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min  (C, X)
st. (ALX)<b Vie{l,...,m} (SDP)
X eS8t

where C and the A''s are n x n matrices, (M, N) := 3", ; M;Nj;,
and

ST ={XeR™ X=X, u"Xu>0, YuecR"},

» Polynomial-time algorithm— but often challenging to solve in
practice.



Sparse PSD

approximation A I’e|axatIOﬂ Sparse SDP

Blekherman, Dey,

Molinaro, Sun
Introduction min <C, X>
st. (ALX)<b; Vie{l,...,m} (SDP)
X eS8t




avomaton A relaxation: Sparse SDP

Blekherman, Dey,
Molinaro, Sun

Introduction

min  (C, X)

st. (A X)<b Vie{l,....m} (SDP)
X eS8t

min (C, X)

st. (ALX)<bVie{l,....,m} (Sparse SDP)
selected k x k principal submatrices of X € Sﬁﬁ.




avomaton A relaxation: Sparse SDP

Blekherman, Dey,
Molinaro, Sun

Introduction min <C, X>
st. (ALX)<b; Vie{l,...,m} (SDP)
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min (C, X)

st. (A X)<bVie{l,. .. m} (Sparse SDP)
selected k x k principal submatrices of X € Sﬁﬁ.

’ Sparse cutting-plane viewpoint: ‘

» We can enforce PSD constraints by iteratively separating
linear constraints.

» Enforcing PSD-ness on smaller k x k principal submatrix
leads to linear constraints that are sparser, an important

property leveraged by linear programming solvers that
greatly improve their efficiency.
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Sparse Cuts
Solving SDP relaxation of a QCQP
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Main results 1

Proof sketch 350

Examining the LP with dense cuts takes a lot more time!
hyperbolicity 200

relaxations

250

LP solve time (s)

N
8
8

100

Ao i
Ll

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000
ity level Max sparse cuts Time (s)
Sp:;;';y evel per iteration
£=025(nt1) K=5n
=} = = = =




Sparse PSD

approximation Sparse S D P

Blekherman, Dey,
Molinaro, Sun

Introduction

min  (C, X)
st. (AXy<bVie{l,...,m} (Sparse SDP)
selected k x k principal submatrices of X € S_’;.

> Sparse cutting-plane:

» [A. Qualizza, P. Belotti, and F. Margot (2012)]

> [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani
(2018)]

» [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

In many experiments, we discovered sparse SDP to give bounds quite
close to that of the original SDP!
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min  (C, X)
st. (AXy<bVie{l,...,m} (Sparse SDP)
selected k x k principal submatrices of X € Si.

> Sparse cutting-plane:

> [A. Qualizza, P. Belotti, and F. Margot (2012)]

» [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani
(2018)]

» [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

In many experiments, we discovered sparse SDP to give bounds quite
close to that of the original SDP!

> Power system optimization:

> [S. Sojoudi and J. Lavaei (2014)]
» [B. Kocuk, SSD, and X. A. Sun (2016)]
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Z%%":= min (C,X)
st. (ALX)<b Vvie{l,...,m} (SDP)
X eS8t
ZSparse-SDP . i <07 X)

st. (A X)<bVie{l,...,m}  (Sparse SDP)
selected k x k principal submatrices of X € S¥.

Relationship between zSPP and zSparse-SDP9

» Seems like a difficult question to analyze.
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5= min {66

X e 87,

st A<

by

et} (SDP)

se+ected-k x K pr|n0|pal submatrlces of X e sk.

How much bigger is cone with all k x k submatrices PSD from S7? ‘

Dual cone is also of interest:

» [E. G. Boman, D. Chen, O. Parekh, and S. Toledo (2005)]

» [Permenter, Parrilo (2017)]

» [J. Gouveia, A. Kovacec, and M. Saee (2019)]
» [A. A. Ahmadi and A. Majumdar (2019)])
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Setting-up details of precise question

[k-PSD closure ]

Given positive integers n and k where 2 < k < n, the k-PSD closure
(8™KY is the set of all n x n symmetric real matrices where all k x k
principal submatrices are PSD.

