Sparse PSD approximation of the PSD cone

Grigoriy Blekherman ${ }^{1}$ Santanu S. Dey ${ }^{1}$ Marco Molinaro ${ }^{2}$

Kevin Shu ${ }^{1}$ Shengding Sun ${ }^{1}$
${ }^{1}$ Georgia Institute of Technology.
${ }^{2}$ Pontifical Catholic University of Rio de Janeiro.

Feb 2021

1
Introduction

Sparse PSD approximation

$$
\begin{array}{ll}
\min & \langle C, X\rangle \\
\text { s.t. } & \left\langle A^{i}, X\right\rangle \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \\
& X \in \mathcal{S}_{+}^{n},
\end{array}
$$

(SDP)
where C and the $A^{\prime \prime}$'s are $n \times n$ matrices, $\langle M, N\rangle:=\sum_{i, j} M_{i j} N_{i j}$, and

Sparse PSD approximation

$$
\begin{array}{ll}
\min & \langle C, X\rangle \\
\text { s.t. } & \left\langle A^{i}, X\right\rangle \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \tag{SDP}\\
& X \in \mathcal{S}_{+}^{n},
\end{array}
$$

where C and the A^{i} 's are $n \times n$ matrices, $\langle M, N\rangle:=\sum_{i, j} M_{i j} N_{i j}$, and

$$
\mathcal{S}_{+}^{n}=\left\{X \in \mathbb{R}^{n \times n} \mid X=X^{\top}, u^{\top} X u \geq 0, \forall u \in \mathbb{R}^{n}\right\}
$$

$$
\begin{array}{cl}
\min & \langle C, X\rangle \\
\mathrm{s.t.} & \left\langle A^{i}, X\right\rangle \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \\
& X \in \mathcal{S}_{+}^{n},
\end{array}
$$

(SDP)
where C and the $A^{\prime \prime}$'s are $n \times n$ matrices, $\langle M, N\rangle:=\sum_{i, j} M_{i j} N_{i j}$, and

$$
\mathcal{S}_{+}^{n}=\left\{X \in \mathbb{R}^{n \times n} \mid X=X^{\top}, u^{\top} X u \geq 0, \forall u \in \mathbb{R}^{n}\right\}
$$

- Polynomial-time algorithm—but often challenging to solve in practice.

Sparse PSD approximation

A relaxation: Sparse SDP

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

A relaxation: Sparse SDP

```
min \langleC,X\rangle
s.t. }\langle\mp@subsup{A}{}{i},X\rangle\leq\mp@subsup{b}{i}{}\quad\foralli\in{1,\ldots,m
    X G S S+
(SDP)
```

$\min \langle C, X\rangle$
s.t. $\left\langle A^{i}, X\right\rangle \leq b_{i} \forall i \in\{1, \ldots, m\}$
(Sparse SDP) selected $k \times k$ principal submatrices of $X \in \mathcal{S}_{+}^{k}$.

A relaxation: Sparse SDP

```
min \langleC,X\rangle
s.t. }\langle\mp@subsup{A}{}{i},X\rangle\leq\mp@subsup{b}{i}{}\quad\foralli\in{1,\ldots,m
    X }\in\mp@subsup{\mathcal{S}}{+}{n}\mathrm{ ,
```

```
min \langleC,X\rangle
s.t. }\langle\mp@subsup{A}{}{i},X\rangle\leq\mp@subsup{b}{i}{}\foralli\in{1,\ldots,m}\quad(Sparse SDP
selected k\timesk principal submatrices of }X\in\mp@subsup{\mathcal{S}}{+}{k}\mathrm{ .
```

Sparse cutting-plane viewpoint:

- We can enforce PSD constraints by iteratively separating linear constraints.
- Enforcing PSD-ness on smaller $k \times k$ principal submatrix leads to linear constraints that are sparser, an important property leveraged by linear programming solvers that greatly improve their efficiency.

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

Sparse SDP

$\min \langle C, X\rangle$
s.t. $\left\langle A^{i}, X\right\rangle \leq b_{i} \forall i \in\{1, \ldots, m\}$
(Sparse SDP) selected $k \times k$ principal submatrices of $X \in \mathcal{S}_{+}^{k}$.

- Sparse cutting-plane:
- [A. Qualizza, P. Belotti, and F. Margot (2012)]
- [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
- [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

In many experiments, we discovered sparse SDP to give bounds quite close to that of the original SDP!

Sparse SDP

$\min \langle C, X\rangle$
s.t. $\left\langle A^{i}, X\right\rangle \leq b_{i} \forall i \in\{1, \ldots, m\}$
(Sparse SDP) selected $k \times k$ principal submatrices of $X \in \mathcal{S}_{+}^{k}$.

- Sparse cutting-plane:
- [A. Qualizza, P. Belotti, and F. Margot (2012)]
- [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
- [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

In many experiments, we discovered sparse SDP to give bounds quite close to that of the original SDP!

- Power system optimization:
- [S. Sojoudi and J. Lavaei (2014)]
- [B. Kocuk, SSD, and X. A. Sun (2016)]

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Our question

$z^{\mathrm{SDP}}:=\min \langle C, X\rangle$
s.t. $\left\langle A^{i}, X\right\rangle \leq b_{i} \quad \forall i \in\{1, \ldots, m\}$ $X \in \mathcal{S}_{+}^{n}$,

$$
z^{\text {Sparse-SDP }}:=\begin{array}{cl}
\min & \langle C, X\rangle \\
& \text { s.t. }\left\langle A^{i}, X\right\rangle \leq b_{i} \forall i \in\{1, \ldots, m\} \quad \text { (Sparse SDP) }
\end{array}
$$

selected $k \times k$ principal submatrices of $X \in \mathcal{S}_{+}^{k}$.

Our question

$$
\begin{array}{rll}
z^{\mathrm{SDP}}:= & \min & \langle C, X\rangle \\
\text { s.t. } & \left\langle A^{i}, X\right\rangle \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \tag{SDP}\\
& X \in \mathcal{S}_{+}^{n},
\end{array}
$$

$$
\begin{aligned}
& z^{\text {Sparse-SDP }}:=\min \langle C, X\rangle \\
& \text { s.t. }\left\langle A^{i}, X\right\rangle \leq b_{i} \forall i \in\{1, \ldots, m\} \\
& \text { (Sparse SDP) } \\
& \text { selected } k \times k \text { principal submatrices of } X \in \mathcal{S}_{+}^{k} \text {. }
\end{aligned}
$$

Relationship between $z^{\text {SDP }}$ and $z^{\text {Sparse-SDP }}$?

