Sparse PSD approximation of the PSD cone

Grigoriy Blekherman¹ Santanu S. Dey¹ Marco Molinaro² Kevin Shu¹ Shengding Sun¹

¹Georgia Institute of Technology.

²Pontifical Catholic University of Rio de Janeiro.

Feb 2021

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

1 Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Semi definite programming

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_{+}^{n}, \end{array}$$
 (SDP)

where *C* and the A^{i} 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij}$, and

・ロト (日本・ヨー・ヨー・ショー・ショー)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Semi definite programming

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_{+}^{n}, \end{array}$$
 (SDP)

where *C* and the A^{i} 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij}$, and

 $\mathcal{S}^n_+ = \{ X \in \mathbb{R}^{n \times n} \, | \, X = X^T, \ u^\top X u \ge 0, \ \forall u \in \mathbb{R}^n \}.$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Semi definite programming

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_{+}^{n}, \end{array}$$
 (SDP)

where *C* and the A^{i} 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij}$, and

$$\mathcal{S}^n_+ = \{ X \in \mathbb{R}^{n \times n} \, | \, X = X^T, \ u^\top X u \ge 0, \ \forall u \in \mathbb{R}^n \}.$$

 Polynomial-time algorithm— but often challenging to solve in practice.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

A relaxation: Sparse SDP

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_{+}^{n}, \end{array}$$
 (SDP)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

A relaxation: Sparse SDP

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^i, \boldsymbol{X} \rangle \leq b_i \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_+^n, \end{array}$$
 (SDP)

 $\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^i, \boldsymbol{X} \rangle \leq \boldsymbol{b}_i \; \forall i \in \{1, \ldots, m\} & (\text{Sparse SDP}) \\ & \text{selected } k \times k \; \text{principal submatrices of } \boldsymbol{X} \in \mathcal{S}_+^k. \end{array}$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

A relaxation: Sparse SDP

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^i, \boldsymbol{X} \rangle \leq b_i \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_+^n, \end{array}$$
 (SDP)

 $\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \dots, m\} & (\text{Sparse SDP}) \\ & \text{selected } k \times k \ \text{principal submatrices of } X \in \mathcal{S}_+^k. \end{array}$

Sparse cutting-plane viewpoint:

- We can enforce PSD constraints by iteratively separating linear constraints.
- Enforcing PSD-ness on smaller k × k principal submatrix leads to linear constraints that are sparser, an important property leveraged by linear programming solvers that greatly improve their efficiency.

э

Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

Sparse PSD

approximation

Blekherman, Dey, Molinaro, Sun

Introduction

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Sparse SDP

 $\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \dots, m\} & (\text{Sparse SDP}) \\ & \text{selected } k \times k \ \text{principal submatrices of } X \in \mathcal{S}^k_{+}. \end{array}$

- Sparse cutting-plane:
 - [A. Qualizza, P. Belotti, and F. Margot (2012)]
 - [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
 - [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

In many experiments, we discovered sparse SDP to give bounds quite close to that of the original SDP!

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations Sparse SDP

 $\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \dots, m\} \\ & \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}^k_+. \end{array}$

- Sparse cutting-plane:
 - [A. Qualizza, P. Belotti, and F. Margot (2012)]
 - [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
 - [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

In many experiments, we discovered sparse SDP to give bounds quite close to that of the original SDP!

- Power system optimization:
 - [S. Sojoudi and J. Lavaei (2014)]
 - [B. Kocuk, SSD, and X. A. Sun (2016)]

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Our question

$$z^{\text{SDP}} := \min_{\substack{\langle C, X \rangle \\ \text{s.t.} \quad \langle A^{i}, X \rangle \leq b_{i} \quad \forall i \in \{1, \dots, m\} \\ X \in \mathcal{S}^{n}_{+}, }$$
(SDP)

$$\begin{aligned} z^{\text{Sparse-SDP}} &:= & \min \quad \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ & \text{s.t.} \quad \langle \boldsymbol{A}^i, \boldsymbol{X} \rangle \leq b_i \, \forall i \in \{1, \dots, m\} \quad \text{(Sparse SDP)} \\ & \text{selected } k \times k \text{ principal submatrices of } \boldsymbol{X} \in \mathcal{S}^k_+. \end{aligned}$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Our question

$$z^{\text{SDP}} := \min_{\substack{\langle A^i, X \rangle \\ \text{s.t.}}} \langle A^i, X \rangle \leq b_i \quad \forall i \in \{1, \dots, m\}$$
(SDP)
$$X \in \mathcal{S}^n_+,$$

$$\begin{aligned} z^{\text{Sparse-SDP}} &:= & \min \quad \langle C, X \rangle \\ & \text{s.t.} \quad \langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \dots, m\} \quad \text{(Sparse SDP)} \\ & \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}^k_+. \end{aligned}$$

Relationship between z^{SDP} and $z^{\text{Sparse-SDP}}$?

・ロト (日本・ヨー・ヨー・ショー・ショー)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Our question

$$z^{\text{SDP}} := \min \{ \langle C, X \rangle \\ \text{s.t.} \quad \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, \dots, m\} \\ X \in \mathcal{S}^n_+,$$
 (SDP)

$$\begin{array}{ll} z^{\text{Sparse-SDP}} := & \min & \langle C, X \rangle \\ & \text{s.t.} & \langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \dots, m\} & \text{(Sparse SDP)} \\ & \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}^k_+. \end{array}$$

Relationship between z^{SDP} and $z^{\text{Sparse-SDP}}$?

