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Semi definite programming

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

where C and the Ai ’s are n × n matrices, 〈M,N〉 :=
∑

i,j MijNij ,
and

Sn
+ = {X ∈ Rn×n |X = X T , u>Xu ≥ 0, ∀u ∈ Rn}.

I Polynomial-time algorithm— but often challenging to solve in
practice.
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A relaxation: Sparse SDP

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

Sparse cutting-plane viewpoint:

I We can enforce PSD constraints by iteratively separating
linear constraints.

I Enforcing PSD-ness on smaller k × k principal submatrix
leads to linear constraints that are sparser, an important
property leveraged by linear programming solvers that
greatly improve their efficiency.
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Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD
(2020)]
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Sparse SDP

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

I Sparse cutting-plane:
I [A. Qualizza, P. Belotti, and F. Margot (2012)]
I [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani

(2018)]
I [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

In many experiments, we discovered sparse SDP to give bounds quite
close to that of the original SDP!

I Power system optimization:
I [S. Sojoudi and J. Lavaei (2014)]
I [B. Kocuk, SSD, and X. A. Sun (2016)]
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Our question

zSDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

zSparse-SDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

Relationship between zSDP and zSparse-SDP?

I Seems like a difficult question to analyze.

13



Sparse PSD
approximation

Blekherman, Dey,
Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the
hyperbolicity
relaxations

Our question

zSDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

zSparse-SDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

Relationship between zSDP and zSparse-SDP?

I Seems like a difficult question to analyze.

14



Sparse PSD
approximation

Blekherman, Dey,
Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the
hyperbolicity
relaxations

Our question

zSDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

zSparse-SDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

Relationship between zSDP and zSparse-SDP?

I Seems like a difficult question to analyze.

15



Sparse PSD
approximation

Blekherman, Dey,
Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the
hyperbolicity
relaxations

Easier question

zSDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

zSparse-SDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

How much bigger is cone with all k × k submatrices PSD from Sn
+?

Dual cone is also of interest:
I [E. G. Boman, D. Chen, O. Parekh, and S. Toledo (2005)]
I [Permenter, Parrilo (2017)]
I [J. Gouveia, A. Kovačec, and M. Saee (2019)]
I [A. A. Ahmadi and A. Majumdar (2019)])
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I [J. Gouveia, A. Kovačec, and M. Saee (2019)]
I [A. A. Ahmadi and A. Majumdar (2019)])

17



Sparse PSD
approximation

Blekherman, Dey,
Molinaro, Sun

Introduction

Main results 1

Proof sketch

Examining the
hyperbolicity
relaxations

Easier question

zSDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

zSparse-SDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

How much bigger is cone with all k × k submatrices PSD from Sn
+?

Dual cone is also of interest:
I [E. G. Boman, D. Chen, O. Parekh, and S. Toledo (2005)]
I [Permenter, Parrilo (2017)]
I [J. Gouveia, A. Kovačec, and M. Saee (2019)]
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Setting-up details of precise question

[k -PSD closure ]
Given positive integers n and k where 2 ≤ k ≤ n, the k -PSD closure
(Sn,k ) is the set of all n × n symmetric real matrices where all k × k
principal submatrices are PSD.

I How far is matrices in Sn,k from Sn
+?

I To measure this, we would like to consider the matrix in the
k -PSD closure that is farthest from the PSD cone. We require to
make two decisions here:

1. The norm to measure this distance and
2. A normalization method

distF (Sn,k ,Sn
+) = sup

M∈Sn,k , ‖M‖F =1
distF (M,Sn

+)

= sup
M∈Sn,k , ‖M‖F =1

inf
N∈Sn

+

‖M − N‖F .

Note: distF (Sn,k ,Sn
+) ∈ [0, 1].
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Upper bound 1

Theorem (Upper Bound 1; Blekherman, D., Molinaro, Sun)
For all 2 ≤ k < n we have

distF (Sn,k ,Sn
+) ≤

n − k
n + k − 2

. (1)

I Distance between the k -PSD closure and the SDP cone is at
most roughly ≈ n−k

n .
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Upper bound 2

I Distance between the k -PSD closure and the SDP cone is at
most roughly ≈ n−k

n

I This appears to be weak especially when k ≈ n

Theorem (Upper bound 2; Blekherman, D., Shu, Sun)
For all 2 ≤ k < n we have

distF (Sn,k ,Sn
+) ≤

(n − k)3/2√
(n − k)2 + (n − 1)k2

. (2)