Our question

$$
\begin{align*}
z^{\mathrm{SDP}}:=\min & \langle C, X\rangle \\
\text { s.t. } & \left\langle A^{i}, X\right\rangle \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \tag{SDP}\\
& X \in \mathcal{S}_{+}^{n},
\end{align*}
$$

$$
\begin{aligned}
z^{\text {Sparse-SDP }}:= & \min \langle C, X\rangle \\
& \text { s.t. }\left\langle A^{i}, X\right\rangle \leq b_{i} \forall i \in\{1, \ldots, m\} \quad \text { (Sparse SDP) }
\end{aligned}
$$

$$
\text { selected } k \times k \text { principal submatrices of } X \in \mathcal{S}_{+}^{k} \text {. }
$$

Relationship between $z^{\text {SDP }}$ and $z^{\text {Sparse-SDP }}$?

- Seems like a difficult question to analyze.

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Easier question

$$
\begin{array}{rll}
z^{\mathrm{SDP}}:=\min & \langle(X, X) \\
\text { s.t. } & \left\langle A^{i}, X\right\rangle \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \tag{SDP}\\
& X \in \mathcal{S}_{+}^{n},
\end{array}
$$

$$
\begin{array}{rll}
z^{\text {Sparse-SDP }}:= & \min & \langle(, X) \\
& \text { s.t. } & \left\langle A^{i}, X\right\rangle \leq b_{i} \forall i \in\{1, \ldots, m\} \quad \text { (SparseSDP) } \\
& \text { selectect } k \times k \text { principal submatrices of } X \in \mathcal{S}_{+}^{k} .
\end{array}
$$

Easier question


```
z
s.t. {\mp@subsup{A}{}{i},X\\{\mp@subsup{b}{i}{}\foralli\in{1,\ldots,m} (Sparse SDP)
selected}k\timesk\mathrm{ principal submatrices of X }\in\mp@subsup{\mathcal{S}}{+}{k}\mathrm{ .
```

How much bigger is cone with all $k \times k$ submatrices PSD from \mathcal{S}_{+}^{n} ?

Easier question

$$
\begin{aligned}
z^{\mathrm{SDP}}:=\min & \langle(X, X) \\
& \text { s.t. } \\
& \left\langle A^{i}, X\right\rangle \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \\
& X \in \mathcal{S}_{+}^{n},
\end{aligned}
$$

```
z
    selectect }k\timesk\mathrm{ principal submatrices of }X\in\mp@subsup{\mathcal{S}}{+}{k}\mathrm{ .
```

How much bigger is cone with all $k \times k$ submatrices PSD from \mathcal{S}_{+}^{n} ?

Dual cone is also of interest:

- [E. G. Boman, D. Chen, O. Parekh, and S. Toledo (2005)]
- [Permenter, Parrilo (2017)]
- [J. Gouveia, A. Kovačec, and M. Saee (2019)]
- [A. A. Ahmadi and A. Majumdar (2019)])

Setting-up details of precise question

[k-PSD closure]

Given positive integers n and k where $2 \leq k \leq n$, the k-PSD closure $\left(\mathcal{S}^{n, k}\right)$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

Setting-up details of precise question

[k-PSD closure]

Given positive integers n and k where $2 \leq k \leq n$, the k-PSD closure $\left(\mathcal{S}^{n, k}\right)$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is matrices in $\mathcal{S}^{n, k}$ from \mathcal{S}_{+}^{n} ?

Setting-up details of precise question

[k-PSD closure]
Given positive integers n and k where $2 \leq k \leq n$, the k-PSD closure $\left(\mathcal{S}^{n, k}\right)$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is matrices in $\mathcal{S}^{n, k}$ from \mathcal{S}_{+}^{n} ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:
[k-PSD closure]
Given positive integers n and k where $2 \leq k \leq n$, the k-PSD closure $\left(\mathcal{S}^{n, k}\right)$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.
- How far is matrices in $\mathcal{S}^{n, k}$ from \mathcal{S}_{+}^{n} ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

1. The norm to measure this distance and
2. A normalization method

Setting-up details of precise question
[k-PSD closure]
Given positive integers n and k where $2 \leq k \leq n$, the k-PSD closure $\left(\mathcal{S}^{n, k}\right)$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is matrices in $\mathcal{S}^{n, k}$ from \mathcal{S}_{+}^{n} ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

1. The norm to measure this distance and
2. A normalization method

$$
\begin{aligned}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) & =\sup _{M \in \mathcal{S}^{n, k},\|M\|_{F=1}} \operatorname{dist}_{F}\left(M, \mathcal{S}_{+}^{n}\right) \\
& =\sup _{M \in \mathcal{S}^{n, k},\|M\|_{F=1}} \inf _{N \in \mathcal{S}_{+}^{n}}\|M-N\|_{F} .
\end{aligned}
$$

Setting-up details of precise question
[k-PSD closure]
Given positive integers n and k where $2 \leq k \leq n$, the k-PSD closure $\left(\mathcal{S}^{n, k}\right)$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is matrices in $\mathcal{S}^{n, k}$ from \mathcal{S}_{+}^{n} ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

1. The norm to measure this distance and
2. A normalization method

$$
\begin{aligned}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) & =\sup _{M \in \mathcal{S}^{n, k},\|M\|_{F=1}} \operatorname{dist}_{F}\left(M, \mathcal{S}_{+}^{n}\right) \\
& =\sup _{M \in \mathcal{S}^{n, k},\|M\|_{F=1}} \inf _{N \in \mathcal{S}_{+}^{n}}\|M-N\|_{F} .
\end{aligned}
$$

Note: $\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \in[0,1]$.

2
Main results 1
2.1

Upper bounds on $\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right)$

Sparse PSD approximation

Upper bound 1
Blekherman, Dey, Molinaro, Sun

Theorem (Upper Bound 1; Blekherman, D., Molinaro, Sun) For all $2 \leq k<n$ we have

$$
\begin{equation*}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \leq \frac{n-k}{n+k-2} \tag{1}
\end{equation*}
$$

Sparse PSD approximation

Theorem (Upper Bound 1; Blekherman, D., Molinaro, Sun)
For all $2 \leq k<n$ we have

$$
\begin{equation*}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \leq \frac{n-k}{n+k-2} \tag{1}
\end{equation*}
$$

- Distance between the k-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$.