» | How far is matrices in S™* from S7?

» To measure this, we would like to consider the matrix in the
k-PSD closure that is farthest from the PSD cone. We require to
make two decisions here:

1. The norm to measure this distance and
2. A normalization method

distr (8™, 87) = sup  diste(M.S7)
Mesmk, [|M||F=1

= sup inf

f[|M— NJE.
MeSmH, || =1 NS

bk
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Setting-up details of precise question

[k-PSD closure ]

Given positive integers n and k where 2 < k < n, the k-PSD closure
(8™KY is the set of all n x n symmetric real matrices where all k x k
principal submatrices are PSD.

» | How far is matrices in S™* from S7?

» To measure this, we would like to consider the matrix in the
k-PSD closure that is farthest from the PSD cone. We require to
make two decisions here:

1. The norm to measure this distance and
2. A normalization method

distr (8™, 87) = sup  diste(M.S7)
Mesmk, [|M||F=1

= sup imj”

|M — NJ|f.
MeSmH, || =1 NS

Note: diste(S™*,S7) € [0, 1].

24
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2.1
Upper bounds on distg(S™, S7)
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Upper bound 1

Theorem (Upper Bound 1; Blekherman, D., Molinaro, Sun)
For all2 < k < n we have
n—k

ot n,k n < )
diste(S™",SY) < nik_2
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Upper bound 1

Theorem (Upper Bound 1; Blekherman, D., Molinaro, Sun)
For all2 < k < n we have
n—k

Py n,k n < )
diste(S™",SY) < nik—2

» Distance between the k-PSD closure and the SDP cone is at
most roughly ~ 2.

o8




Upper bound 2

» Distance between the k-PSD closure and the SDP cone is at
most roughly ~ =%

29
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Upperboundf most roughly ~ =k k

» This appears to be weak especially when k =~ n

20
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» Distance between the k-PSD closure and the SDP cone is at
Urperbounde most roughly ~ =%

S » This appears to be weak especially when k ~ n

Theorem (Upper bound 2; Blekherman, D., Shu, Sun)
For all2 < k < n we have

(n— /()3/2

n,k
diste(S™ 3+),\/(n_ SR

29
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» Distance between the k-PSD closure and the SDP cone is at
Urper bounds most roughly ~ =%

» This appears to be weak especially when k =~ n

Theorem (Upper bound 2; Blekherman, D., Shu, Sun)
For all2 < k < n we have

. _ k)3/2
dist- (S, 87) < (n—k)

= Vi kEr (- @

» When k ~ n distance between the k-PSD closure and the SDP
cone is at most roughly ~ (-K)

» This bound dominates the previous bound when % is sufficiently
large.

kPl
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—Upper Bound 1

Upper bounds 08r
Lc pound:

0.7r —Upper Bound 2

06
0.5+
041
0.3f

k]
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Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun)

For all2 < k < n, we have
JE— n—k
distr(S™*,87) > .
A ) e

25
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Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun)

For all2 < k < n, we have
JE— n—k
distr(S™*,87) > .
A ) e

» When k is small:
n—k n—k

~
~

Vk=1)2n+n(n-1) n

So first upper bound (Thm 1) is tight (upto constant).

26
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Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun)

For all2 < k < n, we have
JE— n—k
distr(S™k, 8" > .
a +)_\/(k71)2n+n(n—1)

» When k is small:
n—k n—k

~
~

Vk=1)2n+n(n-1) n

So first upper bound (Thm 1) is tight (upto constant).

