Stabilization of Capacitated Matching Games

Lucy Verberk

Based on joint work with Matthew Gerstbrein and Laura Sanità

Eindhoven University of Technology

Introduction

Introduction

- ullet We consider a graph G=(V,E) with edge weights w and vertex capacities c.
- We say $M \subseteq E$ is a c-matching if $|M \cap \delta(v)| \le c_v$ for all $v \in V$.
- $\nu^c(G) = \max\left\{\sum_{e \in M} w_e : M \text{ is a } c\text{-matching in } G\right\}$
- $\nu_f^c(G) = \max \left\{ \sum_{e \in E} w_e x_e : \sum_{e \in \delta(v)} x_e \le c_v \ \forall v \in V, 0 \le x \le 1 \right\}$
- We call a graph G stable if $\nu^c(G) = \nu_f^c(G)$.

$$\nu^c(G) = 2 = \nu_f^c(G)$$

1

Network bargaining games

Network bargaining games were first introduced by Kleinberg and Tardos (2008), as a generalization of Nash's 2-player bargaining solution (1950).

- ullet V: players
- ullet E: potential deals with value w
- ullet a player v can enter in c_v deals: a set of deals is a c-matching M
- players decide how to split the value of their deal: $z_{uv}+z_{vu}=w_{uv}$ if $uv\in M$ and $z_{uv}=z_{vu}=0$ otherwise
- stable solution if all players are satisfied

$$\alpha_u(M, z) = \max_{v: uv \in E \setminus M} \left(w_{uv} - \mathbf{1}_{\left[d_v^M = c_v\right]} \min_{vw \in M} z_{vw} \right)$$

Theorem (Bateni, Hajiaghayi, Immorlica, Mahini (2010))

There exists a stable solution for the network bargaining game on G if and only if G is stable.

The stabilization problem

The stabilization problem: minimally modify a graph to turn it into a stable one.

Previously studied modifications:

- Edge removal [Biró et al. (2014)] [Bock et al. (2015)] [Koh, Sanità (2020)]
- Vertex removal [Ito et al. (2017)] [Ahmadian et al. (2018)] [Koh, Sanità (2020)]
- Edge and vertex addition [Ito et al. (2017)]
- Increasing edge weights [Chandrasekaran et al. (2019)]

The stabilization problem - vertex removal

A vertex-stabilizer is a set $S \subseteq V$ such that $G \setminus S$ is stable $(\nu^c(G \setminus S) = \nu_f^c(G \setminus S))$.

Vertex-stabilizer problem: given a graph (G, w, c), find a min-cardinality vertex-stabilizer

M-vertex-stabilizer problem: given a graph (G,w,c) and a max-weight c-matching M, find a min-cardinality vertex-stabilizer among those avoiding M

Generalized M-vertex-stabilizer problem: given a graph (G, w, c) and an arbitrary c-matching M, find a min-cardinality vertex-stabilizer S among those for which M is a max-weight c-matching in $G \setminus S$

(G, w, c)	vertex-stabilizer	$M ext{-}vertex ext{-}stabilizer$	generalized M -vertex-stabilizer
w = 1, $c = 1$	P [IKK ⁺ 17][AHS18]	P [AHS18]	tight 2-approx [KS20]
$w\geq 0$, $c=1$	P [KS20]	P [KS20]	tight 2-approx [KS20]
$w \geq 0$, $c \geq 0$	tight $ V $ -approx	Р	tight 2-approx

4

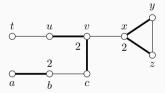
(Generalized) M-vertex-stabilizer

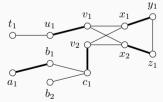
(Generalized) M-vertex-stabilizer

Natural idea for an algorithm:

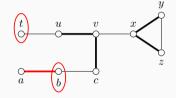
- Transform the given graph and c-matching into an auxiliary unit-capacity instance using a reduction from [Farczadi, Georgiou, Könemann (2013)].
- Apply the algorithm from [Koh, Sanità (2020)] to the unit-capacity auxiliary instance.

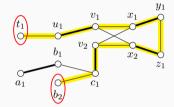
This does not work if both algorithms are used as a black-box.