Sparse PSD approximation

Upper bound 2

Blekherman, Dey,
Molinaro, Sun

Introduction

Uain reculte
Lower bounds
Do we need n^{k} PSD constraints?

Sparse PSD approximation

Upper bound 2

Sparse PSD approximation

Upper bound 2

- Distance between the k-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$
- This appears to be weak especially when $k \approx n$

Theorem (Upper bound 2; Blekherman, D., Shu, Sun)

For all $2 \leq k<n$ we have

$$
\begin{equation*}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \leq \frac{(n-k)^{3 / 2}}{\sqrt{(n-k)^{2}+(n-1) k^{2}}} \tag{2}
\end{equation*}
$$

Upper bound 2

- Distance between the k-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$
- This appears to be weak especially when $k \approx n$

Theorem (Upper bound 2; Blekherman, D., Shu, Sun)

For all $2 \leq k<n$ we have

$$
\begin{equation*}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \leq \frac{(n-k)^{3 / 2}}{\sqrt{(n-k)^{2}+(n-1) k^{2}}} \tag{2}
\end{equation*}
$$

- When $k \approx n$ distance between the k-PSD closure and the SDP cone is at most roughly $\approx\left(\frac{n-k}{n}\right)^{3 / 2}$.
- This bound dominates the previous bound when $\frac{k}{n}$ is sufficiently large.

Sparse PSD approximation

Blekherman, Dey,
Molinaro, Sun

Upper bounds Lower bounds Do we need n^{k} PSD constraints?

2.2

Lower bounds on $\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right)$

Sparse PSD approximation

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun) For all $2 \leq k<n$, we have

$$
\begin{equation*}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \geq \frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}} \tag{3}
\end{equation*}
$$

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun)
For all $2 \leq k<n$, we have

$$
\begin{equation*}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \geq \frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}} . \tag{3}
\end{equation*}
$$

- When k is small:

$$
\frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}} \approx \frac{n-k}{n}
$$

So first upper bound (Thm 1) is tight (upto constant).

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun)
For all $2 \leq k<n$, we have

$$
\begin{equation*}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \geq \frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}} . \tag{3}
\end{equation*}
$$

- When k is small:

$$
\frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}} \approx \frac{n-k}{n}
$$

So first upper bound (Thm 1) is tight (upto constant).

- When k is very large: $n-k=c$ where c is very small

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun)
For all $2 \leq k<n$, we have

$$
\begin{equation*}
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \geq \frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}} . \tag{3}
\end{equation*}
$$

- When k is small:

$$
\frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}} \approx \frac{n-k}{n}
$$

So first upper bound (Thm 1) is tight (upto constant).

- When k is very large: $n-k=c$ where c is very small

$$
\frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}} \approx \frac{c}{n^{3 / 2}}
$$

So second upper bound (Thm 2) is tight (upto constant).

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Upper and lower bounds on $\mathcal{S}^{20, k}$

Sparse PSD approximation Blekherman, Dey, Molinaro, Sun

Introduction
Main reoulte
Upper bounds
Lower bounds Do we need n^{k} PSD constraints?

Lower bound 2: What happens when $k=r n$?

- Upper bound: $\frac{n-k}{n}=1-r$, a constant independent of n
- Lower bound 1: $\approx(1 / r-1) \frac{1}{n^{1 / 2}}$.

So is upper bound weak in this regime?

Lower bound 2: What happens when $k=r n$?

- Upper bound: $\frac{n-k}{n}=1-r$, a constant independent of n
- Lower bound 1: $\approx(1 / r-1) \frac{1}{n^{1 / 2}}$.

So is upper bound weak in this regime?
Theorem (Lower bound 2; Blekherman, D., Molinaro, Sun) Fix a constant $r<\frac{1}{93}$ and $k=r n$. Then for all $k \geq 2$,

$$
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right)>\frac{\sqrt{r-93 r^{2}}}{\sqrt{162 r+3}},
$$

which is independent of n.
2.3

Do we need $\binom{n}{k}$ PSD constraints?

Achieving the strength of $\mathcal{S}^{n, k}$ by a polynomial number of PSD constraints

Theorem (Blekherman, D., Molinaro, Sun)
Let $2 \leq k \leq n-1$. Consider $\varepsilon, \delta>0$ and let

$$
m=24\left(\frac{n^{2}}{\varepsilon^{2}} \ln \frac{n}{\delta}\right) .
$$

Let $\mathcal{I}=\left(I_{1}, \ldots, I_{m}\right)$ be a sequence of random k-sets independently uniformly sampled from ($\binom{[n]}{k}$,

Achieving the strength of $\mathcal{S}^{n, k}$ by a polynomial number of PSD constraints

Theorem (Blekherman, D., Molinaro, Sun)
Let $2 \leq k \leq n-1$. Consider $\varepsilon, \delta>0$ and let

$$
m=24\left(\frac{n^{2}}{\varepsilon^{2}} \ln \frac{n}{\delta}\right) .
$$

Let $\mathcal{I}=\left(l_{1}, \ldots, I_{m}\right)$ be a sequence of random k-sets independently uniformly sampled from $\binom{[n]}{k}$, and define $\mathcal{S}_{\mathcal{I}}$ as the set of matrices satisfying the PSD constraints for the principal submatrices indexed by the l_{i} 's, namely

$$
\mathcal{S}_{\mathcal{I}}:=\left\{M \in \mathbb{R}^{n \times n}: M_{l i} \succeq 0, \forall i \in[m]\right\} .
$$

Achieving the strength of $\mathcal{S}^{n, k}$ by a polynomial number of PSD constraints

Theorem (Blekherman, D., Molinaro, Sun)

Let $2 \leq k \leq n-1$. Consider $\varepsilon, \delta>0$ and let

$$
m=24\left(\frac{n^{2}}{\varepsilon^{2}} \ln \frac{n}{\delta}\right)
$$

Let $\mathcal{I}=\left(l_{1}, \ldots, I_{m}\right)$ be a sequence of random k-sets independently uniformly sampled from $\binom{[n]}{k}$, and define $\mathcal{S}_{\mathcal{I}}$ as the set of matrices satisfying the PSD constraints for the principal submatrices indexed by the l_{i} 's, namely

$$
\mathcal{S}_{\mathcal{I}}:=\left\{M \in \mathbb{R}^{n \times n}: M_{l_{i}} \succeq 0, \forall i \in[m]\right\}
$$

Then with probability at least $1-\delta$ we have

$$
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}_{\mathcal{I}}, \mathcal{S}_{+}^{n}\right) \leq(1+\varepsilon) \frac{n-k}{n+k-2}
$$

3
 Proof sketch

3.1

Proof of:
Theorem (Upper Bound 1)
For all $2 \leq k<n$ we have

$$
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \leq \frac{n-k}{n+k-2}
$$

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Introduction

Proof sketch

Upper bound 1
Upper bound 2
Lower bound 1
Lower bound 2
Examining the hyperbolicity relaxations

Proof of Upper bound 1

- If

$$
X=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \in \mathcal{S}^{n, k}
$$

then red-submatrix is $k \times k$ PSD matrix.

