
On Breaking k-Trusses
Dutch Seminar on Optimization

Huiping Chen1, Alessio Conte2, Roberto Grossi2,
Grigorios Loukides1, Solon P. Pissis3,4,5,

Michelle Sweering4

1King’s College London
2University of Pisa

3ERABLE Team, INRIA, Lyon
4CWI, Amsterdam

5Vrije Universiteit, Amsterdam

25th March 2021

Michelle Sweering On Breaking k-Trusses 25th March 2021 1 / 21



Data Sanitization
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Data Sanitization

I Privacy Constraints

I Utility Properties
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Community Breaking

I Maintaining communities in social networks

I Assessing resilience to attacks and errors in communication networks

I Hiding membership to communities in social networks

I Preventing detection of confidential communities
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k-Trusses

Definition (k-Truss)

A k-truss is a subgraph in which each edge is contained in at least k − 2
triangles of the subgraph.

Problem (MIN-k-TBS)

Find a minimum set of edges to delete to remove all k-trusses.

Problem (MIN-k-CBS)

Find a minimum set of edges incident to U such that no node in U is in a
k-truss.
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NP-hardness

Theorem
The problems MIN-k-TBS and MIN-k-CBS are NP-hard.

Theorem
For δ > 0, both MIN-k-TBS and MIN-k-CBS cannot be approximated
within an additive term of |V |2−δ, unless P = NP.

Theorem
For ε > 0, both MIN-k-TBS and MIN-k-CBS cannot be approximated
within a multiplicative factor of (k − 2− ε), assuming the unique games
conjecture.
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NP-hardness

Theorem
For all k ≥ 3, MIN-k-TBS is NP-hard.

Proof.
For k = 3, we want to break all
triangles. This is known to be NP-hard.
I Let G be an instance of

MIN-3-TBS.

I Turn each triangle in G into a
k-clique by adding k − 3 vertices to
obtain G ′.

I MIN-k-TBS in G ′ is equivalent to
MIN-3-TBS in G .

Therefore MIN-k-TBS is NP-hard.
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Algorithms

I Exact Algorithm

I Heuristics
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Truss Decomposition

Definition (k-Truss)

A k-truss is a subgraph in which each edge is contained in at least k − 2
triangles of the subgraph.

Algorithm

k = 2 (every graph G is a 2-truss)
while G non-empty:

I k = k + 1
I while there is an edge in less than k − 2 triangles:

I remove that edge

I G is currently the maximum k-truss
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Dynamic Truss Update for Edge Deletion

Definition (Triangle trussness)

A triangle has trussness k if it appears in a k-truss, i.e. all three of its
edges have trussness k.

Update Algorithm

I Similar Algorithm

I Store the triangles each edge is in.

I Store the number of triangles of trussness k each edge is in.

I Time is proportional to the updated number of triangles.

I Propagation can cause O(TG ) time per update.

I Very good amortized time complexity O(t(G ) · TG )
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Exact Algorithm

I We want to find a minimum E ′ which intersects all k-trusses

I Every k-truss contains a minimal k-truss

I =⇒ we want to find E ′ which intersects all minimal k-trusses

Idea
I List all minimal k-trusses

I Find a minimum hypergraph transversal
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Max-Truss Breaking Heuristic (MBH)

I Let k ′ be the highest number such that G contains a k ′-truss.

I Let M be the maximal k ′-truss.

I Let |TRI≥k ′(M, e)| be the number of triangles in M containing
edge e.

While k ′ ≥ k:

MBHS Delete the edge with the highest |TRI≥k(M, e)|
MBHC Delete the edge in the highest |TRI≥k(M, e)|/|TRI<k(M, e)|
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Save the Neighbours Heuristic (SNH)

I Give more weight to edges which are in many
triangles

I Give lower weight to triangles whose edges
have high support

Delete edge with minimal∑
{e,f ,g}∈TRI≥k

|TRI≥k(M, e)|
max(|TRI≥k(M, f )| − k + 2, 1)

+
|TRI≥k(M, e)|

max(|TRI≥k(M, g)| − k + 2, 1)
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Small Networks
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Benchmarking Large Networks

Problem
How can we compare the accuracy of
these heuristics on large data?

Idea
Partition the graph into cliques.
Find a lower bound for each clique.
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Benchmarking Large Networks

Problem
How can we compare the accuracy of
these heuristics on large data?

Idea
Partition the graph into cliques.
Find a lower bound for each clique.

Theorem (Turán)

A graph on n vertices and more than (k−2)
(k−1) ·

n2

2 edges contains a k-clique.

Theorem (Conte et al.)

A graph with m edges and TG triangles has trussness at least TG/m + 1.
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Small Networks
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Benchmarking Large Networks
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Benchmarking Large Networks
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