» When k is very large: n — k = ¢ where c is very small

27
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Lower bounds

Lower bound 1

Theorem (Lower bound 1; Blekherman, D., Molinaro, Sun)
For all2 < k < n, we have
I —k
diste(S™ 87) > n .
A ) e

» When k is small:
n—k n—k

~
~

Vk=1)2n+n(n-1) n
So first upper bound (Thm 1) is tight (upto constant).
» When k is very large: n — k = ¢ where c is very small

Vk=12n+n(n—1) n®?

So second upper bound (Thm 2) is tight (upto constant).

9
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Upper bounds
Lower bounds . n—k __ H
Do we nsedr* PSD » Upper bound: =% = 1 — r, a constant independent of n

» Lower bound 1: ~ (1/r — 1) 5.

So is upper bound weak in this regime?

40



Sparse PSD

approximation Lower bound 2: What happens when k = rn?

Blekherman, Dey,
Molinaro, Sun

Upper bounds
Lower bounds

. n—k :
D0 e esd P50 » Upper bound: =% =1 — r, a constant independent of n

» Lower bound 1: ~ (1/r — 1) 5.

So is upper bound weak in this regime?

Theorem (Lower bound 2; Blekherman, D., Molinaro, Sun)
Fix a constant r < 9‘—3 and k = rn. Then for all k > 2,

\r—93r2

diste(S™K,87) > =2
( > e 3

which is independent of n.

a1



2.3
Do we need (i) PSD constraints?
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Upper bounds

Lower bound:

Do we need n PSD
constraints?

Achieving the strength of S™* by a polynomial number of
PSD constraints

Theorem (Blekherman, D., Molinaro, Sun)
Let2 < k < n-—1. Considere,§ > 0 and let

", n
m=24 (8—2 In 5) .
LetT = (h.....In) be a sequence of random k-sets independently
uniformly sampled from (I}1),

43
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Do we need n PSD
constraints?

Achieving the strength of S™* by a polynomial number of
PSD constraints

Theorem (Blekherman, D., Molinaro, Sun)
Let2 < k < n-—1. Considere,§ > 0 and let

2
€ 0

LetT = (h.....In) be a sequence of random k-sets independently
uniformly sampled from (i)}, and define Sz as the set of matrices
satisfying the PSD constraints for the principal submatrices indexed

by the I;’s, namely
Sz:={MeR™": M, =0, Vie [m]}.

44
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Do we need n PSD
constraints?

Achieving the strength of S™* by a polynomial number of
PSD constraints

Theorem (Blekherman, D., Molinaro, Sun)
Let2 < k < n-—1. Considere,§ > 0 and let

2
€ 0

LetT = (h.....In) be a sequence of random k-sets independently
uniformly sampled from (i)}, and define Sz as the set of matrices
satisfying the PSD constraints for the principal submatrices indexed

by the I;’s, namely
Sz:={MeR™": M, =0, Vie [m]}.
Then with probability at least 1 — 6 we have

n—k

mF(SI,Si) S (1 +€)m

45
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3.1
Proof of:

Theorem (Upper Bound 1)
For all2 < k < n we have
n—k

qiot nk cn < )
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> If

>

Il
L I
* X ¥ X ¥
S S G
S S
* X X X X

then red-submatrix is k x k PSD matrix.

48
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*  x ok % %
* ok ok k%
X=1|% % x % x| 8™
Upperttjundi X % % % %
* %k ok %k
then red-submatrix is kK x k PSD matrix.
» So
*+ x x 0 0
*+ * *x 0 0
x x x 0 0 | eS8l
0 0 0 0 O
0 0 0 0O

49
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> If
k * >k * *
* ok % % %
X=1|% % x % x| 8™
Upper bound 1
* ok ok ok %k
* * * * *
then red-submatrix is k x k PSD matrix.
» So
*+ * x 0 0
*+ * *x 0 0
* *x *x 0 0 [ e Si.
0 0 0 0O
0 0 0 0O

» Take average of all the above matrices for different principal k x k
submatrices (and suitably scale with a positive number), then the
resulting matrix is in S7.