I When k ≈ n distance between the k -PSD closure and the SDP
cone is at most roughly ≈

( n−k
n

)3/2.
I This bound dominates the previous bound when k

n is sufficiently
large.
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Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun)
For all 2 ≤ k < n, we have

distF (Sn,k ,Sn
+) ≥

n − k√
(k − 1)2 n + n(n − 1)

. (3)

I When k is small:

n − k√
(k − 1)2 n + n(n − 1)

≈ n − k
n

So first upper bound (Thm 1) is tight (upto constant).
I When k is very large: n − k = c where c is very small

n − k√
(k − 1)2 n + n(n − 1)

≈ c
n3/2

So second upper bound (Thm 2) is tight (upto constant).
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I When k is very large: n − k = c where c is very small

n − k√
(k − 1)2 n + n(n − 1)

≈ c
n3/2

So second upper bound (Thm 2) is tight (upto constant).
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Upper and lower bounds on S20,k

k
2 4 6 8 10 12 14 16 18 20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 Upper Bound1

Upper Bound 2

Lower Bound 
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Lower bound 2: What happens when k = rn?

I Upper bound: n−k
n = 1− r , a constant independent of n

I Lower bound 1: ≈ (1/r − 1) 1
n1/2 .

So is upper bound weak in this regime?

Theorem (Lower bound 2; Blekherman, D., Molinaro, Sun)
Fix a constant r < 1

93 and k = rn. Then for all k ≥ 2,

distF (Sn,k ,Sn
+) >

√
r − 93r 2
√

162r + 3
,

which is independent of n.
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Achieving the strength of Sn,k by a polynomial number of
PSD constraints

Theorem (Blekherman, D., Molinaro, Sun)
Let 2 ≤ k ≤ n − 1. Consider ε, δ > 0 and let

m = 24
(

n2

ε2 ln
n
δ

)
.

Let I = (I1, . . . , Im) be a sequence of random k-sets independently
uniformly sampled from

(
[n]
k

)
,

and define SI as the set of matrices
satisfying the PSD constraints for the principal submatrices indexed
by the Ii ’s, namely

SI := {M ∈ Rn×n : MIi � 0, ∀i ∈ [m]}.

Then with probability at least 1− δ we have

distF (SI ,Sn
+) ≤ (1 + ε)

n − k
n + k − 2

.
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3.1
Proof of:

Theorem (Upper Bound 1)
For all 2 ≤ k < n we have

distF (Sn,k ,Sn
+) ≤

n − k
n + k − 2

.
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Proof of Upper bound 1

I If

X =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ∈ Sn,k

then red-submatrix is k × k PSD matrix.

I So 
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 0 0 0
0 0 0 0 0

 ∈ Sn
+.

I Take average of all the above matrices for different principal k × k
submatrices (and suitably scale with a positive number), then the
resulting matrix is in Sn

+.
I The distance between this average PSD matrix and X gives

bound.
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3.2
Proof of:

Theorem (Upper bound 2)
Assume 2 ≤ k < n. Then

distF (Sn,k ,Sn
+) ≤

(n − k)3/2√
(n − k)2 + (n − 1)k2

.
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Proof of upper bound 2

I Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in Sn,k has
at most n − k negative eigenvalues.

I Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M ∈ Sn,k to Sn

+ is upper bounded by

(absolute value of most negative eigenvalue of M)×
√

n − k .

I So we need to upper bound absolute value of most
negative eigenvalue of M for M ∈ Sn,k and ‖M‖F = 1.

I

√
n − k ×

∣∣min
{
λ1(M) | ‖M‖F ≤ 1,M ∈ Sn,k}∣∣
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Proof of upper bound 2

I Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in Sn,k has
at most n − k negative eigenvalues.

I Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M ∈ Sn,k to Sn

+ is upper bounded by

(absolute value of most negative eigenvalue of M)×
√

n − k .

I So we need to upper bound absolute value of most
negative eigenvalue of M for M ∈ Sn,k and ‖M‖F = 1.

I

√
n − k ×

∣∣∣∣∣∣min

λ1(M)

∣∣∣∣∣∣
∑
j∈[n]

(λj(M))2 ≤ 1,M ∈ Sn,k


∣∣∣∣∣∣
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Proof of upper bound 2

I Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in Sn,k has
at most n − k negative eigenvalues.

I Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M ∈ Sn,k to Sn

+ is upper bounded by

(absolute value of most negative eigenvalue of M)×
√

n − k .

I So we need to upper bound absolute value of most
negative eigenvalue of M for M ∈ Sn,k and ‖M‖F = 1.

I

√
n − k ×

∣∣∣∣∣∣min

λ1(M)

∣∣∣∣∣∣
∑
j∈[n]

(λj(M))2 ≤ 1, M ∈ Sn,k︸ ︷︷ ︸
how to deal with this?


∣∣∣∣∣∣
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Proof of upper bound 2-connection to hyperbolicity cone.

I For S ⊆ {1, . . . , n}, let M|S denote the principal submatrix of M
obtained by removing rows and columns not in S.

I If |S| = k , and M ∈ Sn,k , then M|S is PSD.

I

M ∈ Sn,k ⇒ ck (M) :=
∑

S⊆{1,...,n}:|S|=k

det(M|S) ≥ 0.

I Let λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M) are the eigenvalues of M:

ck (M) =
∑

1≤i1<i2<···<ik≤n

λi1(M)λi2(M) . . . λik (M)

︸ ︷︷ ︸
en

k (λ1(M),λ2(M),...,λn(M))

I

M ∈ Sn,k ⇒ en
k (λ(M))︸ ︷︷ ︸

elementary symmetric polynomial

≥ 0.

I We can do better...
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Proof of upper bound 2- connection to hyperbolicity cone.

I Let M ∈ Sn,k . For t > 0:

en
k ((λ1(M), λ2(M), . . . , λn(M)) + t~1) = ck (M + tI) > 0,

since all the k × k submatrices of X + tI will be positive definite.

I Every point in the open line segment:
{θλ(M) + (1− θ)~1 | 1 > θ ≥ 0} belongs to
connected component of Rn \ {x : en

k (x) = 0} containing ~1︸ ︷︷ ︸
H(en

k ) hyperbolicity cone of elementary symmetric polynomial

.

I

M ∈ Sn,k ⇒ λ(M) ∈ H
(
en

k
)
.

Two nice properties:
I {x | en

k (x) ≥ 0} ) H
(
en

k

)
.

I H
(
en

k

)
is a convex set.
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Illustration of {x |e2
2(x) ≥ 0} and H(e2

2)

e2
2(x) = x1x2

I {x | e2
2(x) ≥ 0} ≡ {x | x1x2 ≥ 0}.

I H2
2 := connected component of R2 \ {x | x1x2 = 0} that contains

(1, 1).

Figure: {x | e2
2(x) ≥ 0}

(0,0)	

{x	|	e22(x)	>=	0}	
x1	>=	0,	x2	>=	0	

X1	<=	0,	x2	<=	0	

Figure: H(e2
2)

(0,0)	

H(e22)	

x1	>=	0,	x2	>=	0	

(1,1)	

{x1,	x2	|x1x2	=	0}	
Four	
connected	
components	
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A quick detour to formally introduce hyperbolicity cone

I We will say that a polynomial p ∈ R[x1, . . . , xn] is hyperbolic with
respect to a fixed vector v if

I p(v) > 0, and
I For all fixed x̂ ∈ Rn, the univariate polynomial p(x̂ − tv) ∈ R[t] has

only real roots.

Example:
I en

n(x̂ − t~1) = 0,
I solution for t (roots): x̂1, x̂2, . . . , x̂n

I The connected set Rn \ {x | p(x) = 0} containing v is called the
hyperbolicity cone of p with respect to v1.

I The hyperbolicity cone is a convex cone!

1We actually work with the closure of this set
64
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A quick detour to formally introduce hyperbolicity cone

I We will say that a polynomial p ∈ R[x1, . . . , xn] is hyperbolic with
respect to a fixed vector v if

I p(v) > 0, and
I For all fixed x̂ ∈ Rn, the univariate polynomial p(x̂ − tv) ∈ R[t] has

only real roots.

Example:
I en

n(x̂ − t~1) = 0,
I solution for t (roots): x̂1, x̂2, . . . , x̂n

I The connected set Rn \ {x | p(x) = 0} containing v is called the
hyperbolicity cone of p with respect to v1.

I The hyperbolicity cone is a convex cone!

