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Introduction

e Binary polynomial optimization is the problem of maximizing a multivariate
polynomial function over the set of binary points (NP-hard in general).

e Based on the encoding of the polynomial function, we obtain two
popular optimization problems: multilinear optimization and pseudo-Boolean
optimization.



Multilinear optimization

A hypergraph G is a pair (V, E), where V is a finite set of nodes and FE is a

set of edges, which are subsets of V' of cardinality at least two.

The rank of G is the maximum cardinality of any edge in E.

With any G = (V, FE), and c € RYYE \we associate the multilinear optimization

problem:

max Z CoZy T Z Ce H Zo

veV ec vee
s.t. zy € {0,1} Yo eV,

Define z, := [],c. 20 forall e € E:

max E cvzv—l—g CeZes

veV eck

s.t. 2. = sz, Vee E

vEe

zy, € {0,1}, Yo € V.

(BPO,)

((BPO,y)



Multilinear sets and polytopes
e \We define the multilinear set as:

Sun(G) = {z e {0, 1}V 2, =[] 20, Ve € E}

vEee

212 = 2172
224 = 2274

2123 = Z172%3

2134 = %1%73%4

e The multilinear polytope Py, (G) is the convex hull of the multilinear set.

e If [e|] = 2 for all e € E, then the objective function of Problem (BPO,)) is
quadratic and Py (G) is the Boolean quadric polytope QP(G) (Padberg, 89).

212 = 2172
224 = 2274
234 = 2374

e |dentify sufficient conditions under which P, (G) has a polynomial-size extended
formulation.



Acyclic graphs

e Theorem (Padberg 89): The Boolean quadric polytope QP(G) of an acyclic
graph G = (V, E) has a formulation with 4|F/| inequalities.
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The multilinear polytope of acyclic hypergraphs

Acyclic hypergraphs in increasing degree of generality:

Berge — acyclic C v —acyclic C 8 —acyclic C a —acyclic

Optimizing over the multilinear polytope of a-acyclic hypergraphs is NP-hard
in general.

Theorem: The multilinear polytope of an a-acyclic hypergraph of rank r has
an extended formulation with at most O(2"|V|) variables and inequalities.

Equivalent to assuming bounded treewidth for the intersection graph:
Wainwright-Jordan 2004, Laurent 2009, Bienstock-Munoz 2018.



a-acyclic hypergraphs

e Theorem: The multilinear polytope of an a-acyclic hypergraph of rank r has
an extended formulation with at most O(2"|V|) variables and inequalities.
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a-acyclic hypergraphs
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The multilinear polytope of S-acyclic hypergraphs

o A [-cycle of length g for ¢ > 3 in G is a sequence vy, e1,V2,€2,...,Vq, €q, V1
such that vy, v9,...,v, are distinct nodes, ey, eq,...,¢e, are distinct edges, and
v; belongs to e;_1,e; and no other edges for all 1 =1,...,q.

e Theorem: The multilinear polytope of 5-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r — 1)|V| + |E| variables ((r — 2)|V|
additional variables) and at most (3r — 4)|V| + 4|F/| inequalities.

e The defining inequalities are very sparse: at most four variables with non-zero
coefficients. All coefficients are £1 and all right-hand sides are 0/1.
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The multilinear polytope of S-acyclic hypergraphs

e Theorem: The multilinear polytope of 5-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r — 1)|V| + |E| variables ((r — 2)|V|
additional variables) and at most (3r —4)|V| + 4| E| inequalities (ADP and AK,
2023).

e A node is a (B-leaf (nest point) if the edges containing it are totally ordered.

e A hypergraph is S-acyclic iff we can recursively remove (-leaves till obtaining
an empty set.
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The multilinear polytope of S-acyclic hypergraphs

e Theorem: The multilinear polytope of 5-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r — 1)|V| + |E| variables ((r — 2)|V|
additional variables) and at most (3r —4)|V| + 4| E| inequalities (ADP and AK,
2023).
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The multilinear polytope of S-acyclic hypergraphs

e Theorem: The multilinear polytope of 5-acyclic hypergraphs has a polynomial-
size extended formulation with at most (r — 1)|V| + |E| variables ((r — 2)|V|
additional variables) and at most (3r —4)|V| + 4| E| inequalities (ADP and AK,
2023).

e The multilinear polytope of a pointed hypergraph G = (V, E) consists of
5|V | + 2 inequalities.
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Beyond hypergraph acyclicity

e We present a new framework that

— unifies all prior results on the existence of polynomial-size extended
formulations, and

— provides polynomial-size extended formulations for the multilinear polytope
of hypergraphs with 5-cycles
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Signed hypergraphs

A signed hypergraph H as a pair (V,.5), where V is a finite set of nodes and

S is a set of signed edges.