・ロト (日本・ヨー・ヨー・ショー・ショー)

Seems like a difficult question to analyze.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Easier question

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Easier question

How much bigger is cone with all $k \times k$ submatrices PSD from S^n_+ ?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Easier question

How much bigger is cone with all $k \times k$ submatrices PSD from S^n_+ ?

Dual cone is also of interest:

- ▶ [E. G. Boman, D. Chen, O. Parekh, and S. Toledo (2005)]
- [Permenter, Parrilo (2017)]
- ▶ [J. Gouveia, A. Kovačec, and M. Saee (2019)]
- [A. A. Ahmadi and A. Majumdar (2019)])

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

• How far is matrices in $S^{n,k}$ from S^n_+ ?

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is matrices in $S^{n,k}$ from S^n_+ ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

< 日 > < 同 > < 回 > < 回 > < □ > <

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is matrices in $S^{n,k}$ from S^n_+ ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- 1. The norm to measure this distance and
- 2. A normalization method

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is matrices in $S^{n,k}$ from S^n_+ ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:
 - 1. The norm to measure this distance and
 - 2. A normalization method

$$\overline{\operatorname{dist}}_{F}(\mathcal{S}^{n,k}, \mathcal{S}^{n}_{+}) = \sup_{\substack{M \in \mathcal{S}^{n,k}, \, \|M\|_{F} = 1 \\ M \in \mathcal{S}^{n,k}, \, \|M\|_{F} = 1}} \operatorname{dist}_{F}(M, \mathcal{S}^{n}_{+})}_{\substack{M \in \mathcal{S}^{n}_{+}, \, \|M\|_{F} = 1}}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Examining the hyperbolicity relaxations

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is matrices in $S^{n,k}$ from S^n_+ ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:
 - 1. The norm to measure this distance and
 - 2. A normalization method

$$\frac{\text{dist}_{F}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+})}{=} \sup_{\substack{M \in \mathcal{S}^{n,k}, \|M\|_{F}=1 \\ M \in \mathcal{S}^{n,k}, \|M\|_{F}=1}} \inf_{\substack{N \in \mathcal{S}^{n}_{+} \\ N \in \mathcal{S}^{n}_{+}}} \|M - N\|_{F}.$$

Note: $\overline{\text{dist}}_{\mathcal{F}}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+}) \in [0,1].$

2 Main results 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2.1 Upper bounds on $\overline{\text{dist}}_{\mathcal{F}}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+})$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Lower bounds Do we need n^k PSI constraints?

Proof sketch

Examining the hyperbolicity relaxations

Upper bound 1

Theorem (Upper Bound 1; Blekherman, D., Molinaro, Sun) For all $2 \le k < n$ we have

$$\overline{\operatorname{dist}}_{\mathcal{F}}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+}) \leq \frac{n-k}{n+k-2}.$$
(1)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Lower bounds Do we need n^k PSI constraints?

Proof sketch

Examining the hyperbolicity relaxations

Upper bound 1

Theorem (Upper Bound 1; Blekherman, D., Molinaro, Sun) For all $2 \le k < n$ we have

$$\overline{\operatorname{dist}}_F(\mathcal{S}^{n,k},\mathcal{S}^n_+) \leq rac{n-k}{n+k-2}.$$

(1)

• Distance between the *k*-PSD closure and the SDP cone is at most roughly
$$\approx \frac{n-k}{n}$$
.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Lower bounds Do we need n^k PSI constraints?

Proof sketch

Examining the hyperbolicity relaxations

Upper bound 2

► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Lower bounds

Do we need n^k PSD constraints?

Proof sketch

Examining the hyperbolicity relaxations

Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$
- This appears to be weak especially when $k \approx n$

・ロト (日本・ヨー・ヨー・ショー・ショー)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Lower bounds Do we need n^k PSI constraints?

Proof sketch

Examining the hyperbolicity relaxations

Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$
- This appears to be weak especially when $k \approx n$

Theorem (Upper bound 2; Blekherman, D., Shu, Sun) For all $2 \le k < n$ we have

$$\overline{\operatorname{dist}}_F(\mathcal{S}^{n,k},\mathcal{S}^n_+) \leq rac{(n-k)^{3/2}}{\sqrt{(n-k)^2+(n-1)k^2}}.$$

イロン 不得 とくほ とくほう 二日

(2)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Lower bounds Do we need n^k PSE constraints?

Proof sketch

Examining the hyperbolicity relaxations Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$
- This appears to be weak especially when $k \approx n$

Theorem (Upper bound 2; Blekherman, D., Shu, Sun) For all $2 \le k < n$ we have

$$\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) \leq \frac{(n-k)^{3/2}}{\sqrt{(n-k)^2 + (n-1)k^2}}.$$

- ▶ When $k \approx n$ distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \left(\frac{n-k}{n}\right)^{3/2}$.
- This bound dominates the previous bound when k/n is sufficiently large.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds Lower bounds Do we need n^k PS constraints?

Proof sketch

Examining the hyperbolicity relaxations

Upper bounds on $\mathcal{S}^{20,k}$

・ロ・・ (日・・ モ・・ ・ モ・

æ

2.2 Lower bounds on $\overline{\text{dist}}_{F}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bound:

Lower bounds

Do we need n^k PSI constraints?

Proof sketch

Examining the hyperbolicity relaxations

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun) For all $2 \le k < n$, we have

$$\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+}) \geq \frac{n-k}{\sqrt{(k-1)^{2}n+n(n-1)}}.$$
(3)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bound:

Lower bounds

Do we need n^k PSI constraints?