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Introduction

Proof sketch

Upper bound 1
Upper bound 2
Lower bound 1
Lower bound 2
Examining the hyperbolicity relaxations

Proof of Upper bound 1

- If

$$
X=\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \in \mathcal{S}^{n, k}
$$

then red-submatrix is $k \times k$ PSD matrix.

- So

$$
\left[\begin{array}{lllll}
* & * & * & 0 & 0 \\
* & * & * & 0 & 0 \\
* & * & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \in \mathcal{S}_{+}^{n} .
$$ then red-submatrix is $k \times k$ PSD matrix.

- So

$$
\left[\begin{array}{lllll}
* & * & * & 0 & 0 \\
* & * & * & 0 & 0 \\
* & * & * & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \in \mathcal{S}_{+}^{n} .
$$

- Take average of all the above matrices for different principal $k \times k$ submatrices (and suitably scale with a positive number), then the resulting matrix is in S_{+}^{n}.
- The distance between this average PSD matrix and X gives bound.
3.2

Proof of:
Theorem (Upper bound 2)
Assume $2 \leq k<n$. Then

$$
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \leq \frac{(n-k)^{3 / 2}}{\sqrt{(n-k)^{2}+(n-1) k^{2}}}
$$

Proof of upper bound 2

- Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in $\mathcal{S}^{n, k}$ has at most $n-k$ negative eigenvalues.

Proof of upper bound 2

- Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in $\mathcal{S}^{n, k}$ has at most $n-k$ negative eigenvalues.
- Since the PSD cone consists of symmetric matrices with non-negative eigenvalues, the distance from a unit-norm matrix $M \in \mathcal{S}^{n, k}$ to \mathcal{S}_{+}^{n} is upper bounded by (absolute value of most negative eigenvalue of M) $\times \sqrt{n-k}$.
- So we need to upper bound absolute value of most negative eigenvalue of M for $M \in \mathcal{S}^{n, k}$ and $\|M\|_{F}=1$.

$$
\sqrt{n-k} \times\left|\min \left\{\lambda_{1}(M) \mid\|M\|_{F} \leq 1, M \in \mathcal{S}^{n, k}\right\}\right|
$$

Proof of upper bound 2

- Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in $\mathcal{S}^{n, k}$ has at most $n-k$ negative eigenvalues.
- Since the PSD cone consists of symmetric matrices with non-negative eigenvalues, the distance from a unit-norm matrix $M \in \mathcal{S}^{n, k}$ to \mathcal{S}_{+}^{n} is upper bounded by (absolute value of most negative eigenvalue of M) $\times \sqrt{n-k}$.
- So we need to upper bound absolute value of most negative eigenvalue of M for $M \in \mathcal{S}^{n, k}$ and $\|M\|_{F}=1$.

$$
\sqrt{n-k} \times\left|\min \left\{\lambda_{1}(M) \mid \sum_{j \in[n]}\left(\lambda_{j}(M)\right)^{2} \leq 1, M \in \mathcal{S}^{n, k}\right\}\right|
$$

Proof of upper bound 2

- Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in $\mathcal{S}^{n, k}$ has at most $n-k$ negative eigenvalues.
- Since the PSD cone consists of symmetric matrices with non-negative eigenvalues, the distance from a unit-norm matrix $M \in \mathcal{S}^{n, k}$ to \mathcal{S}_{+}^{n} is upper bounded by (absolute value of most negative eigenvalue of M) $\times \sqrt{n-k}$.
- So we need to upper bound absolute value of most negative eigenvalue of M for $M \in \mathcal{S}^{n, k}$ and $\|M\|_{F}=1$.

$$
\sqrt{n-k} \times|\min \{\lambda_{1}(M) \mid \sum_{j \in[n]}\left(\lambda_{j}(M)\right)^{2} \leq 1, \underbrace{M \in \mathcal{S}^{n, k}}_{\text {how to deal with this? }}\}|
$$

- For $S \subseteq\{1, \ldots, n\}$, let $\left.M\right|_{S}$ denote the principal submatrix of M obtained by removing rows and columns not in S.
- If $|S|=k$, and $M \in S^{n, k}$, then $\left.M\right|_{S}$ is PSD.
- For $S \subseteq\{1, \ldots, n\}$, let $\left.M\right|_{S}$ denote the principal submatrix of M obtained by removing rows and columns not in S.
- If $|S|=k$, and $M \in S^{n, k}$, then $\left.M\right|_{S}$ is PSD.

$$
M \in \mathcal{S}^{n, k} \Rightarrow c_{k}(M):=\sum_{S \subseteq\{1, \ldots, n\}:|S|=k} \operatorname{det}\left(\left.M\right|_{S}\right) \geq 0
$$

Proof of upper bound 2-connection to hyperbolicity cone.

- For $S \subseteq\{1, \ldots, n\}$, let $\left.M\right|_{S}$ denote the principal submatrix of M obtained by removing rows and columns not in S.
- If $|S|=k$, and $M \in S^{n, k}$, then $\left.M\right|_{S}$ is PSD.

$$
M \in \mathcal{S}^{n, k} \Rightarrow c_{k}(M):=\sum_{S \subseteq\{1, \ldots, n\}:|S|=k} \operatorname{det}\left(\left.M\right|_{S}\right) \geq 0 .
$$

- Let $\lambda_{1}(M) \leq \lambda_{2}(M) \leq \cdots \leq \lambda_{n}(M)$ are the eigenvalues of M :

$$
\begin{gathered}
c_{k}(M)=\underbrace{\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \lambda_{i_{1}}(M) \lambda_{i_{2}}(M) \ldots \lambda_{i_{k}}(M)}_{e_{k}^{n}\left(\lambda_{1}(M), \lambda_{2}(M), \ldots, \lambda_{n}(M)\right)} \\
M \in \mathcal{S}^{n, k} \Rightarrow \underbrace{e_{k}^{n}(\lambda(M))}_{\text {elementary symmetric polynomial }} \geq 0 .
\end{gathered}
$$

Proof of upper bound 2-connection to hyperbolicity cone.