1We actually work with the closure of this set
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I We will say that a polynomial p ∈ R[x1, . . . , xn] is hyperbolic with
respect to a fixed vector v if

I p(v) > 0, and
I For all fixed x̂ ∈ Rn, the univariate polynomial p(x̂ − tv) ∈ R[t] has

only real roots.

Example:
I en

n(x̂ − t~1) = 0,
I solution for t (roots): x̂1, x̂2, . . . , x̂n

I The connected set Rn \ {x | p(x) = 0} containing v is called the
hyperbolicity cone of p with respect to v1.

I The hyperbolicity cone is a convex cone!

1We actually work with the closure of this set
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Proof of upper bound 2-contd.

I Replace:

√
n − k ×min

λ1(M)

∣∣∣∣∣∣
∑
j∈[n]

(λj(M))2 ≤ 1,M ∈ Sn,k



I By its relaxation:

√
n − k ×

∣∣∣∣∣∣min

λ1(M)

∣∣∣∣∣∣
∑
j∈[n]

(λj(M))2 ≤ 1, λ(M) ∈ H(en
k )


∣∣∣∣∣∣

I This is a convex relaxation and can be solved in closed form. The
solution is the bound we obtain.
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Proof of upper bound 2-contd.

I Replace:

√
n − k ×min

λ1(M)

∣∣∣∣∣∣
∑
j∈[n]

(λj(M))2 ≤ 1,M ∈ Sn,k


I By its relaxation:

√
n − k ×

∣∣∣∣∣∣min

λ1(M)

∣∣∣∣∣∣
∑
j∈[n]

(λj(M))2 ≤ 1, λ(M) ∈ H(en
k )


∣∣∣∣∣∣

I This is a convex relaxation and can be solved in closed form. The
solution is the bound we obtain.
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3.3
Proof of:

Theorem (Lower bound 1)
For all 2 ≤ k < n, we have

distF (Sn,k ,Sn
+) ≥

n − k√
(k − 1)2 n + n(n − 1)

.
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu =

(a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2 ≥ (a + b)− ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu = (a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2 ≥ (a + b)− ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu = (a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2

≥ (a + b)− ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu = (a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2 ≥ (a + b)− ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu = (a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2 ≥ (a + b)− ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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3.4
Proof of:

Theorem (Lower bound 2)
Fix a constant r < 1

93 and k = rn. Then for all k ≥ 2,

distF (Sn,k ,Sn
+) >

√
r − 93r2
√

162r + 3
,

which is independent of n.
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Proof of lower bound 2

I For simplicity, assume k = n/2. (Actually proof does not have this
value of k ).

I The idea is to construct a matrix M where half of its eigenvalues
take the negative value − 1√

n , with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n , with

orthonormal eigenvectors w1,w2, . . . ,wn/2, i.e.,

M =
−1√

n

n/2∑
i=1

(v i)(v i)> +
1√
n

n/2∑
i=1

(w i)(w i)>

I This normalization makes ‖M‖F = 1.

I distF (M,Sn
+) ≥

√(
1√
n

)2
· n

2 = cst independent of n.

I So we only need to guarantee that M belongs to the k -PSD
closure.
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Proof of lower bound 2

I For simplicity, assume k = n/2. (Actually proof does not have this
value of k ).

I The idea is to construct a matrix M where half of its eigenvalues
take the negative value − 1√

n , with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n , with

orthonormal eigenvectors w1,w2, . . . ,wn/2, i.e.,

M =
−1√

n

n/2∑
i=1

(v i)(v i)> +
1√
n

n/2∑
i=1

(w i)(w i)>

I This normalization makes ‖M‖F = 1.

I distF (M,Sn
+) ≥

√(
1√
n

)2
· n

2 = cst independent of n.

I So we only need to guarantee that M belongs to the k -PSD
closure.
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I For simplicity, assume k = n/2. (Actually proof does not have this
value of k ).

I The idea is to construct a matrix M where half of its eigenvalues
take the negative value − 1√

n , with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n , with

orthonormal eigenvectors w1,w2, . . . ,wn/2, i.e.,

M =
−1√

n

n/2∑
i=1

(v i)(v i)> +
1√
n

n/2∑
i=1

(w i)(w i)>

I This normalization makes ‖M‖F = 1.

I distF (M,Sn
+) ≥

√(
1√
n

)2
· n

2 = cst independent of n.

