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Introduction

• Binary polynomial optimization is the problem of maximizing a multivariate
polynomial function over the set of binary points (NP-hard in general).

• Based on the encoding of the polynomial function, we obtain two
popular optimization problems: multilinear optimization and pseudo-Boolean
optimization.
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Multilinear optimization

• A hypergraph G is a pair (V,E), where V is a finite set of nodes and E is a
set of edges, which are subsets of V of cardinality at least two.

• The rank of G is the maximum cardinality of any edge in E.

• With any G = (V,E), and c ∈ R
V ∪E, we associate the multilinear optimization

problem:

max
∑

v∈V

cvzv +
∑

e∈E

ce
∏

v∈e

zv (BPOm)

s.t. zv ∈ {0, 1} ∀v ∈ V.

• Define ze :=
∏

v∈e zv for all e ∈ E:

max
∑

v∈V

cvzv +
∑

e∈E

ceze, (ℓBPOm)

s.t. ze =
∏

v∈e

zv, ∀e ∈ E

zv ∈ {0, 1}, ∀v ∈ V .
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Multilinear sets and polytopes
• We define the multilinear set as:

Sm(G) =
{

z ∈ {0, 1}V ∪E : ze =
∏

v∈e

zv, ∀e ∈ E
}

.

z12 = z1z2

z24 = z2z4

z123 = z1z2z3

z134 = z1z3z4
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• The multilinear polytope Pm(G) is the convex hull of the multilinear set.

• If |e| = 2 for all e ∈ E, then the objective function of Problem (BPOm) is
quadratic and Pm(G) is the Boolean quadric polytope QP(G) (Padberg, 89).

z12 = z1z2

z24 = z2z4

z34 = z3z4
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• Identify sufficient conditions under which Pm(G) has a polynomial-size extended
formulation.
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Acyclic graphs

• Theorem (Padberg 89): The Boolean quadric polytope QP(G) of an acyclic
graph G = (V,E) has a formulation with 4|E| inequalities.
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Acyclic graphs

• Theorem (Padberg 89): The Boolean quadric polytope QP(G) of an acyclic
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The multilinear polytope of acyclic hypergraphs

• Acyclic hypergraphs in increasing degree of generality:

Berge− acyclic ⊂ γ −acyclic ⊂ β −acyclic ⊂ α −acyclic

• Optimizing over the multilinear polytope of α-acyclic hypergraphs is NP-hard
in general.

• Theorem: The multilinear polytope of an α-acyclic hypergraph of rank r has
an extended formulation with at most O(2r|V |) variables and inequalities.

• Equivalent to assuming bounded treewidth for the intersection graph:
Wainwright-Jordan 2004, Laurent 2009, Bienstock-Munoz 2018.
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α-acyclic hypergraphs

• Theorem: The multilinear polytope of an α-acyclic hypergraph of rank r has
an extended formulation with at most O(2r|V |) variables and inequalities.
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α-acyclic hypergraphs

• Theorem: The multilinear polytope of an α-acyclic hypergraph of rank r has
an extended formulation with at most O(2r|V |) variables and inequalities.
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The multilinear polytope of β-acyclic hypergraphs

• A β-cycle of length q for q ≥ 3 in G is a sequence v1, e1, v2, e2, . . . , vq, eq, v1
such that v1, v2, . . . , vq are distinct nodes, e1, e2, . . . , eq are distinct edges, and
vi belongs to ei−1, ei and no other edges for all i = 1, . . . , q.

• Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r − 1)|V | + |E| variables ((r − 2)|V |
additional variables) and at most (3r − 4)|V |+ 4|E| inequalities.

• The defining inequalities are very sparse: at most four variables with non-zero
coefficients. All coefficients are ±1 and all right-hand sides are 0/1.
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The multilinear polytope of β-acyclic hypergraphs

• Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r − 1)|V | + |E| variables ((r − 2)|V |
additional variables) and at most (3r−4)|V |+4|E| inequalities (ADP and AK,
2023).

• A node is a β-leaf (nest point) if the edges containing it are totally ordered.