Proof sketch

Examining the hyperbolicity relaxations

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun) For all $2 \le k < n$, we have

$$\overline{\operatorname{dist}}_F(\mathcal{S}^{n,k},\mathcal{S}^n_+) \geq rac{n-k}{\sqrt{(k-1)^2\,n+n(n-1)}}.$$

(3)

・ロト (日本・ヨー・ヨー・ショー・ショー)

▶ When k is small:

$$\frac{n-k}{\sqrt{(k-1)^2 n+n(n-1)}} \approx \frac{n-k}{n}$$

So first upper bound (Thm 1) is tight (upto constant).
Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bound:

Lower bounds

Do we need n^k PSI constraints?

Proof sketch

Examining the hyperbolicity relaxations

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun) For all $2 \le k < n$, we have

$$\overline{\mathsf{dist}}_F(\mathcal{S}^{n,k},\mathcal{S}^n_+) \geq \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.$$

(3)

・ロト (日本・ヨー・ヨー・ショー・ショー)

▶ When k is small:

$$\frac{n-k}{\sqrt{(k-1)^2 n+n(n-1)}} \approx \frac{n-k}{n}$$

So first upper bound (Thm 1) is tight (upto constant).

• When k is very large: n - k = c where c is very small

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bound:

Lower bounds

Do we need n^k PSI constraints?

Proof sketch

Examining the hyperbolicity relaxations

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun) For all $2 \le k < n$, we have

$$\overline{\mathsf{dist}}_F(\mathcal{S}^{n,k},\mathcal{S}^n_+) \geq \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.$$

(3)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

▶ When k is small:

$$\frac{n-k}{\sqrt{(k-1)^2 n+n(n-1)}} \approx \frac{n-k}{n}$$

So first upper bound (Thm 1) is tight (upto constant).

• When k is very large: n - k = c where c is very small

$$\frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}} \approx \frac{c}{n^{3/2}}$$

So second upper bound (Thm 2) is tight (upto constant).

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bound

Lower bounds Do we need n^k P

Proof sketch

Examining the hyperbolicity relaxations

Upper and lower bounds on $\mathcal{S}^{20,k}$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bound

Lower bounds Do we need n^k PSE constraints?

Proof sketch

Examining the hyperbolicity relaxations

Lower bound 2: What happens when k = rn?

- Upper bound: $\frac{n-k}{n} = 1 r$, a constant independent of *n*
- Lower bound 1: $\approx (1/r 1) \frac{1}{n^{1/2}}$.

So is upper bound weak in this regime?

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bound:

Lower bounds

Do we need n^{*} PSD constraints?

Proof sketch

Examining the hyperbolicity relaxations

Lower bound 2: What happens when k = rn?

- Upper bound: $\frac{n-k}{n} = 1 r$, a constant independent of *n*
- Lower bound 1: $\approx (1/r 1) \frac{1}{n^{1/2}}$.

So is upper bound weak in this regime?

Theorem (Lower bound 2; Blekherman, D., Molinaro, Sun) Fix a constant $r < \frac{1}{23}$ and k = rn. Then for all $k \ge 2$,

$$\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) > \frac{\sqrt{r-93r^2}}{\sqrt{162r+3}},$$

イロン 不得 とくほ とくほう 二日

which is independent of n.

2.3 Do we need $\binom{n}{k}$ PSD constraints?

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Lower bounds

Do we need n^k PSD constraints?

Proof sketch

Examining the hyperbolicity relaxations Achieving the strength of $S^{n,k}$ by a polynomial number of PSD constraints

Theorem (Blekherman, D., Molinaro, Sun) Let $2 \le k \le n - 1$. Consider $\varepsilon, \delta > 0$ and let

$$m = 24 \left(\frac{n^2}{\varepsilon^2} \ln \frac{n}{\delta} \right).$$

Let $\mathcal{I} = (l_1, \dots, l_m)$ be a sequence of random *k*-sets independently uniformly sampled from $\binom{[n]}{k}$,

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Lower bounds

Do we need n^k PSD constraints?

Proof sketch

Examining the hyperbolicity relaxations Achieving the strength of $S^{n,k}$ by a polynomial number of PSD constraints

Theorem (Blekherman, D., Molinaro, Sun) Let $2 \le k \le n - 1$. Consider $\varepsilon, \delta > 0$ and let

$$m = 24 \left(\frac{n^2}{\varepsilon^2} \ln \frac{n}{\delta} \right).$$

Let $\mathcal{I} = (I_1, \ldots, I_m)$ be a sequence of random *k*-sets independently uniformly sampled from $\binom{[n]}{k}$, and define $S_{\mathcal{I}}$ as the set of matrices satisfying the PSD constraints for the principal submatrices indexed by the I_i 's, namely

$$\mathcal{S}_{\mathcal{I}} := \{ \boldsymbol{M} \in \mathbb{R}^{n \times n} : \boldsymbol{M}_{l_i} \succeq \mathbf{0}, \ \forall i \in [m] \}.$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds Lower bounds

Do we need n^k PSD constraints?