I So we only need to guarantee that M belongs to the k -PSD
closure.
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Proof of lower bound 2

I For simplicity, assume k = n/2. (Actually proof does not have this
value of k ).

I The idea is to construct a matrix M where half of its eigenvalues
take the negative value − 1√

n , with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n , with

orthonormal eigenvectors w1,w2, . . . ,wn/2, i.e.,

M =
−1√

n

n/2∑
i=1

(v i)(v i)> +
1√
n

n/2∑
i=1

(w i)(w i)>

I This normalization makes ‖M‖F = 1.

I distF (M,Sn
+) ≥

√(
1√
n

)2
· n

2 = cst independent of n.

I So we only need to guarantee that M belongs to the k -PSD
closure.
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Proof of lower bound 2 –contd.

I M = −1√
n

∑n/2
i=1(v

i)(v i)> + 1√
n

∑n/2
i=1(w

i)(w i)>

I Letting V be the matrix with rows v1, v2, . . . , and W the matrix
with rows w1,w2, . . ., the quadratic form x>Mx :

x>Mx = − 1√
n
‖Vx‖2

2 +
1√
n
‖Wx‖2

2.

I ‖Vx‖2
2 ≤ ‖x‖2

2 (because V is orthonormal)
I So if we could construct the matrix W so that for all k-sparse

vectors x ∈ Rn we had ‖Wx‖2
2 ≈ ‖x‖2

2 :

x>Mx & − 1√
n
‖x‖2

2 +
1√
n
‖x‖2

2 & 0 for all k -sparse vectors x ,

I This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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Proof of lower bound 2 –contd.

I M = −1√
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i)(v i)> + 1√
n

∑n/2
i=1(w
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2 :

x>Mx & − 1√
n
‖x‖2

2 +
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n
‖x‖2

2 & 0 for all k -sparse vectors x ,

I This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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2 ≈ ‖x‖2

2 :

x>Mx & − 1√
n
‖x‖2

2 +
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n
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2 & 0 for all k -sparse vectors x ,

I This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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I Letting V be the matrix with rows v1, v2, . . . , and W the matrix
with rows w1,w2, . . ., the quadratic form x>Mx :

x>Mx = − 1√
n
‖Vx‖2

2 +
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n
‖Wx‖2

2.

I ‖Vx‖2
2 ≤ ‖x‖2

2 (because V is orthonormal)
I So if we could construct the matrix W so that for all k-sparse

vectors x ∈ Rn we had ‖Wx‖2
2 ≈ ‖x‖2

2 :

x>Mx & − 1√
n
‖x‖2

2 +
1√
n
‖x‖2

2 & 0 for all k -sparse vectors x ,

I This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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How good is the hyperbolicity relaxation?

I {λ(M) |M ∈ Sn,k} ⊆ H(en
k )

I In fact, H(en
n) = Rn

+ = {λ(M) |M ∈ Sn,n}.
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The case of k = n − 1

Theorem (k = n − 1; Blekherman, D., Shu, Sun)
Let n ≥ 3. Then:

H(en
n−1) = {λ(M) |M ∈ Sn,n−1}.

Corollary
Let n ≥ 3. Then: {λ(M) |M ∈ Sn,n−1} is a convex set.
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Theorem (k = n − 1; Blekherman, D., Shu, Sun)
Let n ≥ 3. Then:

H(en
n−1) = {λ(M) |M ∈ Sn,n−1}.

Corollary
Let n ≥ 3. Then: {λ(M) |M ∈ Sn,n−1} is a convex set.
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How good is the hyperbolicity relaxation?

G(1, k − 1) :=


k − 1 −1 . . . −1
−1 k − 1 . . . −1
· · · ·
−1 . . . −1 k − 1

 ∈ Sn,k

I Every k × k principal submatrix of G(1, k) is singular. Thus,

en
k (G(1, k − 1)) =

∑
S⊆[n]:|S|=k

det(G(1, k − 1)|S) = 0.

I So G(1, k − 1) belongs to the boundary of H(en
k ).

I Let D be a diagonal matrix (where every diagonal entry is
non-zero). Then DG(1, k − 1)D ∈ Sn,k and
DG(1, k − 1)D ∈ bnd(H(en

k )).
I Finally, DG(1, k − 1)D is a non-singular matrix.
I So, DG(1, k − 1)D ∈ bnd(H(en

k )), is a non-singular matrix and
belongs to Sn,k .
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−1 k − 1 . . . −1
· · · ·
−1 . . . −1 k − 1
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I Every k × k principal submatrix of G(1, k) is singular. Thus,

en
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∑
S⊆[n]:|S|=k

det(G(1, k − 1)|S) = 0.