- For $S \subseteq\{1, \ldots, n\}$, let $\left.M\right|_{S}$ denote the principal submatrix of M obtained by removing rows and columns not in S.
- If $|S|=k$, and $M \in S^{n, k}$, then $\left.M\right|_{S}$ is PSD.

$$
M \in \mathcal{S}^{n, k} \Rightarrow c_{k}(M):=\sum_{S \subseteq\{1, \ldots, n\}:|S|=k} \operatorname{det}\left(\left.M\right|_{S}\right) \geq 0 .
$$

- Let $\lambda_{1}(M) \leq \lambda_{2}(M) \leq \cdots \leq \lambda_{n}(M)$ are the eigenvalues of M :

$$
\begin{gathered}
c_{k}(M)=\underbrace{\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \lambda_{i_{1}}(M) \lambda_{i_{2}}(M) \ldots \lambda_{i_{k}}(M)}_{e_{k}^{n}\left(\lambda_{1}(M), \lambda_{2}(M), \ldots, \lambda_{n}(M)\right)} \\
M \in \mathcal{S}^{n, k} \Rightarrow \underbrace{e_{k}^{n}(\lambda(M))}_{\text {elementary symmetric polynomial }} \geq 0 .
\end{gathered}
$$

- We can do better...

Sparse PSD approximation

- Let $M \in \mathcal{S}^{n, k}$. For $t>0$:

$$
e_{k}^{n}\left(\left(\lambda_{1}(M), \lambda_{2}(M), \ldots, \lambda_{n}(M)\right)+t \overrightarrow{1}\right)=c_{k}(M+t l)>0,
$$

since all the $k \times k$ submatrices of $X+t /$ will be positive definite.

- Let $M \in \mathcal{S}^{n, k}$. For $t>0$:

$$
e_{k}^{n}\left(\left(\lambda_{1}(M), \lambda_{2}(M), \ldots, \lambda_{n}(M)\right)+t \overrightarrow{1}\right)=c_{k}(M+t l)>0
$$

since all the $k \times k$ submatrices of $X+t /$ will be positive definite.

- Every point in the open line segment:
$\{\theta \lambda(M)+(1-\theta) \overrightarrow{1} \mid 1>\theta \geq 0\}$ belongs to connected component of $\mathbb{R}^{n} \backslash\left\{x: e_{k}^{n}(x)=0\right\}$ containing $\overrightarrow{1}$.
$H\left(e_{k}^{n}\right)$ hyperbolicity cone of elementary symmetric polynomial

$$
M \in \mathcal{S}^{n, k} \Rightarrow \lambda(M) \in H\left(e_{k}^{n}\right)
$$

Proof of upper bound 2- connection to hyperbolicity cone.

- Let $M \in \mathcal{S}^{n, k}$. For $t>0$:

$$
e_{k}^{n}\left(\left(\lambda_{1}(M), \lambda_{2}(M), \ldots, \lambda_{n}(M)\right)+t \overrightarrow{1}\right)=c_{k}(M+t l)>0
$$

since all the $k \times k$ submatrices of $X+t /$ will be positive definite.

- Every point in the open line segment:
$\{\theta \lambda(M)+(1-\theta) \overrightarrow{1} \mid 1>\theta \geq 0\}$ belongs to connected component of $\mathbb{R}^{n} \backslash\left\{x: e_{k}^{n}(x)=0\right\}$ containing $\overrightarrow{1}$.
$H\left(e_{k}^{n}\right)$ hyperbolicity cone of elementary symmetric polynomial

$$
M \in \mathcal{S}^{n, k} \Rightarrow \lambda(M) \in H\left(e_{k}^{n}\right)
$$

Two nice properties:

- $\left\{x \mid e_{k}^{n}(x) \geq 0\right\} \supsetneq H\left(e_{k}^{n}\right)$.
- $H\left(e_{k}^{n}\right)$ is a convex set.

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Illustration of $\left\{x \mid e_{2}^{2}(x) \geq 0\right\}$ and $H\left(e_{2}^{2}\right)$

$$
e_{2}^{2}(x)=x_{1} x_{2}
$$

- $\left\{x \mid e_{2}^{2}(x) \geq 0\right\} \equiv\left\{x \mid x_{1} x_{2} \geq 0\right\}$.
- $H_{2}^{2}:=$ connected component of $\mathbb{R}^{2} \backslash\left\{x \mid x_{1} x_{2}=0\right\}$ that contains $(1,1)$.

Figure: $\left\{x \mid e_{2}^{2}(x) \geq 0\right\}$
Figure: $H\left(e_{2}^{2}\right)$

A quick detour to formally introduce hyperbolicity cone

- We will say that a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to a fixed vector v if
- $p(v)>0$, and
- For all fixed $\hat{x} \in \mathbb{R}^{n}$, the univariate polynomial $p(\hat{x}-t v) \in R[t]$ has only real roots.

[^0]
A quick detour to formally introduce hyperbolicity cone

- We will say that a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to a fixed vector v if
- $p(v)>0$, and
- For all fixed $\hat{x} \in \mathbb{R}^{n}$, the univariate polynomial $p(\hat{x}-t v) \in R[t]$ has only real roots.
Example:
- $e_{n}^{n}(\hat{x}-t \overrightarrow{1})=0$,

[^1]
A quick detour to formally introduce hyperbolicity cone

- We will say that a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to a fixed vector v if
- $p(v)>0$, and
- For all fixed $\hat{x} \in \mathbb{R}^{n}$, the univariate polynomial $p(\hat{x}-t v) \in R[t]$ has only real roots.