Proof sketch

Examining the hyperbolicity relaxations Achieving the strength of $\mathcal{S}^{n,k}$ by a polynomial number of PSD constraints

Theorem (Blekherman, D., Molinaro, Sun) Let $2 \le k \le n - 1$. Consider $\varepsilon, \delta > 0$ and let

$$m = 24 \left(\frac{n^2}{\varepsilon^2} \ln \frac{n}{\delta} \right).$$

Let $\mathcal{I} = (I_1, ..., I_m)$ be a sequence of random *k*-sets independently uniformly sampled from $\binom{[n]}{k}$, and define $S_{\mathcal{I}}$ as the set of matrices satisfying the PSD constraints for the principal submatrices indexed by the I_i 's, namely

$$S_{\mathcal{I}} := \{ \boldsymbol{M} \in \mathbb{R}^{n \times n} : \boldsymbol{M}_{l_i} \succeq \boldsymbol{0}, \ \forall i \in [\boldsymbol{m}] \}.$$

Then with probability at least $1 - \delta$ we have

$$\overline{\operatorname{dist}}_{F}(\mathcal{S}_{\mathcal{I}},\mathcal{S}^{n}_{+}) \leq (1+\varepsilon)\frac{n-k}{n+k-2}.$$

3 Proof sketch

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3.1 Proof of:

Theorem (Upper Bound 1) For all $2 \le k < n$ we have $\overline{\text{dist}}_F(\mathcal{S}^{n,k}, \mathcal{S}^n_+) \le \frac{n-k}{n+k-2}.$

▲ロト ▲園ト ▲ヨト ▲ヨト 三国 - のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1 Upper bound 2 Lower bound 1

Examining the hyperbolicity relaxations

Proof of Upper bound 1

► If

then red-submatrix is $k \times k$ PSD matrix.

48

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1 Upper bound 2 Lower bound 1

Examining the hyperbolicity relaxations

Proof of Upper bound 1

then red-submatrix is $k \times k$ PSD matrix.

So

► If

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1 Upper bound 2 Lower bound 1 Lower bound 2

Examining the hyperbolicity relaxations

Proof of Upper bound 1

- ► Take average of all the above matrices for different principal k × k submatrices (and suitably scale with a positive number), then the resulting matrix is in Sⁿ₊.
- ► The distance between this average PSD matrix and X gives bound.

3.2 Proof of:

Theorem (Upper bound 2) Assume $2 \le k < n$. Then $\overline{\text{dist}}_{F}(\mathcal{S}^{n,k}, \mathcal{S}^{n}_{+}) \le \frac{(n-k)^{3/2}}{\sqrt{(n-k)^{2} + (n-1)k^{2}}}.$

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2

► Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in S^{n,k} has at most n - k negative eigenvalues.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2

- ► Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in S^{n,k} has at most n - k negative eigenvalues.
- Since the PSD cone consists of symmetric matrices with non-negative eigenvalues, the distance from a unit-norm matrix *M* ∈ S^{n,k} to Sⁿ₊ is upper bounded by

(absolute value of most negative eigenvalue of M)× $\sqrt{n-k}$.

So we need to upper bound absolute value of most negative eigenvalue of M for M ∈ S^{n,k} and ||M||_F = 1.

$$\sqrt{n-k} \times \left| \min \left\{ \lambda_1(M) \, | \, \|M\|_F \le 1, M \in \mathcal{S}^{n,k} \right\} \right|$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound '

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2

- ► Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in S^{n,k} has at most n - k negative eigenvalues.
- Since the PSD cone consists of symmetric matrices with non-negative eigenvalues, the distance from a unit-norm matrix *M* ∈ S^{n,k} to Sⁿ₊ is upper bounded by

(absolute value of most negative eigenvalue of M)× $\sqrt{n-k}$.

► So we need to upper bound absolute value of most negative eigenvalue of M for $M \in S^{n,k}$ and $||M||_F = 1$.

$$\sqrt{n-k} \times \left| \min \left\{ \lambda_1(M) \left| \sum_{j \in [n]} (\lambda_j(M))^2 \leq 1, M \in \mathcal{S}^{n,k} \right. \right\} \right.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound '

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2

- ► Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in S^{n,k} has at most n - k negative eigenvalues.
- Since the PSD cone consists of symmetric matrices with non-negative eigenvalues, the distance from a unit-norm matrix *M* ∈ S^{n,k} to Sⁿ₊ is upper bounded by

(absolute value of most negative eigenvalue of M)× $\sqrt{n-k}$.

► So we need to upper bound absolute value of most negative eigenvalue of M for $M \in S^{n,k}$ and $||M||_F = 1$.

$$\sqrt{n-k} \times \left| \min \left\{ \lambda_1(M) \left| \sum_{j \in [n]} (\lambda_j(M))^2 \le 1, \underbrace{M \in \mathcal{S}^{n,k}}_{\text{how to deal with this?}} \right\} \right. \right\}$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2-connection to hyperbolicity cone.

For S ⊆ {1,..., n}, let M|_S denote the principal submatrix of M obtained by removing rows and columns not in S.

• If |S| = k, and $M \in S^{n,k}$, then $M|_S$ is PSD.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2-connection to hyperbolicity cone.

▶ For $S \subseteq \{1, ..., n\}$, let $M|_S$ denote the principal submatrix of M obtained by removing rows and columns not in S.

• If |S| = k, and $M \in S^{n,k}$, then $M|_S$ is PSD.

 $M \in \mathcal{S}^{n,k} \Rightarrow c_k(M) := \sum_{\mathcal{S} \subseteq \{1,\ldots,n\} : |\mathcal{S}|=k} \det(M|_{\mathcal{S}}) \ge 0.$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound '

Upper bound 2

Lower bound 2

Examining the hyperbolicity relaxations

Proof of upper bound 2-connection to hyperbolicity cone.

For S ⊆ {1,..., n}, let M|_S denote the principal submatrix of M obtained by removing rows and columns not in S.