I So G(1, k − 1) belongs to the boundary of H(en
k ).

I Let D be a diagonal matrix (where every diagonal entry is
non-zero). Then DG(1, k − 1)D ∈ Sn,k and
DG(1, k − 1)D ∈ bnd(H(en

k )).
I Finally, DG(1, k − 1)D is a non-singular matrix.
I So, DG(1, k − 1)D ∈ bnd(H(en

k )), is a non-singular matrix and
belongs to Sn,k .
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· · · ·
−1 . . . −1 k − 1

 ∈ Sn,k

I Every k × k principal submatrix of G(1, k) is singular. Thus,

en
k (G(1, k − 1)) =

∑
S⊆[n]:|S|=k

det(G(1, k − 1)|S) = 0.

I So G(1, k − 1) belongs to the boundary of H(en
k ).

I Let D be a diagonal matrix (where every diagonal entry is
non-zero). Then DG(1, k − 1)D ∈ Sn,k and
DG(1, k − 1)D ∈ bnd(H(en

k )).

I Finally, DG(1, k − 1)D is a non-singular matrix.
I So, DG(1, k − 1)D ∈ bnd(H(en

k )), is a non-singular matrix and
belongs to Sn,k .
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How good is the hyperbolicity relaxation?
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k − 1 −1 . . . −1
−1 k − 1 . . . −1
· · · ·
−1 . . . −1 k − 1

 ∈ Sn,k

I Every k × k principal submatrix of G(1, k) is singular. Thus,

en
k (G(1, k − 1)) =

∑
S⊆[n]:|S|=k

det(G(1, k − 1)|S) = 0.

I So G(1, k − 1) belongs to the boundary of H(en
k ).

I Let D be a diagonal matrix (where every diagonal entry is
non-zero). Then DG(1, k − 1)D ∈ Sn,k and
DG(1, k − 1)D ∈ bnd(H(en

k )).
I Finally, DG(1, k − 1)D is a non-singular matrix.

I So, DG(1, k − 1)D ∈ bnd(H(en
k )), is a non-singular matrix and

belongs to Sn,k .
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· · · ·
−1 . . . −1 k − 1

 ∈ Sn,k

I Every k × k principal submatrix of G(1, k) is singular. Thus,

en
k (G(1, k − 1)) =

∑
S⊆[n]:|S|=k

det(G(1, k − 1)|S) = 0.

I So G(1, k − 1) belongs to the boundary of H(en
k ).

I Let D be a diagonal matrix (where every diagonal entry is
non-zero). Then DG(1, k − 1)D ∈ Sn,k and
DG(1, k − 1)D ∈ bnd(H(en

k )).
I Finally, DG(1, k − 1)D is a non-singular matrix.
I So, DG(1, k − 1)D ∈ bnd(H(en

k )), is a non-singular matrix and
belongs to Sn,k .
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How good is the hyperbolicity relaxation — Comparing
boundary

Theorem (Blekherman, D., Shu, Sun)
Let 2 < k < n − 1 or n = 4 and k = 2. Let M ∈ Sn,k . If M is
non-singular and M belongs to the boundary of H(en

k ), then there
exists a diagonal matrix D such that M = DG(1, k − 1)D.

I There exist points on the boundary of H(en
k ) with as many as

n − k negative entries and no zero entries.

Corollary
Let 2 < k < n − 1 or n = 4 and k = 2. Then the set of “eigenvalue
vectors" for matrices in Sn,k is strictly contained in H(en

k ).
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Theorem (Blekherman, D., Shu, Sun)
Let 2 < k < n − 1 or n = 4 and k = 2. Let M ∈ Sn,k . If M is
non-singular and M belongs to the boundary of H(en

k ), then there
exists a diagonal matrix D such that M = DG(1, k − 1)D.

I There exist points on the boundary of H(en
k ) with as many as

n − k negative entries and no zero entries.

Corollary
Let 2 < k < n − 1 or n = 4 and k = 2. Then the set of “eigenvalue
vectors" for matrices in Sn,k is strictly contained in H(en

k ).
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