Example:

- $e_{n}^{n}(\hat{x}-t \overrightarrow{1})=0$,
- solution for t (roots): $\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{n}$

[^2]
A quick detour to formally introduce hyperbolicity cone

- We will say that a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is hyperbolic with respect to a fixed vector v if
- $p(v)>0$, and
- For all fixed $\hat{x} \in \mathbb{R}^{n}$, the univariate polynomial $p(\hat{x}-t v) \in R[t]$ has only real roots.

Example:

- $e_{n}^{n}(\hat{x}-t \overrightarrow{1})=0$,
- solution for t (roots): $\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{n}$
- The connected set $\mathbb{R}^{n} \backslash\{x \mid p(x)=0\}$ containing v is called the hyperbolicity cone of p with respect to v^{1}.
- The hyperbolicity cone is a convex cone!

[^3]Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Proof of upper bound 2-contd.

- Replace:

$$
\sqrt{n-k} \times \min \left\{\lambda_{1}(M) \mid \sum_{j \in[n]}\left(\lambda_{j}(M)\right)^{2} \leq 1, M \in \mathcal{S}^{n, k}\right\}
$$

Proof of upper bound 2-contd.

- Replace:

$$
\sqrt{n-k} \times \min \left\{\lambda_{1}(M) \mid \sum_{j \in[n]}\left(\lambda_{j}(M)\right)^{2} \leq 1, M \in \mathcal{S}^{n, k}\right\}
$$

- By its relaxation:

$$
\sqrt{n-k} \times\left|\min \left\{\lambda_{1}(M) \mid \sum_{j \in[n]}\left(\lambda_{j}(M)\right)^{2} \leq 1, \lambda(M) \in H\left(e_{k}^{n}\right)\right\}\right|
$$

- This is a convex relaxation and can be solved in closed form. The solution is the bound we obtain.
3.3

Proof of：
Theorem（Lower bound 1）
For all $2 \leq k<n$ ，we have

$$
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right) \geq \frac{n-k}{\sqrt{(k-1)^{2} n+n(n-1)}}
$$

Sparse PSD approximation

Proof of lower bound 1

- Consider the matrix:

$$
G(a, b):=(a+b) I-a 11^{\top}
$$

- If $u \in \mathbb{R}^{n}$ with $\|u\|_{2}=1$ has a support of k, then

$$
u^{\top} G u=
$$

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Proof of lower bound 1

- Consider the matrix:

$$
G(a, b):=(a+b) I-a 11^{\top}
$$

- If $u \in \mathbb{R}^{n}$ with $\|u\|_{2}=1$ has a support of k, then

$$
u^{\top} G u=(a+b)-a\left(\sum_{i=1}^{n} u_{i}\right)^{2}
$$

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Proof of lower bound 1

- Consider the matrix:

$$
G(a, b):=(a+b) I-a 11^{\top}
$$

- If $u \in \mathbb{R}^{n}$ with $\|u\|_{2}=1$ has a support of k, then

$$
u^{\top} G u=(a+b)-a\left(\sum_{i=1}^{n} u_{i}\right)^{2} \geq(a+b)-a\left(\|u\|_{1}\right)^{2}
$$

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Proof of lower bound 1

- Consider the matrix:

$$
G(a, b):=(a+b) I-a 11^{\top}
$$

- If $u \in \mathbb{R}^{n}$ with $\|u\|_{2}=1$ has a support of k, then

$$
u^{\top} G u=(a+b)-a\left(\sum_{i=1}^{n} u_{i}\right)^{2} \geq(a+b)-a\left(\|u\|_{1}\right)^{2} \geq(a+b)-a k
$$

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Proof of lower bound 1

- Consider the matrix:

$$
G(a, b):=(a+b) I-a 11^{\top}
$$

- If $u \in \mathbb{R}^{n}$ with $\|u\|_{2}=1$ has a support of k, then

$$
u^{\top} G u=(a+b)-a\left(\sum_{i=1}^{n} u_{i}\right)^{2} \geq(a+b)-a\left(\|u\|_{1}\right)^{2} \geq(a+b)-a k
$$

- So $G(a, b) \in \mathcal{S}^{n, k}$ iff $(1-k) a+b \geq 0$.
- Use these explicit matrices to obtain lower bound from S_{+}^{n}
3.4

Proof of:
Theorem (Lower bound 2)
Fix a constant $r<\frac{1}{93}$ and $k=r n$. Then for all $k \geq 2$,

$$
\overline{\operatorname{dist}}_{F}\left(\mathcal{S}^{n, k}, \mathcal{S}_{+}^{n}\right)>\frac{\sqrt{r-93 r^{2}}}{\sqrt{162 r+3}},
$$

which is independent of n.

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Introduction
Main results
Proof sketch
Upper bound 1
Upper bound 2 Lower bound 1 Lower bound 2

Proof of lower bound 2

- For simplicity, assume $k=n / 2$. (Actually proof does not have this value of k).

Proof of lower bound 2

- For simplicity, assume $k=n / 2$. (Actually proof does not have this value of k).
- The idea is to construct a matrix M where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^{1}, v^{2}, \ldots, v^{n / 2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^{1}, w^{2}, \ldots, w^{n / 2}$, i.e.,

$$
M=\frac{-1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(v^{i}\right)\left(v^{i}\right)^{\top}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(w^{i}\right)\left(w^{i}\right)^{\top}
$$

Proof of lower bound 2

- For simplicity, assume $k=n / 2$. (Actually proof does not have this value of k).
- The idea is to construct a matrix M where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^{1}, v^{2}, \ldots, v^{n / 2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^{1}, w^{2}, \ldots, w^{n / 2}$, i.e.,

$$
M=\frac{-1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(v^{i}\right)\left(v^{i}\right)^{\top}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(w^{i}\right)\left(w^{i}\right)^{\top}
$$

- This normalization makes $\|M\|_{F}=1$.
- $\operatorname{dist}_{F}\left(M, \mathcal{S}_{+}^{n}\right) \geq \sqrt{\left(\frac{1}{\sqrt{n}}\right)^{2} \cdot \frac{n}{2}}=$ cst independent of n.

Proof of lower bound 2

- For simplicity, assume $k=n / 2$. (Actually proof does not have this value of k).
- The idea is to construct a matrix M where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^{1}, v^{2}, \ldots, v^{n / 2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^{1}, w^{2}, \ldots, w^{n / 2}$, i.e.,

$$
M=\frac{-1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(v^{i}\right)\left(v^{i}\right)^{\top}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(w^{i}\right)\left(w^{i}\right)^{\top}
$$

- This normalization makes $\|M\|_{F}=1$.
- $\operatorname{dist}_{F}\left(M, \mathcal{S}_{+}^{n}\right) \geq \sqrt{\left(\frac{1}{\sqrt{n}}\right)^{2} \cdot \frac{n}{2}}=$ cst independent of n.
- So we only need to guarantee that M belongs to the k-PSD closure.