• If |S| = k, and $M \in S^{n,k}$, then $M|_S$ is PSD.

 $M \in \mathcal{S}^{n,k} \Rightarrow c_k(M) := \sum_{S \subseteq \{1,\ldots,n\}: |S|=k} \det(M|_S) \ge 0.$

• Let $\lambda_1(M) \leq \lambda_2(M) \leq \cdots \leq \lambda_n(M)$ are the eigenvalues of *M*:

$$c_k(M) = \sum_{\substack{1 \leq i_1 < i_2 < \cdots < i_k \leq n \\ e_k^n(\lambda_1(M), \lambda_2(M), \dots, \lambda_n(M))}} \lambda_{i_1}(M) \lambda_{i_2}(M) \dots \lambda_{i_k}(M)}$$

$$M \in \mathcal{S}^{n,k} \Rightarrow \underbrace{e_k^n(\lambda(M))}_{k} \ge 0.$$

elementary symmetric polynomial

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound '

Upper bound 2

Lower bound ?

Examining the hyperbolicity relaxations

Proof of upper bound 2-connection to hyperbolicity cone.

For S ⊆ {1,..., n}, let M|_S denote the principal submatrix of M obtained by removing rows and columns not in S.

• If |S| = k, and $M \in S^{n,k}$, then $M|_S$ is PSD.

 $M \in \mathcal{S}^{n,k} \Rightarrow c_k(M) := \sum_{S \subseteq \{1,\ldots,n\}: |S|=k} \det(M|_S) \ge 0.$

• Let $\lambda_1(M) \leq \lambda_2(M) \leq \cdots \leq \lambda_n(M)$ are the eigenvalues of *M*:

$$c_k(M) = \sum_{\substack{1 \le i_1 < i_2 < \cdots < i_k \le n \\ e_k^n(\lambda_1(M), \lambda_2(M), \dots, \lambda_n(M))}} \lambda_{i_1}(M) \lambda_{i_2}(M) \dots \lambda_{i_k}(M)}$$

$$M \in \mathcal{S}^{n,k} \Rightarrow \underbrace{e_k^n(\lambda(M))}_{\geq 0.} \ge 0.$$

elementary symmetric polynomial

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

We can do better...

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketcl

Upper bound

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2- connection to hyperbolicity cone.

• Let $M \in S^{n,k}$. For t > 0:

$$e_k^n((\lambda_1(M),\lambda_2(M),\ldots,\lambda_n(M))+t\vec{1})=c_k(M+tl)>0,$$

・ロト (日本・ヨー・ヨー・ショー・ショー)

since all the $k \times k$ submatrices of X + tl will be positive definite.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound '

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2- connection to hyperbolicity cone.

• Let $M \in S^{n,k}$. For t > 0:

 $e_k^n((\lambda_1(M),\lambda_2(M),\ldots,\lambda_n(M))+t\vec{1})=c_k(M+tl)>0,$

since all the $k \times k$ submatrices of X + tl will be positive definite.

 Every point in the open line segment: {θλ(M) + (1 − θ)1 | 1 > θ ≥ 0} belongs to connected component of ℝⁿ \ {x : eⁿ_k(x) = 0} containing 1.

 $H(e_k^n)$ hyperbolicity cone of elementary symmetric polynomial

$$M \in \mathcal{S}^{n,k} \Rightarrow \lambda(M) \in H(\mathbf{e}_k^n).$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound '

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2- connection to hyperbolicity cone.

• Let $M \in S^{n,k}$. For t > 0:

 $e_k^n((\lambda_1(M),\lambda_2(M),\ldots,\lambda_n(M))+t\vec{1})=c_k(M+tl)>0,$

since all the $k \times k$ submatrices of X + tl will be positive definite.

 Every point in the open line segment: {θλ(M) + (1 − θ)1 | 1 > θ ≥ 0} belongs to connected component of ℝⁿ \ {x : eⁿ_k(x) = 0} containing 1.

 $H(e_k^n)$ hyperbolicity cone of elementary symmetric polynomial

 $M \in \mathcal{S}^{n,k} \Rightarrow \lambda(M) \in H(\mathbf{e}_k^n).$

Two nice properties:

- $\{x \mid e_k^n(x) \ge 0\} \supseteq H(e_k^n).$
- $H(e_k^n)$ is a convex set.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Illustration of $\{x \mid e_2^2(x) \ge 0\}$ and $H(e_2^2)$

$$e_2^2(x)=x_1x_2$$

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketch

Upper bound 1

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

A quick detour to formally introduce hyperbolicity cone

- ▶ We will say that a polynomial $p \in \mathbb{R}[x_1, ..., x_n]$ is hyperbolic with respect to a fixed vector v if
 - ▶ p(v) > 0, and
 - For all fixed $\hat{x} \in \mathbb{R}^n$, the univariate polynomial $p(\hat{x} tv) \in R[t]$ has only real roots.

¹We actually work with the closure of this set

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

A quick detour to formally introduce hyperbolicity cone

- ▶ We will say that a polynomial $p \in \mathbb{R}[x_1, ..., x_n]$ is hyperbolic with respect to a fixed vector v if
 - ▶ p(v) > 0, and
 - For all fixed $\hat{x} \in \mathbb{R}^n$, the univariate polynomial $p(\hat{x} tv) \in R[t]$ has only real roots.