• A hypergraph is β-acyclic iff we can recursively remove β-leaves till obtaining
an empty set.
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The multilinear polytope of β-acyclic hypergraphs

• Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r − 1)|V | + |E| variables ((r − 2)|V |
additional variables) and at most (3r−4)|V |+4|E| inequalities (ADP and AK,
2023).

15



The multilinear polytope of β-acyclic hypergraphs

• Theorem: The multilinear polytope of β-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r − 1)|V | + |E| variables ((r − 2)|V |
additional variables) and at most (3r−4)|V |+4|E| inequalities (ADP and AK,
2023).

• The multilinear polytope of a pointed hypergraph G = (V,E) consists of
5|V |+ 2 inequalities.
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Beyond hypergraph acyclicity

• We present a new framework that

– unifies all prior results on the existence of polynomial-size extended
formulations, and

– provides polynomial-size extended formulations for the multilinear polytope
of hypergraphs with β-cycles
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Signed hypergraphs

• A signed hypergraph H as a pair (V, S), where V is a finite set of nodes and
S is a set of signed edges.

• A signed edge s ∈ S is a pair (e, ηs), where e is a subset of V of cardinality at
least two, and ηs is a map that assigns to each v ∈ e a sign ηs(v) ∈ {−1,+1}.

• The underlying edge of a signed edge s = (e, ηs) is e.

• Two signed edges s = (e, ηs), s
′ = (e′, ηs′) ∈ S are parallel if e = e′, and they

are identical if e = e′ and ηs = ηs′.

• We consider signed hypergraphs with no identical signed edges but often with
parallel signed edges.
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Pseudo-Boolean optimization

• With any signed hypergraph H = (V, S), and cost vector c ∈ R
V ∪S, we

associate the pseudo-Boolean optimization problem:

max
∑

v∈V

cvzv +
∑

s∈S

cs
∏

v∈s

σs(zv) (BPOpB)

s.t. z ∈ {0, 1}V ,

where

σs(zv) :=

{

zv if ηs(v) = +1

1− zv if ηs(v) = −1.

• Define zs :=
∏

v∈s σs(zv) for all s ∈ S:

max
∑

v∈V

cvzv +
∑

s∈S

cszs, (ℓBPOpB)

s.t. zs =
∏

v∈s

σs(zv), ∀s ∈ S

zv ∈ {0, 1}, ∀v ∈ V .
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Pseudo-Boolean sets and polytopes

• We define the pseudo-Boolean set of the signed hypergraph H = (V, S), as:

SpB(H) :=
{

z ∈ {0, 1}V ∪S : zs =
∏

v∈s

σs(zv), ∀s ∈ S
}

,

and we refer to its convex hull as the pseudo-Boolean polytope PpB(H).

• Unlike the multilinear polytope, the pseudo-Boolean polytope is NOT full
dimensional.
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The underlying hypergraph vs the multilinear hypergraph

• The underlying hypergraph of a signed hypergraphH is the hypergraph obtained
from H by ignoring signs and dropping parallel edges.

• The pseudo-Boolean optimization problem over a signed hypergraphH = (V, S)
can be reformulated as a multilinear optimization problem over a hypergraph,
which we call the multilinear hypergraph of H.

• Let the underlying hypergraph of H be β-acyclic; then the multilinear
hypergraph of H may contain many β-cycles.
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The recursive inflate and decompose framework

• Main ingredients:

1. A sufficient condition for decomposability of pseudo-Boolean polytopes.

2. A polynomial-size extended formulation for the pseudo-Boolean polytope
of pointed signed hypergraphs, which appears as a result of applying the
decomposition technique.

3. The inflation operation that we use to transform a large class of signed
hypergraphs to those for which our results of Parts 1 and 2 are applicable.
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Decomposability of pseudo-Boolean polytopes

• Consider a signed hypergraphH = (V, S), let V1, V2 ⊆ V such that V = V1∪V2,
let S1 ⊆ {s ∈ S : s ⊆ V1}, S2 ⊆ {s ∈ S : s ⊆ V2} such that S = S1 ∪ S2. Let
H1 := (V1, S1) and H2 := (V2, S2).