» The distance between this average PSD matrix and X gives
bound.

50



3.2
Proof of:

Theorem (Upper bound 2)
Assume 2 < k < n. Then

3/2
distr(S™k, ST) (n—k)

_\/n k2 4+ (n—1)k2
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» Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in S™¥ has
e at most n — k negative eigenvalues.

5O
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» Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in S™* has
e at most n — k negative eigenvalues.

» Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M € S™K to S is upper bounded by

(absolute value of most negative eigenvalue of M)x+v'n — k.

» So we need to upper bound absolute value of most
negative eigenvalue of M for M € S™k and || M||r = 1.

Vn—k x |min {\ (M) | [M||r < 1,M € S™}|

%]
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» Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in S™* has
at most n — k negative eigenvalues.

» Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M € S™k to ST is upper bounded by

Upper bound 2

(absolute value of most negative eigenvalue of M)x+v'n — k.

» So we need to upper bound absolute value of most
negative eigenvalue of M for M € S™¥ and ||M||r = 1.

Vn—k x [min ¢ x(M) | Y (N(M)? <1,M e 8™k

jeln]

R4
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» Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in S™* has
at most n — k negative eigenvalues.

» Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M € S™k to ST is upper bounded by

Upper bound 2

(absolute value of most negative eigenvalue of M)x+v'n — k.

» So we need to upper bound absolute value of most
negative eigenvalue of M for M € S™¥ and ||M||r = 1.

Vn—kx [min ¢ (M) | Y (G(M)2 <1, Me sk

Jjeln] how to deal with this?

RE
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» For S C {1,...,n}, let M|s denote the principal submatrix of M
obtained by removing rows and columns not in S.

» If |S| = k, and M € S™¥, then M|s is PSD.

Upper bound 2

113
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» For S C {1,...,n}, let M|s denote the principal submatrix of M
obtained by removing rows and columns not in S.
» If |S| = k, and M € S™¥, then M|s is PSD.

Upper bound 2 >

MeSs™ = > 0.

57
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v

For S C {1,...,n}, let M|s denote the principal submatrix of M
obtained by removing rows and columns not in S.

» If |S| = k, and M € S™¥, then M|s is PSD.
- >
i MeS™ = a(M)= 5 dei(Ms)>0.
SC{1,...,n}:|S|=k
> Let M (M) < Xa(M) < --- < Ap(M) are the eigenvalues of M:

a(My= S N (MM A (M)

1<ii<bp<-+-<ik<n

e (A1 (M) X2 (M), ..., A\n(M))

Me 8™ = er(\(M)) >0.

elementary symmetric polynomial

14:3
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v

For S C {1,...,n}, let M|s denote the principal submatrix of M
obtained by removing rows and columns not in S.

» If |S| = k, and M € S™¥, then M|s is PSD.
uE—— >
e MeS™ = c. (M) — > det(M|s) > 0.
SC{1,...,n}:|S|=k
> Let M (M) < Xa(M) < --- < Ap(M) are the eigenvalues of M:

a(My= S N (MM A (M)

1<ii<bp<-+-<ik<n

e (A1 (M) X2 (M), ..., A\n(M))

Me 8™ = er(\(M)) >0.

elementary symmetric polynomial

\4

We can do better...

e}
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Proof of upper bound 2- connection to hyperbolicity cone.

» Let M € S™ . Fort > 0:
el (A (M), Aa(M), ..., An(M)) + t1) = ck(M + tl) > 0,

since all the k x k submatrices of X + t/ will be positive definite.

680
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Upper bound 1
Upper bound 2
Lower bound 1

Lower bound 2

Proof of upper bound 2- connection to hyperbolicity cone.

» Let M € 8™ . Fort > 0:
ek((M(M), 2o(M), ..., An(M)) + 1) = e (M + tl) > O,

since all the k x k submatrices of X + t/ will be positive definite.