Example:

•
$$e_n^n(\hat{x} - t\vec{1}) = 0$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

A quick detour to formally introduce hyperbolicity cone

- ▶ We will say that a polynomial $p \in \mathbb{R}[x_1, ..., x_n]$ is hyperbolic with respect to a fixed vector v if
 - ▶ p(v) > 0, and
 - For all fixed $\hat{x} \in \mathbb{R}^n$, the univariate polynomial $p(\hat{x} tv) \in R[t]$ has only real roots.

Example:

•
$$e_n^n(\hat{x} - t\vec{1}) = 0$$

• solution for *t* (roots): $\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results ⁻

- Proof sketch
- Upper bound 1
- Upper bound 2
- Lower bound 1

Examining the hyperbolicity relaxations

A quick detour to formally introduce hyperbolicity cone

- We will say that a polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to a fixed vector v if
 - p(v) > 0, and
 - For all fixed $\hat{x} \in \mathbb{R}^n$, the univariate polynomial $p(\hat{x} tv) \in R[t]$ has only real roots.

Example:

•
$$e_n^n(\hat{x} - t\vec{1}) = 0$$

- solution for *t* (roots): $\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n$
- The connected set ℝⁿ \ {x | p(x) = 0} containing v is called the hyperbolicity cone of p with respect to v¹.
- The hyperbolicity cone is a convex cone!

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2-contd.

Replace:

$$\sqrt{n-k} \times \min\left\{\lambda_1(M) \left| \sum_{j \in [n]} (\lambda_j(M))^2 \leq 1, M \in \mathcal{S}^{n,k} \right. \right\}$$

(ロ) (四) (E) (E) (E) (E)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Examining the hyperbolicity relaxations

Proof of upper bound 2-contd.

Replace:

$$\sqrt{n-k} \times \min\left\{\lambda_1(M) \left| \sum_{j \in [n]} (\lambda_j(M))^2 \leq 1, M \in \mathcal{S}^{n,k} \right. \right\}$$

By its relaxation:

$$\sqrt{n-k} \times \left| \min \left\{ \lambda_1(M) \left| \sum_{j \in [n]} (\lambda_j(M))^2 \leq 1, \lambda(M) \in H(e_k^n) \right\} \right|$$

This is a convex relaxation and can be solved in closed form. The solution is the bound we obtain.

・ロト (日本・ヨー・ヨー・ショー・ショー)

3.3 Proof of: Theorem (Lower bound 1) For all $2 \le k < n$, we have $\overline{\text{dist}}_F(S^{n,k}, S^n_+) \ge \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.$

<ロ> (四) (四) (三) (三) (三) (三)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound
- Upper bound 2
- Lower bound 1
- Lower bound 2

Examining the hyperbolicity relaxations

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{\top} G u =$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound
- Upper bound 2
- Lower bound 1

Examining the hyperbolicity relaxations

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{\top}Gu = (a+b)-a\left(\sum_{i=1}^{n}u_i\right)^2$$
Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound
- Upper bound 2
- Lower bound 1
- Lower bound 2

Examining the hyperbolicity relaxations

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

・ロト (日本・ヨー・ヨー・ショー・ショー)

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(||u||_1)^2$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound
- Upper bound 2
- Lower bound 1
- Lower bound 2

Examining the hyperbolicity relaxations

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(||u||_1)^2 \ge (a+b) - ak$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound
- Upper bound 2
- Lower bound 1

Examining the hyperbolicity relaxations

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(\|u\|_1)^2 \ge (a+b) - ak$$

・ロト (日本・ヨー・ヨー・ショー・ショー)

- So $G(a, b) \in S^{n,k}$ iff $(1 k)a + b \ge 0$.
- ▶ Use these explicit matrices to obtain lower bound from *S*^{*n*}₊

3.4 Proof of:

Theorem (Lower bound 2)

Fix a constant $r < \frac{1}{93}$ and k = rn. Then for all $k \ge 2$,

$$\overline{\operatorname{dist}}_{F}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+}) > \frac{\sqrt{r-93r^{2}}}{\sqrt{162r+3}},$$

which is independent of n.

Blekherman, Dey, Molinaro, Sun

Introduction

- Main results
- Proof sketcl
- Upper bound
- Upper bound
- Lower bound
- Lower bound 2

Examining the hyperbolicity relaxations

Proof of lower bound 2

For simplicity, assume k = n/2. (Actually proof does not have this value of k).

Proof of lower bound 2

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

- Upper bound
- Upper bound a
- Lower bound 1

Lower bound 2

Examining the hyperbolicity relaxations

- For simplicity, assume k = n/2. (Actually proof does not have this value of k).
- ► The idea is to construct a matrix *M* where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^1, w^2, \ldots, w^{n/2}$, i.e.,

$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^\top$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Blekherman, Dey, Molinaro, Sun

Introduction

- Main results
- Proof sketch
- Upper bound
- Upper bound
- Lower bound 1
- Lower bound 2

Examining the hyperbolicity relaxations

- For simplicity, assume k = n/2. (Actually proof does not have this value of k).
- ► The idea is to construct a matrix *M* where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^1, w^2, \ldots, w^{n/2}$, i.e.,

$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^\top$$

イロン 不得 とくほ とくほう 二日

• This normalization makes $||M||_F = 1$.

Proof of lower bound 2

• dist_F(M, S_+^n) $\geq \sqrt{\left(\frac{1}{\sqrt{n}}\right)^2 \cdot \frac{n}{2}} = cst$ independent of n.

