$.
$R$ covers $\frac{|\mathcal{U}|}{4 k}$ in expectation.
$\mid$ U| initially $n$
$\mathcal{U}$ shrinks by $\left(1-\frac{1}{4 k}\right)$ in expectation.
$\Rightarrow \quad O(k \log n)$ COVER steps suffice.

Case 2: $>1 / 2$ of $P \in \mathcal{P}$ cover $<1 / 2$ of $\mathcal{U}$.
$\geq 1 / 2$ of $P \in \mathcal{P}$ pruned w.p. 1/2.

$$
\begin{aligned}
& |\mathcal{P}| \text { initially }\binom{m}{k} \approx m^{k} \\
& \Rightarrow \quad O(k \log m) \text { LEARN steps suffice. }
\end{aligned}
$$

$\mathcal{P}$ shrinks by $3 / 4$ in expectation.

$$
\Rightarrow O(k \log m n) \text { steps suffice. }
$$

## LearnOrCover

(Unit cost, exp time)

## Case 1: (COVER)

$U$ shrinks by $\left(1-\frac{1}{4 k}\right)$ in expectation.

## Case 2: (LEARN)

$\mathcal{P}$ shrinks by $3 / 4$ in expectation.

Claim 1: $\Phi(0)=O(\log m n)$ and $\Phi(t) \geq 0$.
Claim 2: If $v$ uncovered, then $E[\Delta \Phi] \leq-\Omega\left(\frac{1}{k}\right)$.

## LearnOrCover <br> (Unit cost)

Idea: Measure convergence with potential function
Init. $x \leftarrow 1 / m$.
@ time $t$, element $v$ arrives:
If $v$ covered, do nothing. Else:
(I) Buy random $R \sim x$.
(II) $\forall S \ni v$, set $x_{S} \leftarrow e \cdot x_{S}$.

Renormalize $x \leftarrow x /\|x\|_{1}$.
Buy arbitrary set to cover $v$.

## LearnOrCover

(Some philosophy)

## Perspective 1:



## LearnOrCover

## Perspective 2:

Define

$$
f(x):=\sum_{v} \max \left(0,1-\sum_{S \ni v} x_{S}\right)
$$

(Goal is to minimize $f$ in smallest \# of steps)
$\left.\nabla f\right|_{S}(x)=$ \# uncovered elements in $S$ $\propto E[\mathbb{1}\{v \in S \mid v$ uncovered $\}]$

RO reveals stochastic gradient...

## extensions

similar ideas work for:

- "prophet" model where requests drawn from known distributions
- covering LPs in random order
- non-metric facility location

Harder covering problems? Covering IPs w/ box constraints?
Unified theory? Reinterpret old RO results as LearnOrCover?

## last slide

many interesting algorithms for basic problems still to be found
beyond-worst-case perspective behind these two results

- local search from focus on small B case
- LearnOrCover from focus on random order model

Close the $\ln B \pm O(\ln \ln B)$ gap for set cover?
use weaker random assumption than RO model?

