The pseudo-Boolean polytope and binary polynomial optimization

September 2024

Aida Khajavirad

Lehigh University

Joint work with: Alberto Del Pia (University of Wisconsin-Madison)

Introduction

- Binary polynomial optimization is the problem of maximizing a multivariate polynomial function over the set of binary points (NP-hard in general).
- Based on the encoding of the polynomial function, we obtain two popular optimization problems: multilinear optimization and pseudo-Boolean optimization.

Multilinear optimization

- A hypergraph G is a pair (V, E), where V is a finite set of nodes and E is a set of edges, which are subsets of V of cardinality at least two.
- The rank of G is the maximum cardinality of any edge in E.
- With any G = (V, E), and $c \in \mathbb{R}^{V \cup E}$, we associate the multilinear optimization problem:

$$\max \qquad \sum_{v \in V} c_v z_v + \sum_{e \in E} c_e \prod_{v \in e} z_v \qquad (\mathsf{BPO}_m)$$

s.t.
$$z_v \in \{0, 1\} \qquad \forall v \in V.$$

• Define $z_e := \prod_{v \in e} z_v$ for all $e \in E$:

$$\max \sum_{v \in V} c_v z_v + \sum_{e \in E} c_e z_e, \qquad (\ell \mathsf{BPO}_m)$$
s.t.
$$z_e = \prod_{v \in e} z_v, \ \forall e \in E$$

$$z_v \in \{0, 1\}, \ \forall v \in V.$$

Multilinear sets and polytopes

• We define the multilinear set as:

$$\mathcal{S}_{\mathrm{m}}(G) = \Big\{ z \in \{0, 1\}^{V \cup E} : z_e = \prod_{v \in e} z_v, \forall e \in E \Big\}.$$

- The multilinear polytope $\mathcal{P}_{m}(G)$ is the convex hull of the multilinear set.
- If |e| = 2 for all $e \in E$, then the objective function of Problem (BPO_m) is quadratic and $\mathcal{P}_{m}(G)$ is the Boolean quadric polytope QP(G) (Padberg, 89).

• Identify sufficient conditions under which $\mathcal{P}_{\mathrm{m}}(G)$ has a polynomial-size extended formulation.

• Acyclic hypergraphs in increasing degree of generality:

Berge – acyclic $\subset \gamma$ – acyclic $\subset \beta$ – acyclic $\subset \alpha$ – acyclic

- Optimizing over the multilinear polytope of α -acyclic hypergraphs is NP-hard in general.
- Theorem: The multilinear polytope of an α -acyclic hypergraph of rank r has an extended formulation with at most $O(2^r|V|)$ variables and inequalities.
- Equivalent to assuming bounded treewidth for the intersection graph: Wainwright-Jordan 2004, Laurent 2009, Bienstock-Munoz 2018.

- A β-cycle of length q for q ≥ 3 in G is a sequence v₁, e₁, v₂, e₂, ..., v_q, e_q, v₁ such that v₁, v₂, ..., v_q are distinct nodes, e₁, e₂, ..., e_q are distinct edges, and v_i belongs to e_{i-1}, e_i and no other edges for all i = 1, ..., q.
- Theorem: The multilinear polytope of β -acyclic hypergraphs has a polynomialsize extended formulation with at most (r-1)|V| + |E| variables ((r-2)|V|additional variables) and at most (3r-4)|V| + 4|E| inequalities.
- The defining inequalities are very sparse: at most four variables with non-zero coefficients. All coefficients are ± 1 and all right-hand sides are 0/1.

Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-size extended formulation with at most (r - 1)|V| + |E| variables ((r - 2)|V| additional variables) and at most (3r - 4)|V| + 4|E| inequalities (ADP and AK, 2023).

- A node is a β -leaf (nest point) if the edges containing it are totally ordered.
- A hypergraph is β -acyclic iff we can recursively remove β -leaves till obtaining an empty set.

Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-size extended formulation with at most (r - 1)|V| + |E| variables ((r - 2)|V| additional variables) and at most (3r - 4)|V| + 4|E| inequalities (ADP and AK, 2023).

Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-size extended formulation with at most (r - 1)|V| + |E| variables ((r - 2)|V| additional variables) and at most (3r - 4)|V| + 4|E| inequalities (ADP and AK, 2023).

• The multilinear polytope of a pointed hypergraph G = (V, E) consists of 5|V| + 2 inequalities.

