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Local Search Heuristics

Many combinatorial problems are hard.

So hard, practitioners usually give up on solving them exactly.

Instead, they often use local search heuristics.

Example: 2-opt for Travelling Salesperson Problem (TSP).
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Local Improvement Heuristics

Simplest local search heuristic: local improvement.

Given solution x , select any “neighbor” y → if y is better, move to
it.

▶ Simple to implement.

▶ Can be bad in worst case,
but:

▶ Very effective in practice.
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Weakness of local improvement: local minima.

Escape using metaheuristics!
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Travelling Salesperson Problem

Definition
Given a graph G = (V ,E ) with edge weights w : E → [0, 1], the
Travelling Salesperson Problem (TSP) asks for a minimum-weight
Hamiltonian cycle on G .

Definition
The solution set S is the set of all Hamiltonian cycles on G .

Definition
The length L(x | w) of tour x ∈ S with respect to the weights
w ∈ [0, 1]E is the sum of its edge weights, i.e.
L(x | w) =

∑
e∈x w(e).
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Simulated annealing: outline

Simulated annealing:
metaheuristic.

Generalizes local improvement:
allows “bad” steps.

Defines a Markov chain on S .

Parametrized by “temperature”:

P(bad step) = e−∆L/T = e−β∆L.
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Cooling a Salesperson

T = , J(x) = 8.92 T = 0.0010, J(x) = 5.92 T = 0.0001, J(x) = 3.76



Simulated annealing: theoretical guarantee

Theorem (Informal (Hajek, 1989))

Simulated annealing converges to the uniform distribution on the
global minima as t → ∞, provided the temperature satisfies

Tt =
a

log(t)
,

where a is a problem-dependent constant.

In practice, this cooling schedule is too slow.

For general TSP: convergence (w.h.p.) in about O
(
nn

2
)
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Lower bound

Just how bad is this cooling schedule?

▶ Size of solution set in TSP < n! ≪ nn
2
.

▶ Held-Karp solves TSP in O∗(2n).

Q: can SA with log-cooling do better than Held-Karp?

Alternatively: can we find the optimal tour with constant
probability?

Spoiler: probably not.
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Outline of Analysis

Random TSP model
Let G = (V ,E ) be a complete graph on n vertices. Assign weights
to the edges by drawing them from µ = U[0, 1]E .

Theorem
For the random TSP model, the optimal tour length is Θ(1) w.h.p.

Use this model to obtain average case predictions.

Average case ≤ worst case, so lower bounds transfer.
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Outline of Analysis

Fix a temperature T =: β−1, and draw edge weights
W ∼ µ = U[0, 1]E .

Start from arbitrary tour x ∈ S , and run until distribution over S
converges.

Stationary distribution for this random instance:

πβ(x |W ) =
e−βL(x |W )∑
y∈S e

−βL(y |W )
=

e−βL(x |W )

Z (β |W )

where L(x |W ) =
∑

e∈x W (e), the length of tour x .

Note: πβ(x |W ) is a random measure!
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Outline of Analysis
We study the statistics of L(x |W ). A nice fact:

Eπβ
(L |W ) = − d

dβ
lnZ (β |W ).

Proof.

Eπβ
(L |W ) =

∑
x∈S

πβ(x |W )L(x |W ) =
∑
x∈S

e−βL(x |W )

Z (β |W )
L(x | w)

= − 1

Z (β |W )

d

dβ

∑
x∈S

e−βL(x |W ) = − d
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lnZ (β |W ).

So if we want to compute E(L):

E(L) = − d

dβ
Eµ (lnZ (β |W )).
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Main Obstacle

Problem: cannot compute Eµ(lnZ (β |W )).

We can compute lnEµ(Z (β |W )), but that is not what we have. . .

Luckily, Eµ(Z (β |W )) contains some useful information still.

Vague outline: define another, easier-to-analyze Markov chain
related to SA.

Analyze this simpler chain instead and compare expected tour
lengths.



Main Obstacle

Problem: cannot compute Eµ(lnZ (β |W )).

We can compute lnEµ(Z (β |W )), but that is not what we have. . .

Luckily, Eµ(Z (β |W )) contains some useful information still.

Vague outline: define another, easier-to-analyze Markov chain
related to SA.

Analyze this simpler chain instead and compare expected tour
lengths.



Main Obstacle

Problem: cannot compute Eµ(lnZ (β |W )).

We can compute lnEµ(Z (β |W )), but that is not what we have. . .

Luckily, Eµ(Z (β |W )) contains some useful information still.

Vague outline: define another, easier-to-analyze Markov chain
related to SA.

Analyze this simpler chain instead and compare expected tour
lengths.



Main Obstacle

Problem: cannot compute Eµ(lnZ (β |W )).

We can compute lnEµ(Z (β |W )), but that is not what we have. . .

Luckily, Eµ(Z (β |W )) contains some useful information still.

Vague outline: define another, easier-to-analyze Markov chain
related to SA.

Analyze this simpler chain instead and compare expected tour
lengths.



Main Obstacle

Problem: cannot compute Eµ(lnZ (β |W )).

We can compute lnEµ(Z (β |W )), but that is not what we have. . .

Luckily, Eµ(Z (β |W )) contains some useful information still.

Vague outline: define another, easier-to-analyze Markov chain
related to SA.

Analyze this simpler chain instead and compare expected tour
lengths.



Auxiliary Distribution

We define the auxiliary distribution as

πA
β (x ,w) =

e−βL(x | w)µ(w)

Eµ(Z (β |W ))
.

→ stationary distribution of auxiliary chain.

Let X ,W ∼ πA
β and LA =

∑
e∈X W (e).Then

E(LA) = − d

dβ
lnEµ(Z (β |W )).

This lower bounds the real tour length!
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Summarizing the Strategy

To summarize: we define

πβ(x |W ) =
e−βL(x |W )∑
y∈S e

−βL(y |W )
=

e−βL(x |W )

Z (β |W )
,

and also

πP
β (x ,w) = πβ(x | w)µ(w)︸ ︷︷ ︸

primary distribution

and πA
β (x ,w) = πβ(x | w)νβ(w)︸ ︷︷ ︸

auxiliary distribution

,

where νβ(w) = µ(w)Z(β | w)
Eµ(Z(β |W )) . Then let XA/P ,WA/P ∼ π

A/P
β .

We compare the variables LA/P =
∑

e∈XA/P
WA/P(e).
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Main Result

Theorem
For β > 0,

E(LP) ≥ E(LA) = n

(
1

β
− 1

eβ − 1

)
.

Corollary

Assuming SA is in equilibrium at iteration t, the logarithmic
cooling schedule with parameter a > 0 yields

E(LP) = Ω

(
an

log t

)
as t → ∞.

→ Getting E(L) = O(1) requires t = 2Ω(n).
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Towards a tail bound
Only have a lower bound on the expected tour length.

But over many iterations, could we sometimes sample better
solutions?

Want to prove a tail bound for LP , i.e.

P(LP ≤ j) ≤ (something small).

Can prove this for LA:
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Consequences

Next step is to prove that P(LP ≤ j) ≤ P(LA ≤ j).

Then for log-cooling, SA finds global optimum with probability
on(1) in 2o(n) iterations (assuming equilibrium).

Further directions:

▶ Extend to non-equilibrium situations.

▶ Consider other problems besides TSP.

▶ Consider different or more general probabilistic models.
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