• We say PpB(H) is decomposable into PpB(H1) and PpB(H2), if the system
comprised of a description of PpB(H1) and a description of PpB(H2), is a
description of PpB(H).

• Theorem: Assume the underlying hypergraph of H has a β-leaf v. Let
s1 ⊆ s2 ⊆ · · · ⊆ sk be the signed edges of H containing v, and assume S
contains si − v for all i ∈ [k]. Then PpB(H) is decomposable into PpB(H1)
and PpB(H2), where H1 := (V1, Sv ∪ Pv), V1 is the underlying edge of sk,
Sv := {s1, . . . , sk}, Pv := {si − v : |si − v| ≥ 2, i ∈ [k]}, and H2 := H − v.

b

v

b

b b

b b

v

b

b b

G G1

b

b b

b

G2
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The pseudo-Boolean polytope of pointed signed hypergraphs

• Consider a signed hypergraph H = (V, S) and let v ∈ V be a β-leaf of the
underlying hypergraph of H. Denote by Sv the set of all signed edges in S
containing v. Define Pv := {s − v : s ∈ Sv, |s| ≥ 3}. We say that H s a
pointed signed hypergraph if V coincides with the underlying edge of the signed
edge of maximum cardinality in Sv and S = Sv ∪ Pv.

• Theorem: Let H = (V, S) be a pointed signed hypergraph. Then PpB(H) has
a polynomial-size extended formulation with at most 2|V |(|S| + 1) variables
and at most 4(|S|(|V | − 2) + |V |) inequalities. Moreover, all coefficients and
right-hand side constants in the system defining PpB(H) are 0,±1.

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is β-acyclic. Then the pseudo-Boolean polytope has a polynomial-
size extended formulation with at most O(r|S||V |) variables and inequalities.
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Inflation of signed edges

• Let H = (V, S) be a signed hypergraph, let s ∈ S, and let e ⊆ V such that
s ⊂ e. let I(s, e) be the set of all possible signed edges s′ parallel to e such
that ηs(v) = ηs′(v) for every v ∈ s. Then H ′ = (V, S′) is obtained from H by
inflating s to e if S′ = S ∪ I(s, e) \ {s}. We say H ′ is obtained from H via an
inflation operation.

• Theorem: Let H ′ = (V, S′) be obtained from H by inflating s to e. Then an
extended formulation of PpB(H) can be obtained by juxtaposing an extended
formulation of PpB(H

′) and zs =
∑

s′∈I(s,e) zs′. If PpB(H
′) has a polynomial-

size extended formulation and |e| − |s| = O(log poly(|V |, |S|)), then PpB(H)
has a polynomial-size extended formulation as well.

1

2 3

1

2 3

s1 = {v+1 , v
+
2 }, s2 = {v+1 , v

+
3 }, s3 = {v+3 , v

+
2 }

s4 = {v−1 , v
+
2 , v

+
3 }, s5 = {v+1 , v

+
2 , v

+
3 }

zs3 = zs4 + zs5
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Applications of inflation

• Consider a signed hypergraph H = (V, S). Suppose that each s ∈ S contains
at least |V | − k nodes. Then the pseudo-Boolean polytope has an extended
formulation with O(2k|V ||S|) variables and inequalities.

b

b

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b b

b

• Consider a signed hypergraph H = (V, S) of rank r. For each s ∈ S, among
all maximal signed edges of H containing s, denote by fs one with minimum
cardinality. Let k be such that |fs| − |s| ≤ k for all s ∈ S. Let S̄ denote the
set of maximal signed edges of H. If the underlying hypergraph of (V, S̄) is
β-acyclic, then the pseudo-Boolean polytope has an extended formulation with
O(r2k|V ||S|) variables and inequalities.

b

b

b

b

...b

b

b

b

b

b

b

b

b

b
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The Recursive inflate-and-decompose (RID) framework

• Input: A signed hypergraph H = (V, S), Output: An extended formulation for
PpB(H).

• Step 0. Set H(0) := H, i := 0.

• Step 1. If we can obtain H̄(i) from H(i) via a number of inflation operations,
such that a suitable extended formulation for PpB(H̄

(i)) is available, then we
are done. Otherwise, go to Step 2.