Beyond hypergraph acyclicity

- We present a new framework that
 - unifies all prior results on the existence of polynomial-size extended formulations, and
 - provides polynomial-size extended formulations for the multilinear polytope of hypergraphs with β -cycles

Signed hypergraphs

- A signed hypergraph H as a pair (V, S), where V is a finite set of nodes and S is a set of signed edges.
- A signed edge s ∈ S is a pair (e, η_s), where e is a subset of V of cardinality at least two, and η_s is a map that assigns to each v ∈ e a sign η_s(v) ∈ {-1,+1}.
- The underlying edge of a signed edge $s = (e, \eta_s)$ is e.
- Two signed edges $s = (e, \eta_s)$, $s' = (e', \eta_{s'}) \in S$ are parallel if e = e', and they are identical if e = e' and $\eta_s = \eta_{s'}$.
- We consider signed hypergraphs with no identical signed edges but often with parallel signed edges.

Pseudo-Boolean optimization

• With any signed hypergraph H = (V, S), and cost vector $c \in \mathbb{R}^{V \cup S}$, we associate the pseudo-Boolean optimization problem:

$$\max \qquad \sum_{v \in V} c_v z_v + \sum_{s \in S} c_s \prod_{v \in s} \sigma_s(z_v) \qquad (BPO_{pB})$$

s.t. $z \in \{0, 1\}^V$,

where

$$\sigma_s(z_v) := \begin{cases} z_v & \text{if } \eta_s(v) = +1\\ 1 - z_v & \text{if } \eta_s(v) = -1. \end{cases}$$

• Define $z_s := \prod_{v \in s} \sigma_s(z_v)$ for all $s \in S$:

$$\max \sum_{v \in V} c_v z_v + \sum_{s \in S} c_s z_s, \qquad (\ell \operatorname{BPO}_{pB})$$
s.t.
$$z_s = \prod_{v \in s} \sigma_s(z_v), \ \forall s \in S$$

$$z_v \in \{0, 1\}, \ \forall v \in V.$$

Pseudo-Boolean sets and polytopes

• We define the pseudo-Boolean set of the signed hypergraph H = (V, S), as:

$$\mathcal{S}_{\mathrm{pB}}(H) := \Big\{ z \in \{0, 1\}^{V \cup S} : z_s = \prod_{v \in s} \sigma_s(z_v), \ \forall s \in S \Big\},\$$

and we refer to its convex hull as the pseudo-Boolean polytope $\mathcal{P}_{pB}(H)$.

• Unlike the multilinear polytope, the pseudo-Boolean polytope is NOT full dimensional.

The underlying hypergraph vs the multilinear hypergraph

- The underlying hypergraph of a signed hypergraph H is the hypergraph obtained from H by ignoring signs and dropping parallel edges.
- The pseudo-Boolean optimization problem over a signed hypergraph H = (V, S) can be reformulated as a multilinear optimization problem over a hypergraph, which we call the multilinear hypergraph of H.
- Let the underlying hypergraph of H be β -acyclic; then the multilinear hypergraph of H may contain many β -cycles.

The recursive inflate and decompose framework

- Main ingredients:
 - 1. A sufficient condition for decomposability of pseudo-Boolean polytopes.
 - 2. A polynomial-size extended formulation for the pseudo-Boolean polytope of pointed signed hypergraphs, which appears as a result of applying the decomposition technique.
 - 3. The inflation operation that we use to transform a large class of signed hypergraphs to those for which our results of Parts 1 and 2 are applicable.

Decomposability of pseudo-Boolean polytopes

- Consider a signed hypergraph H = (V, S), let $V_1, V_2 \subseteq V$ such that $V = V_1 \cup V_2$, let $S_1 \subseteq \{s \in S : s \subseteq V_1\}$, $S_2 \subseteq \{s \in S : s \subseteq V_2\}$ such that $S = S_1 \cup S_2$. Let $H_1 := (V_1, S_1)$ and $H_2 := (V_2, S_2)$.
- We say $\mathcal{P}_{pB}(H)$ is decomposable into $\mathcal{P}_{pB}(H_1)$ and $\mathcal{P}_{pB}(H_2)$, if the system comprised of a description of $\mathcal{P}_{pB}(H_1)$ and a description of $\mathcal{P}_{pB}(H_2)$, is a description of $\mathcal{P}_{pB}(H)$.
- Theorem: Assume the underlying hypergraph of H has a β -leaf v. Let $s_1 \subseteq s_2 \subseteq \cdots \subseteq s_k$ be the signed edges of H containing v, and assume S contains $s_i v$ for all $i \in [k]$. Then $\mathcal{P}_{pB}(H)$ is decomposable into $\mathcal{P}_{pB}(H_1)$ and $\mathcal{P}_{pB}(H_2)$, where $H_1 := (V_1, S_v \cup P_v)$, V_1 is the underlying edge of s_k , $S_v := \{s_1, \ldots, s_k\}$, $P_v := \{s_i v : |s_i v| \ge 2, i \in [k]\}$, and $H_2 := H v$.