» Every point in the open line segment:
{6AX(M)+ (1 —60)1|1 > 0 > 0} belongs to
connected component of R” \ {x : ef(x) = 0} containing 1.

H(eﬁ) hyperbolicity cone of elementary symmetric polynomial

Me S™ = A(M) € H(ef).

A1
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Upper bound 1
Upper bound 2
Lower bound 1

Lower bound 2

Proof of upper bound 2- connection to hyperbolicity cone.

» Let M € 8™ . Fort > 0:
ek((M(M), 2o(M), ..., An(M)) + 1) = e (M + tl) > O,

since all the k x k submatrices of X + t/ will be positive definite.
» Every point in the open line segment:

{OMM) + (1 —0)T |1 > 6 > 0} belongs to

connected component of R” \ {x : ef(x) = 0} containing 1.

H(eﬁ) hyperbolicity cone of elementary symmetric polynomial

Me S™ = A(M) € H(ef).

Two nice properties:
> {x|el(x) >0} 2 H(ep).
> H(e}) is a convex set.

B2



amomaen  lllustration of {x | €3(x) > 0} and H(&3)

Blekherman, Dey,
Molinaro, Sun

eg(x) = Xi X2

» {x]|€5(x) >0} = {x]|xix2 > 0}.
» H2 .= connected component of R? \ {x | x;x, = 0} that contains
(1,1).
Figure: {x | e2(x) > 0} Figure: H(e2)
B
{x | e,%(x) >=0} He,?)
(1)
(0,0! / (0,0 <.
[ /'
/ AN
Four Xy, %, 1%,%, = 0}
connected
components

B3
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approximation A quick detour to formally introduce hyperbolicity cone
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» We will say that a polynomial p € R[xi, ..., Xs] is hyperbolic with
respect to a fixed vector v if
> p(v) >0, and
> For all fixed X € R”, the univariate polynomial p(X — tv) € R[t] has
only real roots.

Upper bound 2

"We actually work with the closure of this set
/4
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approximation A quick detour to formally introduce hyperbolicity cone

Blekherman, Dey,
Molinaro, Sun

» We will say that a polynomial p € R[xi, ..., Xs] is hyperbolic with
respect to a fixed vector v if
> p(v) >0, and
> For all fixed X € R”, the univariate polynomial p(X — tv) € R[t] has
only real roots.

Upper bound 2

Example:
> en(x —t1) =0,

"We actually work with the closure of this set
B85
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approximation A quick detour to formally introduce hyperbolicity cone

Blekherman, Dey,
Molinaro, Sun

» We will say that a polynomial p € R[xi, ..., Xs] is hyperbolic with
respect to a fixed vector v if
> p(v) >0, and
> For all fixed X € R”, the univariate polynomial p(X — tv) € R[t] has
only real roots.

Upper bound 2

Example:
> ef(k—tl) =0,
» solution for t (roots): X1, Xo, ..., Xn

"We actually work with the closure of this set
(%
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approximation A quick detour to formally introduce hyperbolicity cone

Blekherman, Dey,
Molinaro, Sun

» We will say that a polynomial p € R[xi, ..., Xs] is hyperbolic with
Upper bound 1 respect to a fixed vector v if

e > pv) >0, and
- > For all fixed X € R", the univariate polynomial p(% — tv) € RI[{] has
only real roots.

Example:
> ef(k—tl) =0,
» solution for t (roots): X1, Xo, ..., Xn

» The connected set R" \ {x| p(x) = 0} containing v is called the
hyperbolicity cone of p with respect to v'.

» The hyperbolicity cone is a convex cone!

"We actually work with the closure of this set
/67
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» Replace:

Upper bound 2
n—kxminq Ai(M) | > (G(M)? <1,Me 8™

jeln

A8
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approximation Proof of upper bound 2-contd.
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» Replace:

Upper bound 2

STM))? <1 M e 8™ }

jeln

n—kx min{M(M)

» By its relaxation:

n—kx

D (M) < 1,0(M) € H(eﬁ)}‘

Jeln]

min {M(M)

» This is a convex relaxation and can be solved in closed form. The
solution is the bound we obtain.