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

- $M=\frac{-1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(v^{i}\right)\left(v^{i}\right)^{\top}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(w^{i}\right)\left(w^{i}\right)^{\top}$
- Letting V be the matrix with rows v^{1}, v^{2}, \ldots, and W the matrix with rows w^{1}, w^{2}, \ldots, the quadratic form $x^{\top} M x$:

$$
x^{\top} M x=-\frac{1}{\sqrt{n}}\|V x\|_{2}^{2}+\frac{1}{\sqrt{n}}\|W x\|_{2}^{2}
$$

Sparse PSD approximation

Blekherman, Dey, Molinaro, Sun

Proof of lower bound 2 -contd.

- $M=\frac{-1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(v^{i}\right)\left(v^{i}\right)^{\top}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(w^{i}\right)\left(w^{i}\right)^{\top}$
- Letting V be the matrix with rows v^{1}, v^{2}, \ldots, and W the matrix with rows w^{1}, w^{2}, \ldots, the quadratic form $x^{\top} M x$:

$$
x^{\top} M x=-\frac{1}{\sqrt{n}}\|V x\|_{2}^{2}+\frac{1}{\sqrt{n}}\|W x\|_{2}^{2}
$$

- $\|V x\|_{2}^{2} \leq\|x\|_{2}^{2}$ (because V is orthonormal)

Proof of lower bound 2 -contd.

- $M=\frac{-1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(v^{i}\right)\left(v^{i}\right)^{\top}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(w^{i}\right)\left(w^{i}\right)^{\top}$
- Letting V be the matrix with rows v^{1}, v^{2}, \ldots, and W the matrix with rows w^{1}, w^{2}, \ldots, the quadratic form $x^{\top} M x$:

$$
x^{\top} M x=-\frac{1}{\sqrt{n}}\|V x\|_{2}^{2}+\frac{1}{\sqrt{n}}\|W x\|_{2}^{2}
$$

- $\|V x\|_{2}^{2} \leq\|x\|_{2}^{2}$ (because V is orthonormal)
- So if we could construct the matrix W so that for all k-sparse vectors $x \in \mathbb{R}^{n}$ we had $\|W x\|_{2}^{2} \approx\|x\|_{2}^{2}$:

$$
x^{\top} M x \gtrsim-\frac{1}{\sqrt{n}}\|x\|_{2}^{2}+\frac{1}{\sqrt{n}}\|x\|_{2}^{2} \gtrsim 0
$$

Proof of lower bound 2 -contd.

- $M=\frac{-1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(v^{i}\right)\left(v^{i}\right)^{\top}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n / 2}\left(w^{i}\right)\left(w^{i}\right)^{\top}$
- Letting V be the matrix with rows v^{1}, v^{2}, \ldots, and W the matrix with rows w^{1}, w^{2}, \ldots, the quadratic form $x^{\top} M x$:

$$
x^{\top} M x=-\frac{1}{\sqrt{n}}\|V x\|_{2}^{2}+\frac{1}{\sqrt{n}}\|W x\|_{2}^{2}
$$

- $\|V x\|_{2}^{2} \leq\|x\|_{2}^{2}$ (because V is orthonormal)
- So if we could construct the matrix W so that for all k-sparse vectors $x \in \mathbb{R}^{n}$ we had $\|W x\|_{2}^{2} \approx\|x\|_{2}^{2}$:
$x^{\top} M x \gtrsim-\frac{1}{\sqrt{n}}\|x\|_{2}^{2}+\frac{1}{\sqrt{n}}\|x\|_{2}^{2} \gtrsim 0$
for all k-sparse vectors x,
- This approximate preservation of norms of sparse vectors is precisely the notion of the Restricted Isometry Property.

4
Examining the hyperbolicity relaxations

Sparse PSD approximation

Introduction

Main reculte 1
Proof sketch
Examining the hyperbolicity relaxations

How good is the hyperbolicity relaxation?

- $\left\{\lambda(M) \mid M \in \mathcal{S}^{n, k}\right\} \subseteq H\left(e_{k}^{n}\right)$

Sparse PSD approximation

How good is the hyperbolicity relaxation?

- $\left\{\lambda(M) \mid M \in \mathcal{S}^{n, k}\right\} \subseteq H\left(e_{k}^{n}\right)$
- In fact, $H\left(e_{n}^{n}\right)=\mathbb{R}_{+}^{n}=\left\{\lambda(M) \mid M \in \mathcal{S}^{n, n}\right\}$.

Sparse PSD approximation

The case of $k=n-1$
Blekherman, Dey, Molinaro, Sun

Introduction

Main recults
Proof sketch
Examining the hyperbolicity relaxations

Theorem ($k=n-1$; Blekherman, D., Shu, Sun)
Let $n \geq 3$. Then:

$$
H\left(e_{n-1}^{n}\right)=\left\{\lambda(M) \mid M \in \mathcal{S}^{n, n-1}\right\} .
$$

Sparse PSD approximation

The case of $k=n-1$

Theorem ($k=n-1$; Blekherman, D., Shu, Sun)
Let $n \geq 3$. Then:

$$
H\left(e_{n-1}^{n}\right)=\left\{\lambda(M) \mid M \in \mathcal{S}^{n, n-1}\right\} .
$$

Corollary
Let $n \geq 3$. Then: $\left\{\lambda(M) \mid M \in \mathcal{S}^{n, n-1}\right\}$ is a convex set.