The pseudo-Boolean polytope of pointed signed hypergraphs

- Consider a signed hypergraph H = (V, S) and let $v \in V$ be a β -leaf of the underlying hypergraph of H. Denote by S_v the set of all signed edges in S containing v. Define $P_v := \{s v : s \in S_v, |s| \ge 3\}$. We say that H s a pointed signed hypergraph if V coincides with the underlying edge of the signed edge of maximum cardinality in S_v and $S = S_v \cup P_v$.
- Theorem: Let H = (V, S) be a pointed signed hypergraph. Then $\mathcal{P}_{pB}(H)$ has a polynomial-size extended formulation with at most 2|V|(|S|+1) variables and at most 4(|S|(|V|-2) + |V|) inequalities. Moreover, all coefficients and right-hand side constants in the system defining $\mathcal{P}_{pB}(H)$ are $0, \pm 1$.
- Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying hypergraph is β -acyclic. Then the pseudo-Boolean polytope has a polynomial-size extended formulation with at most O(r|S||V|) variables and inequalities.

Inflation of signed edges

- Let H = (V, S) be a signed hypergraph, let $s \in S$, and let $e \subseteq V$ such that $s \subset e$. let I(s, e) be the set of all possible signed edges s' parallel to e such that $\eta_s(v) = \eta_{s'}(v)$ for every $v \in s$. Then H' = (V, S') is obtained from H by inflating s to e if $S' = S \cup I(s, e) \setminus \{s\}$. We say H' is obtained from H via an inflation operation.
- Theorem: Let H' = (V, S') be obtained from H by inflating s to e. Then an extended formulation of $\mathcal{P}_{pB}(H)$ can be obtained by juxtaposing an extended formulation of $\mathcal{P}_{pB}(H')$ and $z_s = \sum_{s' \in I(s,e)} z_{s'}$. If $\mathcal{P}_{pB}(H')$ has a polynomial-size extended formulation and $|e| |s| = O(\log \operatorname{poly}(|V|, |S|))$, then $\mathcal{P}_{pB}(H)$ has a polynomial-size extended formulation as well.

$$s_{1} = \{v_{1}^{+}, v_{2}^{+}\}, s_{2} = \{v_{1}^{+}, v_{3}^{+}\}, s_{3} = \{v_{3}^{+}, v_{2}^{+}\}$$
$$s_{4} = \{v_{1}^{-}, v_{2}^{+}, v_{3}^{+}\}, s_{5} = \{v_{1}^{+}, v_{2}^{+}, v_{3}^{+}\}$$
$$z_{s_{3}} = z_{s_{4}} + z_{s_{5}}$$

Applications of inflation

• Consider a signed hypergraph H = (V, S). Suppose that each $s \in S$ contains at least |V| - k nodes. Then the pseudo-Boolean polytope has an extended formulation with $O(2^k |V| |S|)$ variables and inequalities.

• Consider a signed hypergraph H = (V, S) of rank r. For each $s \in S$, among all maximal signed edges of H containing s, denote by f_s one with minimum cardinality. Let k be such that $|f_s| - |s| \le k$ for all $s \in S$. Let \overline{S} denote the set of maximal signed edges of H. If the underlying hypergraph of (V, \overline{S}) is β -acyclic, then the pseudo-Boolean polytope has an extended formulation with $O(r2^k|V||S|)$ variables and inequalities.

The Recursive inflate-and-decompose (RID) framework

- Input: A signed hypergraph H = (V, S), Output: An extended formulation for $\mathcal{P}_{pB}(H)$.
- Step 0. Set $H^{(0)} := H$, i := 0.
- Step 1. If we can obtain $\overline{H}^{(i)}$ from $H^{(i)}$ via a number of inflation operations, such that a suitable extended formulation for $\mathcal{P}_{pB}(\overline{H}^{(i)})$ is available, then we are done. Otherwise, go to Step 2.
- Step 2. Choose a node \bar{v} of $H^{(i)}$. If \bar{v} is a β -leaf of the underlying hypergraph of $H^{(i)}$, then set $\bar{H}^{(i)} := H^{(i)}$ and go to Step 3. Otherwise, construct $\bar{H}^{(i)}$ from $H^{(i)}$ via inflation operations, such that v is a β -leaf of the underlying hypergraph of $\bar{H}^{(i)}$. It suffices to find an extended formulation for $\mathcal{P}_{pB}(\bar{H}^{(i)})$.
- Step 3. Decompose $\mathcal{P}_{pB}(\bar{H}^{(i)})$ into $\mathcal{P}_{pB}(\bar{H}^{(i)}_1)$ and $\mathcal{P}_{pB}(\bar{H}^{(i)}_2)$, where $\bar{H}^{(i)}_1$ denotes the signed hypergraph containing node \bar{v} . Since we have an extended formulation for $\mathcal{P}_{pB}(\bar{H}^{(i)}_1)$, it suffices to find an extended formulation for $\mathcal{P}_{pB}(\bar{H}^{(i)}_1)$. Set $H^{(i+1)} := \bar{H}^{(i)}_2$, increment *i* by one, and go to Step 1.

