Selection in explorable heaps

Sander Borst (CWI), Daniel Dadush (CWI), Sophie Huiberts (Columbia University), Danish Kashaev (CWI)

Selection in explorable heaps

finding the *n*th smallest element

binary tree with increasing values

 Branch & Bound algorithm for solving MIP's •B&B-tree is a heap

Travel is expensive

Node selection: Which subproblem to solve next?

Depth First Search

• $O(n \cdot 2\sqrt{2\log(n)})$ [KSW86] • $O(n \cdot \log(n)^3)$ (our result)

[KSW86] Richard M Karp, Michael E Saks, and Avi Wigderson. On a search problem related to branch-and-bound procedures. In FOCS, pages 19-28, 1986.

• Call the *n* smallest values the good values • For set of *m* values: can test which are good using binary search in $O(n \log(m))$

- Can test if value is good in O(n) time using DFS

- •Find n smallest nodes, assuming that the $k\geq \frac{1}{2}n$ smallest are given
- $\bullet {\sf Children}$ of the k smallest nodes are called roots
- Take a random root:
 - •Find n' smallest nodes under root by recursive call for n' = 1, 2, 4, ...
 - When a found node is not good, find highest good value under root

Take a random root:

- •Find n' smallest nodes under root by recursive call for n' = 1, 2, 4, ...
- When a found node is not good, find highest good value under root

$\log(n)$

 $n\log(n)$

ALG(n,k) $\mathsf{ALG}(n_1^{(1)}, k_1^{(1)}), \dots, \mathsf{ALG}(n_{r_1}^{(1)}, k_{r_1}^{(1)})$ $\mathsf{ALG}(n_1^{(2)}, k_1^{(2)}), \dots, \mathsf{ALG}(n_{r_2}^{(2)}, k_{r_2}^{(2)})$ $\sum_{i=1}^{r_2} n_i^{(2)} \log(n)^2$

 $n\log(n)^2$ $\sum_{i=1}^{r_1} n_i^{(1)} \log(n)^2$

Comparison

•In full space: only trivial lower bound known ($\Omega(n)$)

•Lower bound $\Omega(\frac{n \log(n)}{\log \log(n)})$ when in $O(\log(n))$ space

• Closing the gap between $\Omega(n)$ and $n \log(n)^3$ in full space setting Is randomness needed?

Open problems

Questions?