(e}



3.3
Proof of:

Theorem (Lower bound 1)
For all2 < k < n, we have

n—k

diste(S™, ST)

- \/(k—1 n+n(n—1)




Sparse PSD

e e Proof of lower bound 1

Blekherman, Dey,
Molinaro, Sun

» Consider the matrix:
Lower bound 1 G(a, b) = (a + b)l o a11T

» If u € R" with ||lu]]2 = 1 has a support of k, then

u'Gu =

71



Sparse PSD

e e Proof of lower bound 1
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» Consider the matrix:
Lower bound 1 (3(ai b) = (a+b)l* a11T

» If u € R" with ||lu]]2 = 1 has a support of k, then

2
u' Gu = (a+b)— (Z“'>

79
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Lower bound 1

Proof of lower bound 1

» Consider the matrix:
G(a,b) = (a+b)l—al1’

» If u € R" with ||lu]]2 = 1 has a support of k, then

u' Gu = (a+b)- (Z“'> (a+b)—a(|ull:)®

73
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Lower bound 1

Proof of lower bound 1

» Consider the matrix:
G(a,b) = (a+b)l—al1’

» If u € R" with ||lu]]2 = 1 has a support of k, then

u' Gu=(a+b)— (Zu,> (a+b)—a(||u]|1)* > (a+ b) — ak

74
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Lower bound 1

Proof of lower bound 1

v

v

v

v

Consider the matrix:
G(a,b) = (a+b)l—al1’

If u e R" with ||u||z = 1 has a support of k, then
u' Gu=(a+b)— (Z u,> (a+b)—a(||u]|1)* > (a+ b) — ak

So G(a, b) € ™ iff (1 — k)a+ b > 0.
Use these explicit matrices to obtain lower bound from S’

75



3.4
Proof of:

Theorem (Lower bound 2)
Fix a constant r < ¢s and k = rn. Then for all k > 2,

V'r—93r2

diste(S™K,87) > ~—
F +) J/162r £ 3

which is independent of n.



Sparse PSD

e e Proof of lower bound 2
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» For simplicity, assume k = n/2. (Actually proof does not have this
value of k).

Lower bound 2

77



anoimaion  Proof of lower bound 2

Blekherman, Dey,
Molinaro, Sun

» For simplicity, assume k = n/2. (Actually proof does not have this
value of k).
» The idea is to construct a matrix M where half of its eigenvalues
take the negative value — f, with orthonormal elgenvectors
Loverbound 2 v',v2, ..., v"2 and rest take a positive value f, with

orthonormal eigenvectors w', w2, w2, i.e.,

78
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e e Proof of lower bound 2

Blekherman, Dey,
Molinaro, Sun

» For simplicity, assume k = n/2. (Actually proof does not have this
value of k).

» The idea is to construct a matrix M where half of its eigenvalues
take the negative value — f, with orthonormal elgenvectors

toverbound2 v',v2 ..., v"? and rest take a positive value —-, with
n/2

f!

orthonormal eigenvectors w', w2, ,i.e.,

n/2 1 n/2 ) -
Z 75 > (w)Hw)

i=1

» This normalization makes ||M||r = 1.

2
> diste(M,ST) > (ﬁ) - § = cst independent of n.
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e e Proof of lower bound 2

Blekherman, Dey,
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» For simplicity, assume k = n/2. (Actually proof does not have this
value of k).

» The idea is to construct a matrix M where half of its eigenvalues
take the negative value —7, with orthonormal e|genvectors

Lower bound 2 v',v2, ..., v"2 and rest take a positive value f, with
orthonormal eigenvectors w', w2, w2, i.e.,
n/2 n/2

M= A3+ =)

» This normalization makes ||M||r = 1.