A signed edge s € S is a pair (e,7ns), where e is a subset of V' of cardinality at
least two, and 75 is a map that assigns to each v € e a sign ns(v) € {—1,+1}.

The underlying edge of a signed edge s = (e, 7)) is e.

Two signed edges s = (e,ns), s = (e/,ny) € S are parallel if e = €/, and they

are identical if e = ¢’ and n, = ny.

We consider signed hypergraphs with no identical signed edges but often with

parallel signed edges.
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Pseudo-Boolean optimization

e With any signed hypergraph H = (V,S), and cost vector ¢ € RV we
associate the pseudo-Boolean optimization problem:

max Z CyoZy T+ Z Cs H 0s(2v) (BPOpB)

veV seS  wveEs
s.t. z € {0,1}V,
where
v if ns(v) =+1
ou(z) =4 it (v) =+
1—2z, ifns(v)=—-1

o Define z :=[] ., 0s(2y) forall s € S:

max Z Cyoly T+ Z CsZs, (E BPOPB)
veV ses
st zg = Has(zv), Vs e S
VES

zy, € {0,1}, Yo € V.
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Pseudo-Boolean sets and polytopes

e We define the pseudo-Boolean set of the signed hypergraph H = (V,.5), as:

Sop(H) := {z € {0,135 2, = [] o(20), Vs € s},

VES

and we refer to its convex hull as the pseudo-Boolean polytope P, (H).

e Unlike the multilinear polytope, the pseudo-Boolean polytope is NOT full

dimensional.
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The underlying hypergraph vs the multilinear hypergraph

e The underlying hypergraph of a signed hypergraph H is the hypergraph obtained
from H by ignoring signs and dropping parallel edges.

e The pseudo-Boolean optimization problem over a signed hypergraph H = (V,.5)
can be reformulated as a multilinear optimization problem over a hypergraph,
which we call the multilinear hypergraph of H.

e Let the underlying hypergraph of H be pJ-acyclic; then the multilinear
hypergraph of H may contain many [-cycles.
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The recursive inflate and decompose framework

e Main ingredients:

1. A sufficient condition for decomposability of pseudo-Boolean polytopes.

2. A polynomial-size extended formulation for the pseudo-Boolean polytope
of pointed signed hypergraphs, which appears as a result of applying the
decomposition technique.

3. The inflation operation that we use to transform a large class of signed
hypergraphs to those for which our results of Parts 1 and 2 are applicable.
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Decomposability of pseudo-Boolean polytopes

e Consider a signed hypergraph H = (V,5), let V1, Vo C V such that V = V;UV5,
let S C{seS:sCV}, S5 C{se§:sCVy}such that S =57 USs. Let
Hl = (Vl,Sl) and H2 = (VQ,SQ).

e We say P,p(H) is decomposable into P,p(H1) and Pyp(H2), if the system
comprised of a description of P,g(H;1) and a description of P,p(H2), is a
description of P,p(H).

e [heorem: Assume the underlying hypergraph of H has a [-leaf v. Let
s1 € 59 C --- C s be the signed edges of H containing v, and assume S
contains s; — v for all ¢ € |[k|]. Then P,p(H) is decomposable into P,p(H1)
and P,p(Hsz), where Hy := (V1,5, U P,), V1 is the underlying edge of s,
Sy :={s1,...,8k}, Py :={s;—v:l|s;—v|>2, i€lk]}, and Hy := H — v.
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The pseudo-Boolean polytope of pointed sighed hypergraphs

e Consider a signed hypergraph H = (V,S) and let v € V be a B-leaf of the
underlying hypergraph of H. Denote by S, the set of all signed edges in S
containing v. Define P, := {s—v :s € S,,|s| > 3}. We say that H s a
pointed signed hypergraph if V' coincides with the underlying edge of the signed
edge of maximum cardinality in S, and S =S5, U P,.

e Theorem: Let H = (V,S) be a pointed signed hypergraph. Then P,5(H) has
a polynomial-size extended formulation with at most 2|V |(|S| + 1) variables
and at most 4(|S|(|V| — 2) 4+ |V|) inequalities. Moreover, all coefficients and
right-hand side constants in the system defining P,p(H) are 0, £1.

e Theorem: Let H = (V,S) be a signed hypergraph of rank r whose underlying
hypergraph is 5-acyclic. Then the pseudo-Boolean polytope has a polynomial-
size extended formulation with at most O(r|S||V|) variables and inequalities.
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Inflation of sighed edges

o Let H = (V,S5) be a signed hypergraph, let s € S, and let e C V such that
s Ce. let I(s,e) be the set of all possible signed edges s’ parallel to e such
that ns(v) = ny(v) for every v € s. Then H' = (V,5’) is obtained from H by
inflating s to e if " =S U I(s,e)\ {s}. We say H' is obtained from H via an
inflation operation.