Sparse PSD approximation

How good is the hyperbolicity relaxation?

$$
G(1, k-1):=\left[\begin{array}{cccc}
k-1 & -1 & \cdots & -1 \\
-1 & k-1 & \ldots & -1 \\
\cdot & \cdot & \cdot & \cdot \\
-1 & \cdots & -1 & k-1
\end{array}\right] \in \mathcal{S}^{n, k}
$$

- Every $k \times k$ principal submatrix of $G(1, k)$ is singular. Thus,

$$
e_{k}^{n}(G(1, k-1))=\sum_{s \subseteq \mid n]|:|S|=k} \operatorname{det}(G(1, k-1) \mid s)=0 .
$$

Sparse PSD approximation

How good is the hyperbolicity relaxation?

$$
G(1, k-1):=\left[\begin{array}{cccc}
k-1 & -1 & \cdots & -1 \\
-1 & k-1 & \cdots & -1 \\
\cdot & \cdot & \cdot & \cdot \\
-1 & \cdots & -1 & k-1
\end{array}\right] \in \mathcal{S}^{n, k}
$$

- Every $k \times k$ principal submatrix of $G(1, k)$ is singular. Thus,

$$
e_{k}^{n}(G(1, k-1))=\sum_{s \subseteq \mid n]|:|S|=k} \operatorname{det}(G(1, k-1) \mid s)=0 .
$$

- So $G(1, k-1)$ belongs to the boundary of $H\left(e_{k}^{n}\right)$.

How good is the hyperbolicity relaxation?

$$
G(1, k-1):=\left[\begin{array}{cccc}
k-1 & -1 & \cdots & -1 \\
-1 & k-1 & \ldots & -1 \\
\cdot & \cdot & \cdot & \cdot \\
-1 & \cdots & -1 & k-1
\end{array}\right] \in \mathcal{S}^{n, k}
$$

- Every $k \times k$ principal submatrix of $G(1, k)$ is singular. Thus,

$$
e_{k}^{n}(G(1, k-1))=\sum_{s \subseteq[n]|:|S|=k} \operatorname{det}(G(1, k-1) \mid s)=0 .
$$

- So $G(1, k-1)$ belongs to the boundary of $H\left(e_{k}^{n}\right)$.
- Let D be a diagonal matrix (where every diagonal entry is non-zero). Then $D G(1, k-1) D \in \mathcal{S}^{n, k}$ and $D G(1, k-1) D \in \operatorname{bnd}\left(H\left(e_{k}^{n}\right)\right)$.

How good is the hyperbolicity relaxation?

$$
G(1, k-1):=\left[\begin{array}{cccc}
k-1 & -1 & \cdots & -1 \\
-1 & k-1 & \ldots & -1 \\
\cdot & \cdot & \cdot & \cdot \\
-1 & \cdots & -1 & k-1
\end{array}\right] \in \mathcal{S}^{n, k}
$$

- Every $k \times k$ principal submatrix of $G(1, k)$ is singular. Thus,

$$
e_{k}^{n}(G(1, k-1))=\sum_{s \subseteq[n]|:|S|=k} \operatorname{det}(G(1, k-1) \mid s)=0 .
$$

- So $G(1, k-1)$ belongs to the boundary of $H\left(e_{k}^{n}\right)$.
- Let D be a diagonal matrix (where every diagonal entry is non-zero). Then $D G(1, k-1) D \in \mathcal{S}^{n, k}$ and $D G(1, k-1) D \in \operatorname{bnd}\left(H\left(e_{k}^{n}\right)\right)$.
- Finally, $D G(1, k-1) D$ is a non-singular matrix.

How good is the hyperbolicity relaxation?

$$
G(1, k-1):=\left[\begin{array}{cccc}
k-1 & -1 & \cdots & -1 \\
-1 & k-1 & \ldots & -1 \\
\cdot & \cdot & \cdot & \cdot \\
-1 & \cdots & -1 & k-1
\end{array}\right] \in \mathcal{S}^{n, k}
$$

- Every $k \times k$ principal submatrix of $G(1, k)$ is singular. Thus,

$$
e_{k}^{n}(G(1, k-1))=\sum_{s \subseteq[n]|:|S|=k} \operatorname{det}(G(1, k-1) \mid s)=0 .
$$

- So $G(1, k-1)$ belongs to the boundary of $H\left(e_{k}^{n}\right)$.
- Let D be a diagonal matrix (where every diagonal entry is non-zero). Then $D G(1, k-1) D \in \mathcal{S}^{n, k}$ and $D G(1, k-1) D \in \operatorname{bnd}\left(H\left(e_{k}^{n}\right)\right)$.
- Finally, $D G(1, k-1) D$ is a non-singular matrix.
- So, $D G(1, k-1) D \in \operatorname{bnd}\left(H\left(e_{k}^{n}\right)\right)$, is a non-singular matrix and belongs to $\mathcal{S}^{n, k}$.

How good is the hyperbolicity relaxation - Comparing boundary

Theorem (Blekherman, D., Shu, Sun)
Let $2<k<n-1$ or $n=4$ and $k=2$. Let $M \in \mathcal{S}^{n, k}$. If M is non-singular and M belongs to the boundary of $H\left(e_{k}^{n}\right)$, then there exists a diagonal matrix D such that $M=D G(1, k-1) D$.

How good is the hyperbolicity relaxation - Comparing boundary

Theorem (Blekherman, D., Shu, Sun)
Let $2<k<n-1$ or $n=4$ and $k=2$. Let $M \in \mathcal{S}^{n, k}$. If M is non-singular and M belongs to the boundary of $H\left(e_{k}^{n}\right)$, then there exists a diagonal matrix D such that $M=D G(1, k-1) D$.

- There exist points on the boundary of $H\left(e_{k}^{n}\right)$ with as many as $n-k$ negative entries and no zero entries.

Corollary
Let $2<k<n-1$ or $n=4$ and $k=2$. Then the set of "eigenvalue vectors" for matrices in $\mathcal{S}^{n, k}$ is strictly contained in $H\left(e_{k}^{n}\right)$.

Thank You.

- Grigoriy Blekherman, Santanu S. Dey, Marco Molinaro, Shengding Sun, "Sparse PSD approximation of the PSD cone," To appear in Mathematical Programming.
- Grigoriy Blekherman, Santanu S. Dey, Kevin Shu, Shengding Sun, "Hyperbolic Relaxation of k-Locally Positive Semidefinite Matrices," https://arxiv.org/abs/2012.04031.
- Santanu S. Dey, Aleksandr M. Kazachkov, Andrea Lodi, Gonzalo Muñoz, "Cutting Plane Generation Through Sparse Principal Component Analysis" http://www.optimization-online.org/DBHTML/2021/02/8259.html

[^0]: ${ }^{1}$ We actually work with the closure of this set

[^1]: ${ }^{1}$ We actually work with the closure of this set

[^2]: ${ }^{1}$ We actually work with the closure of this set

[^3]: ${ }^{1}$ We actually work with the closure of this set