Blekherman, Dey, Molinaro, Sun

Introduction

- Main results
- Proof sketch
- Upper bound
- Upper bound
- Lower bound 1
- Lower bound 2

Examining the hyperbolicity relaxations

- For simplicity, assume k = n/2. (Actually proof does not have this value of k).
- ► The idea is to construct a matrix *M* where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^1, w^2, \ldots, w^{n/2}$, i.e.,

$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^\top$$

• This normalization makes $||M||_F = 1$.

Proof of lower bound 2

- ► dist_F(M, S_+^n) ≥ $\sqrt{\left(\frac{1}{\sqrt{n}}\right)^2 \cdot \frac{n}{2}} = cst$ independent of n.
- ► So we only need to guarantee that *M* belongs to the *k*-PSD closure.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound

Lower bound

Lower bound 2

Examining the hyperbolicity relaxations

Proof of lower bound 2 -contd.

•
$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{v}^i) (\mathbf{v}^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{w}^i) (\mathbf{w}^i)^\top$$

► Letting *V* be the matrix with rows $v^1, v^2, ..., and W$ the matrix with rows $w^1, w^2, ..., w^2$ the quadratic form $x^\top M x$:

$$x^{\top}Mx = -\frac{1}{\sqrt{n}}\|Vx\|_2^2 + \frac{1}{\sqrt{n}}\|Wx\|_2^2.$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound

Lower bound

Lower bound 2

Examining the hyperbolicity relaxations

Proof of lower bound 2 -contd.

•
$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{v}^i) (\mathbf{v}^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{w}^i) (\mathbf{w}^i)^\top$$

► Letting *V* be the matrix with rows $v^1, v^2, ..., and W$ the matrix with rows $w^1, w^2, ..., w^2$ the quadratic form $x^\top M x$:

$$x^{\top}Mx = -\frac{1}{\sqrt{n}}\|Vx\|_2^2 + \frac{1}{\sqrt{n}}\|Wx\|_2^2.$$

イロン 不得 とくほ とくほう 二日

• $||Vx||_2^2 \le ||x||_2^2$ (because V is orthonormal)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound

Lower bound

Lower bound 2

Examining the hyperbolicity relaxations

Proof of lower bound 2 -contd.

•
$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{v}^i) (\mathbf{v}^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{w}^i) (\mathbf{w}^i)^\top$$

► Letting *V* be the matrix with rows $v^1, v^2, ..., and W$ the matrix with rows $w^1, w^2, ..., w^2$ the quadratic form $x^\top M x$:

$$x^{\top}Mx = -\frac{1}{\sqrt{n}} \|Vx\|_2^2 + \frac{1}{\sqrt{n}} \|Wx\|_2^2.$$

- $\|Vx\|_2^2 \le \|x\|_2^2$ (because V is orthonormal)
- ► So if we could construct the matrix *W* so that for all *k*-sparse vectors $x \in \mathbb{R}^n$ we had $||Wx||_2^2 \approx ||x||_2^2$:

$$x^{ op} M x \gtrsim -\frac{1}{\sqrt{n}} \|x\|_2^2 + \frac{1}{\sqrt{n}} \|x\|_2^2 \gtrsim 0$$

for all *k*-sparse vectors *x*

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound

Lower bound

Lower bound 2

Examining the hyperbolicity relaxations

Proof of lower bound 2 -contd.

•
$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{v}^i) (\mathbf{v}^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{w}^i) (\mathbf{w}^i)^\top$$

► Letting *V* be the matrix with rows $v^1, v^2, ...,$ and *W* the matrix with rows $w^1, w^2, ...,$ the quadratic form $x^\top Mx$:

$$x^{\top}Mx = -\frac{1}{\sqrt{n}} \|Vx\|_2^2 + \frac{1}{\sqrt{n}} \|Wx\|_2^2.$$

- $\|Vx\|_2^2 \le \|x\|_2^2$ (because V is orthonormal)
- ► So if we could construct the matrix *W* so that for all *k*-sparse vectors $x \in \mathbb{R}^n$ we had $||Wx||_2^2 \approx ||x||_2^2$:

$$x^{ op} M x \gtrsim -rac{1}{\sqrt{n}} \|x\|_2^2 + rac{1}{\sqrt{n}} \|x\|_2^2 \gtrsim 0$$

for all *k*-sparse vectors *x*

This approximate preservation of norms of sparse vectors is precisely the notion of the *Restricted Isometry Property*. 4 Examining the hyperbolicity relaxations

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation?

• $\{\lambda(M) \mid M \in S^{n,k}\} \subseteq H(e_k^n)$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation?

- $\{\lambda(M) \mid M \in S^{n,k}\} \subseteq H(e_k^n)$
- In fact, $H(e_n^n) = \mathbb{R}^n_+ = \{\lambda(M) \mid M \in \mathcal{S}^{n,n}\}.$

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the hyperbolicity relaxations

The case of k = n - 1

Theorem (k = n - 1; Blekherman, D., Shu, Sun) Let $n \ge 3$. Then:

$$H(\boldsymbol{e}_{n-1}^n) = \{\lambda(\boldsymbol{M}) \mid \boldsymbol{M} \in \mathcal{S}^{n,n-1}\}.$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the hyperbolicity relaxations

The case of k = n - 1

Theorem (k = n - 1; Blekherman, D., Shu, Sun) Let $n \ge 3$. Then:

$$H(\boldsymbol{e}_{n-1}^n) = \{\lambda(\boldsymbol{M}) \mid \boldsymbol{M} \in \mathcal{S}^{n,n-1}\}.$$

・ロト (日本・ヨー・ヨー・ショー・ショー)

Corollary

Let $n \geq 3$. Then: { $\lambda(M) \mid M \in S^{n,n-1}$ } is a convex set.