Issues when using the unit-capacity algorithm

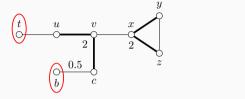


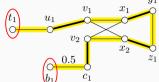


Issue 1: the algorithm suggest to remove a vertex that cannot be removed.

Solution: check per suggested vertex if it can actually be removed.

Issues when using the unit-capacity algorithm



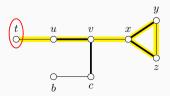


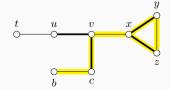
Issue 2: the algorithm suggest to remove two vertices, while one could be enough.

 \rightarrow 2-approximation algorithm.

Solution:

- *M*-vertex-stabilizer problem: use traceback operation to get an exact algorithm.
- ullet Generalized M-vertex-stabilizer problem: satisfied with 2-approximation.





(Generalized) M-vertex-stabilizer

Theorem

The M-vertex stabilizer problem can be solved in polynomial time, and the generalized M-vertex stabilizer problem admits an efficient 2-approximation.

ightarrow Use the auxiliary construction, and apply the unit-capacity algorithm keeping in mind issues 1 and 2.

Vertex-stabilizer

Vertex-stabilizer

Theorem

The vertex-stabilizer problem is NP-complete, and no efficient $|V|^{1-\varepsilon}$ -approximation exists for any $\varepsilon > 0$, unless P = NP. This is true even when all edges have weight one.

Trivial |V|-approximation: remove all vertices.

We will give an approximation preserving reduction from the following problem:

Minimum independent dominating set problem: given a graph G=(V,E), compute a minimum-cardinality subset $S\subseteq V$ that is independent and dominating.

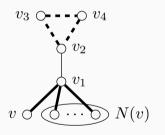
9

Reduction

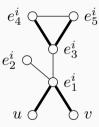
Let
$$G = (V, E)$$
.

Let G' be the union of the following gadgets:

• Γ_v for every $v \in V$:



• Γ_e^i for every $e = uv \in E$ and $i \in \{1, \dots, |V|\}$:



Claim: G has an independent dominating set of size at most k if and only if G' has a vertex-stabilizer of size at most k.

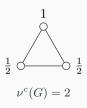
Cooperative matching games

Cooperative matching games

- V: players
- ullet players can distribute a total value of $u^c(G)$
- $y \in \mathbb{R}^{V}_{\geq 0}$: allocation vector
 - $ightarrow \ y_v$ is the value assigned to player v
- stable solution if every subset of players is satisfied:

if
$$\sum_{v \in S} y_v \ge \nu^c(G[S])$$
 for all $S \subseteq V$

ullet core: set of all stable solutions of total value $u^c(G)$



Equivalence

- (i) G is stable
- (ii) there exists a stable solution for the network bargaining game on G
- (iii) there exists a solution in the core of the cooperative matching game on ${\it G}$

Theorem (Kleinberg, Tardos (2008), Deng, Ibaraki, Nagamochi (1999))

In unit-capacity graphs (i), (ii) and (iii) are equivalent.

Does this generalize to capacitated graphs?

- Bateni et al. (2010): (i) and (ii) are equivalent, and (i) implies (iii).
- Biró et al. (2016), Gerstbrein, Sanità, Verberk (2022): (iii) does not imply (i).

$$\nu^c(G)=3$$

$$\nu_f^{\epsilon}(G) = 3.$$

Conclusion & future work

- \bullet Results for the (generalized) M-vertex-stabilizer problem extend to the capacitated case:
 - The *M*-vertex-stabilizer problem is polynomial time solvable.
 - ullet The **generalized** M-vertex-stabilizer problem admits an efficient 2-approximation.
- Results for the vertex-stabilizer problem do not extend to the capacitated case:
 - While the problem is polynomial time solvable in the unit-capacity case, there cannot be an efficient $|V|^{1-\varepsilon}$ -approximation in the capacitated case.
 - ullet There is a trivial |V|-approximation for the **vertex-stabilizer** problem.

Future

- Stabilizing capacitated graphs by reducing the capacity of vertices.
- Stabilizing capacitated graphs by removing edges.
- Stabilizing cooperative matching games in capacitated instances.