2
> diste(M,ST) > (\1—5) - § = cst independent of n.

» So we only need to guarantee that M belongs to the k-PSD
closure.

0



Sparse PSD

e e Proof of lower bound 2 —contd.
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> M= SVEV)T + S (w)T
» Letting V be the matrix with rows v', v2, ..., and W the matrix
with rows w', w?, . .., the quadratic form x Mx:
Lower bound 2 X Mx = ,LH Vx|)3 + LH Wi|[3.

Vi Vi

81
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e e Proof of lower bound 2 —contd.

Blekherman, Dey,

Molinaro, Sun
> M= SVEV)T + S (w)T
» Letting V be the matrix with rows v', v2, ..., and W the matrix
with rows w', w?, . .., the quadratic form x Mx:
Lower bound 2 X Mx = ,LH Vx|)3 + LH Wi|[3.

Vi Vi

> || Vx||3 < ||Ix||3 (because V is orthonormal)
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Lower bound 2

Proof of lower bound 2 —contd.

M= LSRN+ S S w)(w)T
Letting V be the matrix with rows v', v, ..., and W the matrix
with rows w', w2, .. ., the quadratic form x " Mx:

T 1 2 1 2
X Mx=——||Vx — || Wx||5.
IVl + W

| Vx||3 < ||| (because V is orthonormal)
So if we could construct the matrix W so that for all k-sparse

vectors x € R" we had | ||Wx||3 ~ ||x]|[3 |

x Mx > ’ for all k-sparse vectors X |,

1 2, 1 2
——||x —|Ix|22 0
2~ g + B 2

a3
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er bound

Lower bound 2

Proof of lower bound 2 —contd.

M= LSRN+ S S w)(w)T
Letting V be the matrix with rows v', v, ..., and W the matrix
with rows w', w2, .. ., the quadratic form x " Mx:

T 1 2 1 2
X Mx=——||Vx — || Wx||5.
IVl + W

| Vx||3 < ||| (because V is orthonormal)
So if we could construct the matrix W so that for all k-sparse

vectors x € R" we had | ||Wx||3 ~ ||x]|[3 |

T 1 2 1 2
X Mx > ——|x — x|z =0
2~ g + B 2

’ for all k-sparse vectors X |,

This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.

4



4
Examining the hyperbolicity relaxations
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approximation How good is the hyperbolicity relaxation?
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Examining the
hyperbolicity
relaxations

> {XM)|M € S™*} C H(ep)
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Sparse PSD

approximation How good is the hyperbolicity relaxation?

Blekherman, Dey,
Molinaro, Sun

Examining the
hyperbolicity
relaxations

> {XM)|M € S™*} C H(ep)
> Infact, H(ej) =R} = {A\(M)| M € 8""}.
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Examining the
hyperbolicity

relaxations Theorem (k = n— 1; Blekherman, D., Shu, Sun)
Letn > 3. Then:

H(eq—1) = {XM)| M e 8™}

a8



Sparse PSD

approximation The case Of k =n-— 1

Blekherman, Dey,
Molinaro, Sun

Examining the
hyperbolicity

relaxations Theorem (k = n— 1; Blekherman, D., Shu, Sun)
Letn > 3. Then:

H(eq—1) = {XM)| M e 8™}

Corollary
Letn > 3. Then: {\(M)|M € S™"~'} is a convex set.

809
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k—1 -1 e -1
G k—1)=| 1 KTT e T o gnk
Examinirjg_the 71 . 71 k - 1
hyperbolicity
relaxations

» Every k x k principal submatrix of G(1, k) is singular. Thus,

eR(G(l,k—1)= > det(G(1,k—1)|s)=0.