- A node $v \in V$ is an α -leaf if the set of edges containing v has a maximal element for inclusion.
- A hypergraph is α -acyclic iff we can recursively remove α -leaves till obtaining an empty set.

Nest-sets

• Let G = (V, E) be a hypergraph and let $N \subseteq V$. Let F(N) the set of edges in E containing some $v \in N$; N is a nest-set of G, if the set

$$F \setminus N := \{e \setminus N : e \in F(N)\},\$$

is totally ordered with respect to inclusion. If |N| = 1, then N contains a nest point of G.

- Let N_i ⊆ V, for all i ∈ [t] and for some t ≥ 1 such that the sets N_i are pairwise disjoint and ∪_{i∈[t]}N_i = V. We say that N = N₁, · · · , N_t is a sequence of nest-sets of G, if N₁ is a nest set of G, N₂ is a nest-set of G − N₁, and so on.
- Given a sequence of nest-sets \mathcal{N} of G, the nest-set width of this sequence $\operatorname{nsw}_{\mathcal{N}}(G)$, is the maximum cardinality of any element in \mathcal{N} .
- The nest-set width of G nsw(G), is the minimum value of nsw $_{\mathcal{N}}(G)$ over all nest-set sequences \mathcal{N} of G.
- nsw(G) = 1, if and only if G is a β -acyclic hypergraph.

- Deciding if $nsw(G) \le k$ for any integer k is NP-complete. However, when parameterized by k, this problem is fixed-parameter tractable (Lanzinger 2023):
- There exists a $2^{O(k^2)} \operatorname{poly}(|V|, |E|)$ time algorithm that takes as input hypergraph G = (V, E) and integer $k \ge 1$ and returns a nest-set sequence \mathcal{N} with $\operatorname{nsw}_{\mathcal{N}}(G) = k$ if one exists, or rejects otherwise.
- Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph G = (V, E) satisfies $\operatorname{nsw}(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{\mathrm{pB}}(H)$ has an extended formulation with $O(2^k |V|^2 |S|)$ variables and inequalities.

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph G = (V, E) satisfies $\operatorname{nsw}(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{\mathrm{pB}}(H)$ has an extended formulation with $O(2^k |V|^2 |S|)$ variables and inequalities.

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph G = (V, E) satisfies $\operatorname{nsw}(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{\mathrm{pB}}(H)$ has an extended formulation with $O(2^k |V|^2 |S|)$ variables and inequalities.

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph G = (V, E) satisfies $\operatorname{nsw}(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{\operatorname{pB}}(H)$ has an extended formulation with $O(2^k |V|^2 |S|)$ variables and inequalities.

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph G = (V, E) satisfies $\operatorname{nsw}(G) \leq k$. Then the pseudo-Boolean polytope $\mathcal{P}_{\operatorname{pB}}(H)$ has an extended formulation with $O(2^k |V|^2 |S|)$ variables and inequalities.

References

- A. Del Pia and A. Khajavirad, The pseudo-Boolean polytope and polynomial-size extended formulations for binary polynomial optimization, Mathematical Programming Series A, 2024.
- A. Del Pia and A. Khajavirad, A polynomial-size extended formulation for the multilinear polytope of beta-acyclic hypergraphs, Mathematical Programming Series A, 2023.
- A. Del Pia and A. Khajavirad, The running intersection relaxation of the multilinear polytope, Mathematics of Operations Research, 2021.
- A. Del Pia, A. Khajavirad, and N. V. Sahinidis, On the impact of running-intersection inequalities for globally solving polynomial optimization problems, Mathematical Programming Computation, 2020.
- A. Del Pia and A. Khajavirad, The multilinear polytope for acyclic hypergraphs, SIAM Journal on Optimization, 2018.
- A. Del Pia and A. Khajavirad, On decomposability of multilinear sets, Mathematical Programming Series A, 2018.
- A. Del Pia and A. Khajavirad, A polyhedral study of binary polynomial programs, Mathematics of Operations Research, 2017.