• Step 2. Choose a node v̄ of H(i). If v̄ is a β-leaf of the underlying hypergraph
of H(i), then set H̄(i) := H(i) and go to Step 3. Otherwise, construct H̄(i)

from H(i) via inflation operations, such that v is a β-leaf of the underlying
hypergraph of H̄(i). It suffices to find an extended formulation for PpB(H̄

(i)).

• Step 3. Decompose PpB(H̄
(i)) into PpB(H̄

(i)
1 ) and PpB(H̄

(i)
2 ), where H̄

(i)
1

denotes the signed hypergraph containing node v̄. Since we have an extended

formulation for PpB(H̄
(i)
1 ), it suffices to find an extended formulation for

PpB(H̄
(i)
2 ). Set H(i+1) := H̄

(i)
2 , increment i by one, and go to Step 1.
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α-acyclic hypergraphs with log-poly ranks

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is α-acyclic. Then PpB(H) has an extended formulation with at
most O(3r|V |) variables and inequalities.

• A node v ∈ V is an α-leaf if the set of edges containing v has a maximal
element for inclusion.

• A hypergraph is α-acyclic iff we can recursively remove α-leaves till obtaining
an empty set.
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α-acyclic hypergraphs with log-poly ranks

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is α-acyclic. Then PpB(H) has an extended formulation with at
most O(3r|V |) variables and inequalities.
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α-acyclic hypergraphs with log-poly ranks

• Theorem: Let H = (V, S) be a signed hypergraph of rank r whose underlying
hypergraph is α-acyclic. Then PpB(H) has an extended formulation with at
most O(3r|V |) variables and inequalities.
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Nest-sets

• Let G = (V,E) be a hypergraph and let N ⊆ V . Let F (N) the set of edges in
E containing some v ∈ N ; N is a nest-set of G, if the set

F \N := {e \N : e ∈ F (N)},

is totally ordered with respect to inclusion. If |N | = 1, then N contains a nest
point of G.

• Let Ni ⊆ V , for all i ∈ [t] and for some t ≥ 1 such that the sets Ni are pairwise
disjoint and ∪i∈[t]Ni = V . We say that N = N1, · · · , Nt is a sequence of
nest-sets of G, if N1 is a nest set of G, N2 is a nest-set of G−N1, and so on.

• Given a sequence of nest-sets N of G, the nest-set width of this sequence
nswN (G), is the maximum cardinality of any element in N .

• The nest-set width of G nsw(G), is the minimum value of nswN (G) over all
nest-set sequences N of G.

• nsw(G) = 1, if and only if G is a β-acyclic hypergraph.
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Hypergraphs with small nest-set widths

• Deciding if nsw(G) ≤ k for any integer k is NP-complete. However, when
parameterized by k, this problem is fixed-parameter tractable (Lanzinger 2023):

• There exists a 2O(k2)poly(|V |, |E|) time algorithm that takes as input
hypergraph G = (V,E) and integer k ≥ 1 and returns a nest-set sequence
N with nswN (G) = k if one exists, or rejects otherwise.

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph
G = (V,E) satisfies nsw(G) ≤ k. Then the pseudo-Boolean polytope PpB(H)
has an extended formulation with O(2k|V |2|S|) variables and inequalities.
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Hypergraphs with small nest-set widths

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph
G = (V,E) satisfies nsw(G) ≤ k. Then the pseudo-Boolean polytope PpB(H)
has an extended formulation with O(2k|V |2|S|) variables and inequalities.
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Hypergraphs with small nest-set widths

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph
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Hypergraphs with small nest-set widths

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph
G = (V,E) satisfies nsw(G) ≤ k. Then the pseudo-Boolean polytope PpB(H)
has an extended formulation with O(2k|V |2|S|) variables and inequalities.
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Hypergraphs with small nest-set widths

• Theorem: Let H = (V, S) be a signed hypergraph whose underlying hypergraph
G = (V,E) satisfies nsw(G) ≤ k. Then the pseudo-Boolean polytope PpB(H)
has an extended formulation with O(2k|V |2|S|) variables and inequalities.
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