SC[n]:|S|=k
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approximation How good is the hyperbolicity relaxation?
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k—1 -1 -1

G k—1)=| 1 KTT e T o gnk

Examining the —1 . —1 k —1
hyperbolicity
relaxations

» Every k x k principal submatrix of G(1, k) is singular. Thus,

eR(G(l,k—1)= > det(G(1,k—1)|s)=0.

SC[n]:|S|=k

» So G(1,k — 1) belongs to the boundary of H(e}).
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k—1 -1 -1

k=t ek

Examining the —1 . —1 k —1
hyperbolicity
relaxations

» Every k x k principal submatrix of G(1, k) is singular. Thus,

eR(G(l,k—1)= > det(G(1,k—1)|s)=0.

SC[n]:|S|=k

» So G(1,k — 1) belongs to the boundary of H(e}).

» Let D be a diagonal matrix (where every diagonal entry is
non-zero). Then DG(1,k — 1)D € S™* and
DG(1,k —1)D € bnd(H(ef)).

Q2
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k—1 -1 -1

k=t ek

Examining the —1 . —1 k —1
hyperbolicity
relaxations

» Every k x k principal submatrix of G(1, k) is singular. Thus,

eR(G(l,k—1)= > det(G(1,k—1)|s)=0.

SC[n]:|S|=k

» So G(1,k — 1) belongs to the boundary of H(e}).

» Let D be a diagonal matrix (where every diagonal entry is
non-zero). Then DG(1,k — 1)D € S™* and
DG(1,k —1)D € bnd(H(ef)).

» Finally, DG(1, kK — 1)D is a non-singular matrix.

g3
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Examining the
hyperbolicity
relaxations

How good is the hyperbolicity relaxation?

k=1 1 .
G k—1)=| 1 KTT e T o gnk

1 -1 k=1

Every k x k principal submatrix of G(1, k) is singular. Thus,

eR(G(l,k—1)= > det(G(1,k—1)|s)=0.

SC[n]:|S|=k

So G(1, k — 1) belongs to the boundary of H(ey).

Let D be a diagonal matrix (where every diagonal entry is
non-zero). Then DG(1,k — 1)D € S™* and

DG(1,k —1)D € bnd(H(e})).

Finally, DG(1, kK — 1)D is a non-singular matrix.

So, DG(1,k —1)D € bnd(H(e})), is a non-singular matrix and
belongs to S™.
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approximation How good is the hyperbolicity relaxation — Comparing
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Examining the

ryperlciy Theorem (Blekherman, D., Shu, Sun)
relaxations
let2<k<n—1orn=4andk=2. Let M = S" . If M is

non-singular and M belongs to the boundary of H(e}), then there
exists a diagonal matrix D such that M = DG(1,k —1)D.
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approximation How good is the hyperbolicity relaxation — Comparing
Blekherman, Dey, bou ndary
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Examining the

rypercoicy Theorem (Blekherman, D., Shu, Sun)
relaxations
Let2< k<n—1orn=4andk =2. Let

, then there
exists a diagonal matrix D such that M = DG(1,k —1)D.

» There exist points on the boundary of H(ey) with as many as
n — k negative entries and no zero entries.

Corollary

Let2 < k <n—1orn=4andk = 2. Then the set of “eigenvalue
vectors" for matrices in S™¥ is strictly contained in H(e}).
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Thank You.

> Grigoriy Blekherman, Santanu S. Dey, Marco Molinaro, Shengding Sun,
“Sparse PSD approximation of the PSD cone," To appear in
Mathematical Programming.

> Grigoriy Blekherman, Santanu S. Dey, Kevin Shu, Shengding Sun,
“Hyperbolic Relaxation of k-Locally Positive Semidefinite Matrices,"
https.//arxiv.org/abs/2012.04031.

» Santanu S. Dey, Aleksandr M. Kazachkov, Andrea Lodi, Gonzalo Mufioz,
"Cutting Plane Generation Through Sparse Principal Component
Analysis" http://www.optimization-online.org/DBHTML/2021/02/8259.html
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