Theorem: Let H' = (V,S’) be obtained from H by inflating s to e. Then an
extended formulation of P,p(H) can be obtained by juxtaposing an extended
formulation of Poe(H') and zs = > e (s o) 25 If Poe(H') has a polynomial-
size extended formulation and |e| — |s| = O(logpoly(|V|,|S])), then P,s(H)
has a polynomial-size extended formulation as well.

s1={v],v5}, 80 = {v], 05}, 83 ={vd, 0]}

34:{’01_,1);’0 }35_{’01 v2 Vg }
—_—
283:ZS4+Z85
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Applications of inflation

e Consider a signed hypergraph H = (V,S). Suppose that each s € S contains
at least |V| — k nodes. Then the pseudo-Boolean polytope has an extended

formulation with O(2%|V||S]|) variables and inequalities.

e Consider a signed hypergraph H = (V,5) of rank r. For each s € S, among
all maximal signed edges of H containing s, denote by f5 one with minimum
cardinality. Let k be such that |f,| — |s| < k for all s € S. Let S denote the
set of maximal signed edges of H. If the underlying hypergraph of (V,S) is
[-acyclic, then the pseudo-Boolean polytope has an extended formulation with

O(r2%|V||S|) variables and inequalities.

D) - (0=
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The Recursive inflate-and-decompose (RID) framework

Input: A signed hypergraph H = (V,S), Output: An extended formulation for
Pop(H).

Step 0. Set H®) := H, i :=0.

Step 1. If we can obtain H" from H via a number of inflation operations,
such that a suitable extended formulation for P,g(H ") is available, then we
are done. Otherwise, go to Step 2.

Step 2. Choose a node © of H"). If ¥ is a B-leaf of the underlying hypergraph
of H®, then set H® := H® and go to Step 3. Otherwise, construct H®
from H) via inflation operations, such that v is a f-leaf of the underlying
hypergraph of H(. It suffices to find an extended formulation for Pyg(H¥).

Step 3. Decompose P,p(H®) into Pop(H\") and Pps(HL"), where A
denotes the signed hypergraph containing node v. Since we have an extended
formulation for PpB(Fll(z)), it suffices to find an extended formulation for

PpB(FIy)). Set H(+1) .= Fly), increment ¢ by one, and go to Step 1.
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a-acyclic hypergraphs with log-poly ranks

e Theorem: Let H = (V,S) be a signed hypergraph of rank r whose underlying
hypergraph is a-acyclic. Then P,p(H) has an extended formulation with at
most O(3"|V|) variables and inequalities.

e A node v € V is an «a-leaf if the set of edges containing v has a maximal
element for inclusion.

e A hypergraph is a-acyclic iff we can recursively remove a-leaves till obtaining
an empty set.
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a-acyclic hypergraphs with log-poly ranks

e Theorem: Let H = (V,S) be a signed hypergraph of rank r whose underlying
hypergraph is a-acyclic. Then P,p(H) has an extended formulation with at
most O(3"|V|) variables and inequalities.
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a-acyclic hypergraphs with log-poly ranks

e Theorem: Let H = (V,S) be a signed hypergraph of rank r whose underlying
hypergraph is a-acyclic. Then P,p(H) has an extended formulation with at
most O(3"|V|) variables and inequalities.
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Nest-sets

Let G = (V, F) be a hypergraph and let N C V. Let F'(IV) the set of edges in
E containing some v € N; N is a nest-set of G, if the set

F\N:={e\N:ec F(N)},

is totally ordered with respect to inclusion. If |[N| =1, then N contains a nest
point of G.

Let N; C V, for all i € [t] and for some t > 1 such that the sets N; are pairwise
disjoint and U;eN; = V. We say that N = Ny,---,N; is a sequence of

nest-sets of (G, if N1 is a nest set of G, N, is a nest-set of G — Ny, and so on.

Given a sequence of nest-sets N of (G, the nest-set width of this sequence
nswr(G), is the maximum cardinality of any element in .

The nest-set width of G nsw(G), is the minimum value of nswa/(G) over all
nest-set sequences N of G.

nsw(G) =1, if and only if G is a S-acyclic hypergraph.
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Hypergraphs with small nest-set widths

e Deciding if nsw(G) < k for any integer k is NP-complete. However, when
parameterized by k, this problem is fixed-parameter tractable (Lanzinger 2023):

e There exists a 20<k2)p01y(|V|,|E\) time algorithm that takes as input
hypergraph G = (V, E) and integer k > 1 and returns a nest-set sequence
N with nswx/(G) = k if one exists, or rejects otherwise.

e Theorem: Let H = (V,S) be a signed hypergraph whose underlying hypergraph
G = (V, E) satisfies nsw(G) < k. Then the pseudo-Boolean polytope P,p(H)
has an extended formulation with O(2%|V|2|S|) variables and inequalities.
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