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketch

Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation?

$$G(1, k-1) := \begin{bmatrix} k-1 & -1 & \dots & -1 \\ -1 & k-1 & \dots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & \dots & -1 & k-1 \end{bmatrix} \in S^{n,k}$$

• Every $k \times k$ principal submatrix of G(1, k) is singular. Thus,

$$e_k^n(G(1, k-1)) = \sum_{S \subseteq [n]: |S|=k} \det(G(1, k-1)|_S) = 0.$$

・ロト (日本・ヨー・ヨー・ショー・ショー)

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketch

Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation?

$$G(1, k-1) := \begin{bmatrix} k-1 & -1 & \dots & -1 \\ -1 & k-1 & \dots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & \dots & -1 & k-1 \end{bmatrix} \in S^{n,k}$$

• Every $k \times k$ principal submatrix of G(1, k) is singular. Thus,

$$e_k^n(G(1,k-1)) = \sum_{S \subseteq [n]:|S|=k} \det(G(1,k-1)|_S) = 0.$$

イロン 不得 とくほ とくほう 二日

So G(1, k - 1) belongs to the boundary of $H(e_k^n)$.

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketch

Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation?

$$G(1, k-1) := \begin{bmatrix} k-1 & -1 & \dots & -1 \\ -1 & k-1 & \dots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & \dots & -1 & k-1 \end{bmatrix} \in S^{n,k}$$

• Every $k \times k$ principal submatrix of G(1, k) is singular. Thus,

$$e_k^n(G(1,k-1)) = \sum_{S \subseteq [n]:|S|=k} \det(G(1,k-1)|_S) = 0.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- So G(1, k 1) belongs to the boundary of $H(e_k^n)$.
- Let D be a diagonal matrix (where every diagonal entry is non-zero). Then DG(1, k − 1)D ∈ S^{n,k} and DG(1, k − 1)D ∈ bnd(H(eⁿ_k)).

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketch

Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation?

$$G(1, k-1) := \begin{bmatrix} k-1 & -1 & \dots & -1 \\ -1 & k-1 & \dots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ -1 & \dots & -1 & k-1 \end{bmatrix} \in S^{n,k}$$

• Every $k \times k$ principal submatrix of G(1, k) is singular. Thus,

$$e_k^n(G(1,k-1)) = \sum_{S \subseteq [n]:|S|=k} \det(G(1,k-1)|_S) = 0.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- So G(1, k 1) belongs to the boundary of $H(e_k^n)$.
- Let D be a diagonal matrix (where every diagonal entry is non-zero). Then DG(1, k − 1)D ∈ S^{n,k} and DG(1, k − 1)D ∈ bnd(H(eⁿ_k)).
- Finally, DG(1, k 1)D is a non-singular matrix.

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketch

Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation?

$$G(1, k-1) := \begin{bmatrix} k-1 & -1 & \dots & -1 \\ -1 & k-1 & \dots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ -1 & \dots & -1 & k-1 \end{bmatrix} \in S^{n,k}$$

• Every $k \times k$ principal submatrix of G(1, k) is singular. Thus,

$$e_k^n(G(1, k-1)) = \sum_{S \subseteq [n]: |S|=k} \det(G(1, k-1)|_S) = 0.$$

- So G(1, k 1) belongs to the boundary of $H(e_k^n)$.
- Let D be a diagonal matrix (where every diagonal entry is non-zero). Then DG(1, k − 1)D ∈ S^{n,k} and DG(1, k − 1)D ∈ bnd(H(eⁿ_k)).
- Finally, DG(1, k 1)D is a non-singular matrix.
- ► So, $DG(1, k 1)D \in bnd(H(e_k^n))$, is a non-singular matrix and belongs to $S^{n,k}$.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the hyperbolicity relaxations How good is the hyperbolicity relaxation — Comparing boundary

Theorem (Blekherman, D., Shu, Sun) Let 2 < k < n - 1 or n = 4 and k = 2. Let $M \in S^{n,k}$. If M is non-singular and M belongs to the boundary of $H(e_k^n)$, then there exists a diagonal matrix D such that M = DG(1, k - 1)D.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Blekherman, Dey, Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation — Comparing boundary

Theorem (Blekherman, D., Shu, Sun) Let 2 < k < n - 1 or n = 4 and k = 2. Let $M \in S^{n,k}$. If M is non-singular and M belongs to the boundary of $H(e_k^n)$, then there exists a diagonal matrix D such that M = DG(1, k - 1)D.

► There exist points on the boundary of $H(e_k^n)$ with as many as n - k negative entries and no zero entries.

Corollary

Let 2 < k < n - 1 or n = 4 and k = 2. Then the set of "eigenvalue vectors" for matrices in $S^{n,k}$ is strictly contained in $H(e_k^n)$.

Thank You.

- Grigoriy Blekherman, Santanu S. Dey, Marco Molinaro, Shengding Sun, "Sparse PSD approximation of the PSD cone," To appear in Mathematical Programming.
- Grigoriy Blekherman, Santanu S. Dey, Kevin Shu, Shengding Sun, "Hyperbolic Relaxation of k-Locally Positive Semidefinite Matrices," https://arxiv.org/abs/2012.04031.
- Santanu S. Dey, Aleksandr M. Kazachkov, Andrea Lodi, Gonzalo Muñoz, "Cutting Plane Generation Through Sparse Principal Component Analysis" http://www.optimization-online.org/DBHTML/2021/02/8259.html

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで