Decomposition of Probability Marginals for Security Games in Abstract Networks

Jannik Matuschke
KU Leuven

From Marginals to Distributions

Input:

- ground set E
- set system $\mathcal{P} \subseteq 2^{E}$
- requirements $\pi \in[0,1]^{\mathcal{P}}$
- marginals $\rho \in[0,1]^{E}$

From Marginals to Distributions

Input:

- ground set E
- set system $\mathcal{P} \subseteq 2^{E}$
- requirements $\pi \in[0,1]^{\mathcal{P}}$
- marginals $\rho \in[0,1]^{E}$

Goal: Find distribution for random set $S \subseteq E$ such that

$$
\begin{aligned}
\operatorname{Pr}[e \in S] & =\rho_{e}
\end{aligned} \quad \forall e \in E, ~ 子 \begin{aligned}
\operatorname{Pr}[P \cap S \neq \emptyset] & \geq \pi_{P}
\end{aligned} \quad \forall P \in \mathcal{P} .
$$

Feasible Decompositions

We call a random set S with

$$
\begin{aligned}
\operatorname{Pr}[e \in S] & =\rho_{e} \quad \forall e \in E, \\
\operatorname{Pr}[P \cap S \neq \emptyset] & \geq \pi_{P} \quad \forall P \in \mathcal{P}
\end{aligned}
$$

a feasible decomposition of ρ w.r.t. (\mathcal{P}, π).

Feasible Decompositions

We call a random set S with

$$
\begin{aligned}
\operatorname{Pr}[e \in S] & \leq \rho_{e} \quad \forall e \in E, \\
\operatorname{Pr}[P \cap S \neq \emptyset] & \geq \pi_{P} \quad \forall P \in \mathcal{P}
\end{aligned}
$$

a feasible decomposition of ρ w.r.t. (\mathcal{P}, π).

Feasible Decompositions

We call a random set S with

$$
\begin{aligned}
\operatorname{Pr}[e \in S] & \leq \rho_{e} \quad \forall e \in E, \\
\operatorname{Pr}[P \cap S \neq \emptyset] & \geq \pi_{P} \quad \forall P \in \mathcal{P}
\end{aligned}
$$

a feasible decomposition of ρ w.r.t. (\mathcal{P}, π).
We say ρ is feasible if it has a feasible decomposition.

Feasible Decompositions

We call a random set S with

$$
\begin{aligned}
\operatorname{Pr}[e \in S] & \leq \rho_{e} \quad \forall e \in E, \\
\operatorname{Pr}[P \cap S \neq \emptyset] & \geq \pi_{P} \quad \forall P \in \mathcal{P}
\end{aligned}
$$

a feasible decomposition of ρ w.r.t. ($\mathcal{P}, \pi)$.
We say ρ is feasible if it has a feasible decomposition.

Can we describe the set of feasible ρ ?

Feasible Decompositions

We call a random set S with

$$
\begin{aligned}
\operatorname{Pr}[e \in S] \leq \rho_{e} & \forall e \in E, \\
\operatorname{Pr}[P \cap S \neq \emptyset] \geq \pi_{P} & \forall P \in \mathcal{P},
\end{aligned}
$$

a feasible decomposition of ρ w.r.t. (\mathcal{P}, π).
We say ρ is feasible if it has a feasible decomposition.

feasible?

Can we describe the set of feasible ρ ?

A Necessary Condition

$$
\sum_{e \in P} \rho_{e} \geq \pi_{P} \quad \forall P \in \mathcal{P} \quad(\star)
$$

Observation: If ρ is feasible, then it must fulfil (\star).

A Necessary Condition

$$
\left.\sum_{e \in P} \rho_{e} \geq \pi_{P} \quad \forall P \in \mathcal{P} \quad \text { (}\right)
$$

Observation: If ρ is feasible, then it must fulfil (\star).
But (\star) is not always sufficient:

A Necessary Condition

$$
\left.\sum_{e \in P} \rho_{e} \geq \pi_{P} \quad \forall P \in \mathcal{P} \quad \text { (}\right)
$$

Observation: If ρ is feasible, then it must fulfil (\star).
But (\star) is not always sufficient:

A system (\mathcal{P}, π) is (\star)-sufficient if for all $\rho \in[0,1]^{E}$: ρ is feasible. $\Leftrightarrow \rho$ fulfils (\star).

Motivation: Security Games

Given: set system (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$, requirements $\pi \in[0,1]^{\mathcal{P}}$

Motivation: Security Games

> Given: set system (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$, requirements $\pi \in[0,1]^{\mathcal{P}}$

景selects random set $S \subseteq E$ at cost $\sum_{e \in S} c_{e}$ wants to deter any attack at minimum cost Defender

Motivation: Security Games

> Given: set system (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$, requirements $\pi \in[0,1]^{\mathcal{P}}$
selects random set $S \subseteq E$ at cost $\sum_{e \in S} c_{e}$ wants to deter any attack at minimum cost
selects $P \in \mathcal{P}$ or remains inactive π_{P} : risk threshold for deterring attacker from P

Motivation: Security Games

Defender's problem:

$$
\begin{array}{ll}
\min & \sum_{S \subseteq E} \sum_{e \in S} c_{e} x_{S} \\
\text { s.t. } & \sum_{S: P \cap S \neq \emptyset} x_{S} \geq \pi_{P} \quad \forall P \in \mathcal{P} \\
& \sum_{S \subseteq E} x_{S}=1 \\
x \geq 0
\end{array}
$$

Motivation: Security Games

Defender's problem:

$$
\begin{aligned}
& \min \quad \sum_{e \in E} c_{e} \sum_{S: e \in S} x_{S} \\
& \text { s.t. } \sum_{S: P \cap S \neq \emptyset} x_{S} \geq \pi_{P} \quad \forall P \in \mathcal{P} \\
& \sum_{S \subseteq E} x_{S}=1 \\
& x \geq 0
\end{aligned}
$$

Motivation: Security Games

Defender's problem:

$$
\begin{aligned}
& \min \quad \sum_{e \in E} c_{e} \sum_{S: e \in S} x_{S} \\
& \text { s.t. } \sum_{S: P \cap S \neq \emptyset} x_{S} \geq \pi_{P} \quad \forall P \in \mathcal{P} \\
& \sum_{S \subseteq E} x_{S}=1 \\
& x \geq 0
\end{aligned}
$$

If (\star) is sufficient:

$$
\begin{gathered}
\min \quad \sum_{e \in E} c_{e} \rho_{e} \\
\text { s.t. } \quad \sum_{e \in P} \rho_{e} \geq \pi_{P} \quad \forall P \in \mathcal{P} \\
\rho \geq 0 \\
\text { Exponentially smaller } \\
\text { dimension :) }
\end{gathered}
$$

Motivation: Security Games

Defender's problem:
If (\star) is sufficient:

$$
\begin{aligned}
& \min \quad \sum_{e \in E} c_{e} \sum_{S: e \in S} x_{S} \\
& \text { s.t. } \sum_{S: P \cap S \neq \emptyset} x_{S} \geq \pi_{P} \quad \forall P \in \mathcal{P} \\
& \sum_{S \subseteq E} x_{S}=1 \\
& x \geq 0
\end{aligned}
$$

further applications: fairness/balance constraints in social choice, randomized algorithms
similar: Border's Theorem for auctions

Previous Results

[Dahan, Amin, Jaillet, MOR 2022]

$\mathcal{P}=\{s$-t-paths in a DAG $\}$, two settings for π :
(A) Affine requirements: $\quad \pi_{P}=1-\sum_{e \in E} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(C) Conservation law: $\quad \pi_{P}+\pi_{Q}=\pi_{P \times{ }_{v} Q}+\pi_{Q \times{ }_{v} P} \quad$ for $P, Q \in \mathcal{P}, v \in P \cap Q$

Previous Results

[Dahan, Amin, Jaillet, MOR 2022]

$\mathcal{P}=\{s$-t-paths in a DAG $\}$, two settings for π :
(A) Affine requirements: $\quad \pi_{P}=1-\sum_{e \in E} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(C) Conservation law: $\quad \pi_{P}+\pi_{Q}=\pi_{P \times{ }_{v} Q}+\pi_{Q \times{ }_{v} P} \quad$ for $P, Q \in \mathcal{P}, v \in P \cap Q$

Note: $(A) \Rightarrow(C)$.

Previous Results

[Dahan, Amin, Jaillet, MOR 2022]

$\mathcal{P}=\{s$-t-paths in a DAG $\}$, two settings for π :
(A) Affine requirements: $\quad \pi_{P}=1-\sum_{e \in E} \mu_{e} \quad$ for some $\mu \in[0,1]^{E}$
(C) Conservation law: $\quad \pi_{P}+\pi_{Q}=\pi_{P \times{ }_{v} Q}+\pi_{Q \times{ }_{v} P} \quad$ for $P, Q \in \mathcal{P}, v \in P \cap Q$

Note: $(A) \Rightarrow(C)$.

Their results:

- For (C): (\mathcal{P}, π) is (\star)-sufficient.
- For (A): Decomposition can be computed efficiently.
- Consequence: Computation of Nash equilibria in interdiction game on DAG.

New Results

DAGs
(Dahan et al.)

Affine efficient algorithm

Conservation (\star)-sufficient
(exp.-time algorithm)

New Results

DAGs Abstract Networks (incl. digraphs w. cycles)
efficient algorithm
(explicit description) \bigoplus

(Dahan et al.)
Affine efficient algorithm

Conservation (\star)-sufficient
(exp.-time algorithm)
\bigoplus combinatorial shortest-path algorithm for abstract networks

New Results

$\underset{\text { (Dahan et al.) }}{\text { DAGs }} \quad \underset{\text { (incl digraphs w. cycles) }}{\text { Abstract Networks }} \quad$ Max-Flow/Min-Cut
Affine efficient algorithm

Conservation (\star)-sufficient
(exp.-time algorithm)
\bigoplus combinatorial shortest-path algorithm for abstract networks

New Results

\oplus combinatorial shortest-path algorithm for abstract networks

New Results

	DAGs (Dahan et al.)	Abstract Networks (incl. digraphs w. cycles) Affine	Max-Flow/Min-Cut
efficient algorithm	efficient algorithm (explicit description)	characterize (\star)-sufficiency (oracle-poly)	
Conservation	(\star)-sufficient (exp.-time allgorithm)	(\star)-sufficient (oracle-poly)	

\bigoplus combinatorial shortest-path algorithm for abstract networks

New Results

$\underset{\text { (Dahan et al.) }}{\text { DAGs }} \quad \underset{\text { (incl digraphs w. cycles) }}{\text { Abstract Networks }} \quad$ Max-Flow/Min-Cut
Affine efficient algorithm
』
efficient algorithm
characterize
(explicit description) \bigoplus
(\star)-sufficiency
(\star)-sufficient
(oracle-poly)
\bigoplus combinatorial shortest-path algorithm for abstract networks
Also: NP-hard to decide feasibility of given ρ in general systems

Feasible Decompositions for Max-Flow/Min-Cut Systems

The Max-Flow/Min-Cut Property

\mathcal{P} has the max-flow/min-cut property if
$Q_{\mathcal{P}}:=\left\{\begin{aligned} \sum_{e \in P} y_{e} \geq 1 & \forall P \in \mathcal{P} \\ y_{e} \geq 0 & \forall e \in E\end{aligned}\right\}$ is integral.

The Max-Flow/Min-Cut Property

\mathcal{P} has the max-flow/min-cut property if $Q_{\mathcal{P}}:=\left\{\begin{aligned} \sum_{e \in P} y_{e} \geq 1 & \forall P \in \mathcal{P} \\ y_{e} \geq 0 & \forall e \in E\end{aligned}\right\}$ is integral.

Note: $Q_{\mathcal{P}}$ is integral iff every vertex is of the form $\mathbb{1}_{S}$ for some $S \in \mathcal{S}$.

$$
\mathcal{S}:=\{S \subseteq E: P \cap S \neq \emptyset \quad \forall P \in \mathcal{P}\}
$$

The Max-Flow/Min-Cut Property

\mathcal{P} has the max-flow/min-cut property if
$Q_{\mathcal{P}}:=\left\{\begin{aligned} \sum_{e \in P} y_{e} \geq 1 & \forall P \in \mathcal{P} \\ y_{e} \geq 0 & \forall e \in E\end{aligned}\right\}$ is integral.
Note: $\quad Q_{\mathcal{P}}$ is integral iff every vertex is of the form $\mathbb{1}_{S}$ for some $S \in \mathcal{S}$.

$$
\mathcal{S}:=\{S \subseteq E: P \cap S \neq \emptyset \quad \forall P \in \mathcal{P}\}
$$

Theorem. The following two statements are equivalent:

1. \mathcal{P} has the MF/MC property.
2. (\mathcal{P}, π) is (\star)-sufficient for all π fulfiling (A).

Proof: MF/MC implies (\star)-sufficiency for affine π
(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(夫) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

Proof: MF/MC implies (\star)-sufficiency for affine π
(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(\star) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}}
$$

$$
\begin{aligned}
& Q_{\rho}=\left\{y \in \mathbb{R}_{+}^{\epsilon}: \sum_{e \in P} y_{e} \geq 1 \forall P_{\in} P\right\} \\
& S=\left\{S_{\subseteq} E: P_{n} S \neq \varnothing \forall P_{\in} P\right\}
\end{aligned}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π
(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(\star) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

$$
\begin{aligned}
& Q_{\rho}=\left\{y \in \mathbb{R}_{+}^{\epsilon}: \sum_{e \in P} y_{e} \geq 1 \forall P_{\in} P\right\} \\
& S=\left\{S_{\subseteq} E: P_{n} S \neq \varnothing \forall P_{\in} P\right\}
\end{aligned}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

$$
\begin{array}{lccc}
\text { Definition } & \operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] & Q_{\rho}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in \mathcal{P}} y_{e} \geq 1 \quad \forall P_{\in} P\right\} \\
R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1 & y_{e}-r_{e}
\end{array}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

$$
\begin{array}{llccc}
& \text { Definition } & \operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] & Q_{\mathcal{P}}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in P} y_{e} \geq 1 \quad \forall P_{\in} P\right\} \\
R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1 & y_{e}-r_{e} & S=\left\{S \leq E: P_{n} S \neq \varnothing \quad \forall P \in \mathcal{S}\right\} \\
R_{2} & \text { indep. from } R_{1} & & \min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\} &
\end{array}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

$$
\text { (A) } \pi_{P}=1-\sum_{e \in P} \mu_{e} \text { for some } \mu \in[0,1]^{E}
$$

(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

Definition
$R_{1} \quad \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S}$

$$
\begin{array}{cc}
\operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] \\
1 & y_{e}-r_{e}
\end{array}
$$

$$
\begin{gathered}
\min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\} \\
\leq \rho_{e}
\end{gathered}
$$

R_{2} indep. from R_{1}
$R=R_{1} \cap R_{2}$

$Q_{S}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in P} y_{e} \geq 1 \quad \forall P_{\epsilon} \rho\right\}$
$\left.S=\left\{S_{\subseteq} E: P_{n} S \neq \varnothing \quad \forall P_{\in}\right\}\right\}$

Proof: MF/MC implies (\star)-sufficiency for affine π

$$
\text { (A) } \pi_{P}=1-\sum_{e \in P} \mu_{e} \text { for some } \mu \in[0,1]^{E}
$$

(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

$$
\begin{array}{rlcc}
& \text { Definition } & \operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] \\
R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1 & y_{e}-r_{e} \\
R_{2} & \text { indep. from } R_{1} & & \min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\} \\
R & =R_{1} \cap R_{2} & \geq \pi_{P} ? & \leq \rho_{e}
\end{array}
$$

$$
Q_{\rho}=\left\{y \in \mathbb{R}_{+}^{\epsilon}: \sum_{e \in P} y_{e} \geq 1 \quad \forall P \in P\right\}
$$

$$
\left.S=\left\{S_{\subseteq} E: P_{n} S \neq \varnothing \forall P_{e}\right\}\right\}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underset{\text { convex combination }}{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}+\underset{\geq 0}{r}
$$

$$
\begin{array}{rlccc}
& \text { Definition } & \operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] & \left.Q_{P}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in P} y \geq 1 \quad \forall P_{e}\right\}\right\} \\
R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1 & y_{e}-r_{e} & S=\left\{S \subseteq E:: P_{\cap} S \neq \varnothing \quad \forall P \in S\right\} \\
R_{2} & \text { indep. from } R_{1} & & \min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\} \\
R & =R_{1} \cap R_{2} & \geq \pi_{P} \text { ? } & \leq \rho_{e} &
\end{array}
$$

$$
\operatorname{Pr}[R \cap P=\emptyset] \leq \operatorname{Pr}\left[\exists e \in P \cap R_{1} \backslash R_{2}\right]
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

Definition

$$
\operatorname{Pr}[S \cap P \neq \emptyset]
$$

$$
\operatorname{Pr}[e \in S]
$$

$R_{1} \quad \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S}$
1
$y_{e}-r_{e}$
R_{2} indep. from R_{1}
$R=R_{1} \cap R_{2}$

$$
\geq \pi_{P} ?
$$

$$
\leq \rho_{e}
$$

$$
\operatorname{Pr}[R \cap P=\emptyset] \leq \sum_{e \in P} \operatorname{Pr}\left[e \in R_{1}\right] \cdot \operatorname{Pr}\left[e \notin R_{2}\right]
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

Definition
$\begin{array}{ccc}R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1\end{array} y_{e}-r_{e}$
$Q_{S}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in P} y_{e} \geq 1 \quad \forall P_{\epsilon} \rho\right\}$
$\left.S=\left\{S_{\subseteq} E: P_{n} S \neq \varnothing \quad \forall P_{\varepsilon}\right\}\right\}$
R_{2} indef. from R_{1} $\min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\}$
$R=R_{1} \cap R_{2}$

$$
\geq \pi_{P} ?
$$

$$
\leq \rho_{e}
$$

$$
\operatorname{Pr}[R \cap P=\emptyset] \leq \sum_{e \in P}\left(y_{e}-r_{e}\right) \cdot\left(1-\min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\}\right)
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

Definition
$\begin{array}{ccc}R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1\end{array} y_{e}-r_{e}$
R_{2} indep. from $R_{1} \quad \min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\}$
$R=R_{1} \cap R_{2}$
$\geq \pi_{P}$?

$$
\leq \rho_{e}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

$$
\begin{array}{rlccc}
& \text { Definition } & \operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] & \left.Q_{P}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in P} y_{e} \geq 1 \quad \forall P_{\in}\right\}\right\} \\
R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1 & y_{e}-r_{e} & S=\left\{S \subseteq E: P_{\cap} S \neq \varnothing \quad \forall P \in S\right\} \\
R_{2} & \text { indep. from } R_{1} & & \min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\} \\
R & =R_{1} \cap R_{2} & \geq \pi_{P} ? & \leq \rho_{e} &
\end{array}
$$

$$
\operatorname{Pr}[R \cap P=\emptyset] \leq \sum_{e \in P} \max \left\{y_{e}-r_{e}-\rho_{e}, 0\right\}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

$$
\begin{array}{rlccc}
& \text { Definition } & \operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] & \left.Q_{P}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in P} y_{e} \geq 1 \quad \forall P_{\in}\right\}\right\} \\
R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1 & y_{e}-r_{e} & S=\left\{S \subseteq E: P_{\cap} S \neq \varnothing \quad \forall P \in S\right\} \\
R_{2} & \text { indep. from } R_{1} & & \min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\} \\
R & =R_{1} \cap R_{2} & \geq \pi_{P} \text { ? } & \leq \rho_{e} &
\end{array}
$$

$$
\operatorname{Pr}[R \cap P=\emptyset] \leq \sum_{e \in P} \max \left\{y_{e}-\rho_{e}, 0\right\}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underset{\text { convex combination }}{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}+\underset{\geq 0}{r}
$$

$$
\begin{array}{rlcc}
& \text { Definition } & \operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] \\
R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1 & y_{e}-r_{e} \\
R_{2} & \text { indep. from } R_{1} & & \min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\} \\
R & =R_{1} \cap R_{2} & \geq \pi_{P} \text { ? } & \leq \rho_{e}
\end{array}
$$

$Q_{\rho}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in \rho} y_{e} \geq 1 \forall P \in S\right\}$
$S=\left\{S \subseteq E: P_{n} S \neq \varnothing \forall P_{\in} 9\right\}$

$$
\operatorname{Pr}[R \cap P=\emptyset] \leq \sum_{e \in P} \mu_{e}
$$

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(\star) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underset{\text { convex combination }}{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}+\underset{\geq 0}{r}
$$

Definition

$$
\operatorname{Pr}[S \cap P \neq \emptyset]
$$

$$
\operatorname{Pr}[e \in S]
$$

$R_{1} \quad \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S}$
1
$y_{e}-r_{e}$ $\min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\}$
$R=R_{1} \cap R_{2}$
R_{2} indep. from R_{1}

$$
\leq \rho_{e}
$$

$Q_{\rho}=\left\{y \in \mathbb{R}_{+}^{E}: \sum_{e \in P} y_{e} \geq 1 \quad \forall P_{\in} \rho\right\}$
$\left.S=\left\{S_{\subseteq} E: P_{n} S \neq \varnothing \quad \forall P_{\in}\right\}\right\}$
$\operatorname{Pr}[R \cap P=\emptyset] \leq \sum_{e \in P} \mu_{e} \Rightarrow \quad R$ is a feasible decomposition of ρ.

Proof: MF/MC implies (\star)-sufficiency for affine π

(A) $\pi_{P}=1-\sum_{e \in P} \mu_{e}$ for some $\mu \in[0,1]^{E}$
(*) $\sum_{e \in P} \rho_{e} \geq \pi_{P}$ for all $P \in \mathcal{P}$

$$
y:=\rho+\mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y=\underbrace{\sum_{S \in \mathcal{S}} \lambda_{S} \mathbb{1}_{S}}_{\text {convex combination }}+\underset{\geq 0}{r}
$$

$$
\begin{array}{rlccc}
& \text { Definition } & \operatorname{Pr}[S \cap P \neq \emptyset] & \operatorname{Pr}[e \in S] & Q_{\mathcal{P}}=\left\{y \in \mathbb{R}_{+}^{\epsilon}: \sum_{e \in P} y_{e} \geq 1 \quad \forall P \in P\right\} \\
R_{1} & \operatorname{Pr}\left[R_{1}=S\right]=\lambda_{S} & 1 & y_{e}-r_{e} & S=\left\{S \leq E: P_{\cap} S \neq \varnothing \quad \forall P \in \mathcal{P}\right\} \\
R_{2} & \text { indep. from } R_{1} & & \min \left\{\frac{\rho_{e}}{y_{e}-r_{e}}, 1\right\} & \\
R & =R_{1} \cap R_{2} & \geq \pi_{P} & \leq \rho_{e} &
\end{array}
$$

Note: We can construct R if we can solve SEPARATION for $Q_{\mathcal{P}}$.

Abstract Networks

Abstract Networks

An abstract network is a set system (E, \mathcal{P}) such that

- for every $P \in \mathcal{P}$, there is an order \preceq_{P} on P,
- for every $P, Q \in \mathcal{P}$ and $e \in P \cap Q$, there is $P \times{ }_{e} Q \in \mathcal{P}$ with

$$
P \times_{e} Q \subseteq\left\{p \in P: p \preceq_{P} e\right\} \cup\{q \in Q: e \preceq q\} .
$$

Example: $s-t$-Paths in a Digraph

Digraph $D=(V, A) \quad \rightarrow \quad E=A($ or $E=V$, or $E=V \cup A)$ $\mathcal{P}=\{s-t$-paths in $D\}$

Another Example

$$
\begin{aligned}
E= & \left\{a, b, c, d, s_{1}, s_{2}, t_{1}, t_{2}\right\} \\
\mathcal{P}= & \left\{\{a, b, c, d\},\left\{s_{1}, b, t_{1}\right\},\left\{s_{2}, c, t_{3}\right\},\right. \\
& \left.\left\{s_{1}, d\right\},\left\{s_{2}, d\right\},\left\{a, t_{1}\right\},\left\{a, t_{2}\right\}\right\}
\end{aligned}
$$

Note: No path starting with s_{1} and ending with t_{2}.

Abstract Networks and Max-Flow/Min-Cut

Abstract Max Flow

$$
\begin{aligned}
& \max \sum_{P \in \mathcal{P}} x_{P} \\
& \text { s.t. } \sum_{P: e \in P} x_{P} \leq u_{e} \quad \forall e \in E \\
& x \geq 0
\end{aligned}
$$

Abstract Min Cut

$$
\begin{aligned}
& \min \sum_{e \in E} u_{e} y_{e} \\
& \text { s.t. } \quad \sum_{e \in P} y_{e} \geq 1 \quad \forall P \in \mathcal{P} \\
& y \geq 0
\end{aligned}
$$

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI.

Abstract Networks and Max-Flow/Min-Cut

Abstract Max Flow

$$
\begin{aligned}
& \max \sum_{P \in \mathcal{P}} x_{P} \\
& \text { s.t. } \sum_{P: e \in P} x_{P} \leq u_{e} \quad \forall e \in E \\
& x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \min \sum_{e \in E} u_{e} y_{e} \\
& \text { s.t. } \quad \sum_{e \in P} y_{e} \geq 1 \quad \forall P \in \mathcal{P} \\
& y \geq 0
\end{aligned}
$$

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI.

McCormick (SODA 1996): combinatorial algorithm

Abstract Networks and Max-Flow/Min-Cut

Abstract Max Flow

$$
\begin{gathered}
\max \sum_{P \in \mathcal{P}} r_{P} x_{P} \\
\text { s.t. } \quad \sum_{P: e \in P} x_{P} \leq u_{e} \quad \forall e \in E \\
x \geq 0
\end{gathered}
$$

Abstract Min Cut

$$
\begin{aligned}
& \min \sum_{e \in E} u_{e} y_{e} \\
& \text { s.t. } \quad \sum_{e \in P} y_{e} \geq r_{P} \quad \forall P \in \mathcal{P} \\
& y \geq 0
\end{aligned}
$$

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI, even with weights fulfilling "weak conservation law": $\quad r_{P \times_{e} Q}+r_{Q \times_{e} P} \geq r_{P}+r_{Q}$
McCormick (SODA 1996): combinatorial algorithm (unweighted version)

Abstract Networks and Max-Flow/Min-Cut

Abstract Max Flow

$$
\begin{gathered}
\max \sum_{P \in \mathcal{P}} r_{P} x_{P} \\
\text { s.t. } \sum_{P: e \in P} x_{P} \leq u_{e} \quad \forall e \in E \\
x \geq 0
\end{gathered}
$$

Abstract Min Cut

$$
\begin{gathered}
\min \sum_{e \in E} u_{e} y_{e} \\
\text { s.t. } \quad \sum_{e \in P} y_{e} \geq r_{P} \quad \forall P \in \mathcal{P} \\
y \geq 0
\end{gathered}
$$

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI, even with weights fulfilling
"weak conservation law": $\quad r_{P \times_{e} Q}+r_{Q \times_{e} P} \geq r_{P}+r_{Q}$
McCormick (SODA 1996): combinatorial algorithm (unweighted version)
Martens \& McCormick (IPCO 2008): combinatorial algorithm for weighted version

Feasible Decompositions in Abstract Networks

$$
\begin{aligned}
& \alpha_{e}:=\min _{P \in \mathcal{P}} \sum_{f \in[P, e]} \rho_{f}+\mu_{f} \\
& \xrightarrow{\longrightarrow} \longrightarrow 0 \longrightarrow 0 \longrightarrow(0 \rightarrow 0 \longrightarrow 0
\end{aligned}
$$

Feasible Decompositions in Abstract Networks

$$
\left(\pi_{P}=1-\sum_{e \in P} \mu_{e}\right)
$$

$$
\begin{gathered}
S_{\tau}:=\left\{e \in E: \alpha_{e}-\rho_{e} \leq \tau \leq \alpha_{e}\right\} \\
\text { with } \alpha_{e}:=\min _{P \in \mathcal{P}} \sum_{f \in[P, e]} \rho_{f}+\mu_{f} \quad \text { and } \tau \sim U[0,1] \\
O \longrightarrow O \longrightarrow O \longrightarrow(O \rightarrow O \longrightarrow 0
\end{gathered}
$$

Theorem. S_{τ} is a feasible decomposition of ρ.

Feasible Decompositions in Abstract Networks

$$
\left(\pi_{P}=1-\sum_{e \in P} \mu_{e}\right)
$$

$$
\begin{gathered}
S_{\tau}:=\left\{e \in E: \alpha_{e}-\rho_{e} \leq \tau \leq \alpha_{e}\right\} \\
\text { with } \alpha_{e}:=\min _{P \in \mathcal{P}}^{f \in[P, e]} \rho_{f}+\mu_{f} \quad \text { and } \tau \sim U[0,1] \\
O \longrightarrow O \longrightarrow 0 \longrightarrow(0 \rightarrow 0 \longrightarrow 0
\end{gathered}
$$

Theorem. S_{τ} is a feasible decomposition of ρ.
Proof sketch. Want to show: $\operatorname{Pr}\left[S_{\tau} \cap P \neq \emptyset\right]+\sum_{e \in P} \mu_{e} \geq 1$

Feasible Decompositions in Abstract Networks

$$
\left(\pi_{P}=1-\sum_{e \in P} \mu_{e}\right)
$$

$$
\begin{gathered}
S_{\tau}:=\left\{e \in E: \alpha_{e}-\rho_{e} \leq \tau \leq \alpha_{e}\right\} \\
\text { with } \alpha_{e}:=\min _{P \in \mathcal{P}}^{f \in[P, e]} \sum_{f}+\mu_{f} \quad \text { and } \tau \sim U[0,1] \\
O \longrightarrow O \longrightarrow 0 \longrightarrow(0 \rightarrow 0 \longrightarrow 0
\end{gathered}
$$

Theorem. S_{τ} is a feasible decomposition of ρ.
Proof sketch. Want to show: $\operatorname{Pr}\left[S_{\tau} \cap P \neq \emptyset\right]+\sum_{e \in P} \mu_{e} \geq 1$ By induction: $\operatorname{Pr}\left[S_{\tau} \cap[P, e] \neq \emptyset \wedge \tau \leq \alpha_{e}\right]+\sum_{f \in[P, e]} \mu_{f} \geq \alpha_{e}$

Feasible Decompositions in Abstract Networks

$$
\left(\pi_{P}=1-\sum_{e \in P} \mu_{e}\right)
$$

$$
\begin{gathered}
S_{\tau}:=\left\{e \in E: \alpha_{e}-\rho_{e} \leq \tau \leq \alpha_{e}\right\} \\
\text { with } \alpha_{e}:=\min _{P \in \mathcal{P}} \sum_{f \in[P, e]} \rho_{f}+\mu_{f} \quad \text { and } \quad \tau \sim U[0,1]
\end{gathered}
$$

$$
0 \rightarrow 0 \rightarrow 0 \rightarrow @ \rightarrow 0 \rightarrow 0
$$

$$
[P, e]
$$

Theorem. S_{τ} is a feasible decomposition of ρ.
Proof sketch. Want to show: $\operatorname{Pr}\left[S_{\tau} \cap P \neq \emptyset\right]+\sum_{e \in P} \mu_{e} \geq 1$ By induction: $\operatorname{Pr}\left[S_{\tau} \cap[P, e] \neq \emptyset \wedge \tau \leq \alpha_{e}\right]+\sum_{f \in[P, e]} \mu_{f} \geq \alpha_{e}$

$$
\text { By (} \star \text {): } \quad \alpha_{t} \geq 1 \text { for last element } t \text { of } P
$$

Shortest Paths in Abstract Networks

How Do We Access Abstract Networks?

Membership oracle for an abstract network:
Given $F \subseteq E$, either

- return $P \in \mathcal{P}$ (and \preceq_{P}) with $P \subseteq F$,
- or assert that no such P exists.

How Do We Access Abstract Networks?

Membership oracle for an abstract network:
Given $F \subseteq E$, either

- return $P \in \mathcal{P}$ (and \preceq_{P}) with $P \subseteq F$,
- or assert that no such P exists.

McCormick's Max Abstract Flow algorithm uses membership oracle.
Question (McCormick 1996): Can a stronger oracle (e.g., shortest paths) yield a strongly poly-time algorithm for Max Abstract Flow?

Shortest Paths in Abstract Networks

Given: abstract network (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$ Task: find $P \in \mathcal{P}$ minmizing $c(P):=\sum_{e \in P} c_{e}$

Shortest Paths in Abstract Networks

Given: abstract network (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$ Task: find $P \in \mathcal{P}$ minmizing $c(P):=\sum_{e \in P} c_{e}$

Shortest Paths in Abstract Networks

Given: abstract network (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$ Task: find $P \in \mathcal{P}$ minmizing $c(P):=\sum_{e \in P} c_{e}$

Dijkstra's Algorithm

- initialize:
- label ϕ_{v} for $v \in V$
- s-v-path Q_{v} with $\phi_{v}=c\left(Q_{v}\right)$
- set of processed nodes T
- while $\min _{v \in V \backslash T} \phi_{v}<\phi_{t}$ pick $v \in \operatorname{argmin}_{w \in V \backslash T} \phi_{w}$ process(v)

Shortest Paths in Abstract Networks

Given: abstract network (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$ Task: find $P \in \mathcal{P}$ minmizing $c(P):=\sum_{e \in P} c_{e}$

Dijkstra's Algorithm (adapted)

- initialize:
- label ϕ_{e} for $e \in E$
- $Q_{e} \in \mathcal{P}$ with $\phi_{e}=c\left(\left[Q_{e}, e\right]\right)$
- set of processed elements T
- while $\min _{v \in V \backslash T} \phi_{v}<\phi_{t}$ pick $v \in \operatorname{argmin}_{w \in V \backslash T} \phi_{w}$ process(v)

Shortest Paths in Abstract Networks

Given: abstract network (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$ Task: find $P \in \mathcal{P}$ minmizing $c(P):=\sum_{e \in P} c_{e}$

Dijkstra's Algorithm (adapted)

- initialize:
- label ϕ_{e} for $e \in E$
- $Q_{e} \in \mathcal{P}$ with $\phi_{e}=c\left(\left[Q_{e}, e\right]\right)$
- set of processed elements T
- while $\min _{e \in E \backslash T} \phi_{e}<\phi_{t}$ pick $e \in \operatorname{argmin}_{f \in E \backslash T} \phi_{f}$ process(e)
(w.l.o.s.: every $P \in \mathcal{P}$ starts with s and ends with t)

Shortest Paths in Abstract Networks

Given: abstract network (E, \mathcal{P}), costs $c \in \mathbb{R}_{+}^{E}$ Task: find $P \in \mathcal{P}$ minmizing $c(P):=\sum_{e \in P} c_{e}$

Dijkstra's Algorithm (adapted)

- initialize:
- label ϕ_{e} for $e \in E$
- $Q_{e} \in \mathcal{P}$ with $\phi_{e}=c\left(\left[Q_{e}, e\right]\right)$
- set of processed elements T
- while $\min _{e \in E \backslash T} \phi_{e}<\phi_{t}$ pick $e \in \operatorname{argmin}_{f \in E \backslash T} \phi_{f}$ process(e)
(w.l.o.s.: every $P \in \mathcal{P}$ starts with s and ends with t)

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$?

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$? process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$? process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
& f:=\min _{\preceq_{P}} P \backslash\left[Q_{e}, e\right] \\
& F:=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f}
\end{aligned}
$$

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$? process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
& f:=\min _{\preceq_{P}} P \backslash\left[Q_{e}, e\right] \\
& F:=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f}
\end{aligned}
$$

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$? process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
& f:=\min _{\preceq_{P}} P \backslash\left[Q_{e}, e\right] \\
& F:=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f}
\end{aligned}
$$

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$? process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
& f:=\min _{\preceq_{P}} P \backslash\left[Q_{e}, e\right] \\
& F:=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f}
\end{aligned}
$$

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$? process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
& f:=\min _{\preceq_{P}} P \backslash\left[Q_{e}, e\right] \\
& F:=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f}
\end{aligned}
$$

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$? process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
f & :=\min _{\preceq_{P}} P \backslash\left[Q_{e}, e\right] \\
F & :=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f} \\
\cdot T & :=T \cup\{e\}
\end{aligned}
$$

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$?
process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
f & :=\min _{\unlhd_{P}} P \backslash\left[Q_{e}, e\right] \\
F & :=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f} \\
\cdot T & :=T \cup\{e\}
\end{aligned}
$$

Lemma. After process (e), for every $P \in \mathcal{P}$ with $e \in P$:

- there is $f \in P \backslash T$ with $\phi_{f} \leq \phi_{e}+c_{f}$.

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$?
process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
f & :=\min _{\preceq_{P}} P \backslash\left[Q_{e}, e\right] \\
F & :=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f} \\
\cdot T & :=T \cup\{e\}
\end{aligned}
$$

Lemma. After process (e), for every $P \in \mathcal{P}$ with $e \in P$:

- there is $f \in P \backslash T$ with $\phi_{f} \leq \phi_{e}+c_{f}$.

Processing Elements

How to find all relevant ways to continue $\left[Q_{e}, e\right]$?
process(e)

- $F:=T \backslash\left[Q_{e}, e\right]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \backslash F$:

$$
\begin{aligned}
f & :=\min _{\unlhd_{P}} P \backslash\left[Q_{e}, e\right] \\
F & :=F \cup\{f\} \\
& \text { if } c([P, f])<\phi_{f} \text { then update } \phi_{f} \text { and } Q_{f} \\
\cdot T & :=T \cup\{e\}
\end{aligned}
$$

Lemma. After process (e), for every $P \in \mathcal{P}$ with $e \in P$:

- there is $f \in P \backslash T$ with $\phi_{f} \leq \phi_{e}+c_{f}$.

Conclusion

- (*)-sufficiency allows formulating problems via their marginals:

$$
\sum_{e \in P} \rho_{e} \geq \pi_{P} \quad \forall P \in \mathcal{P} \quad(\star)
$$

- many systems are (\star)-sufficient, including abstract networks
- feasible decompositions can be computed via a shortest-path algorithm

Overview \& Open Questions

DAGs
(Dahan et al.)

Affine efficient algorithm §
Conservation (\star)-sufficient (exp.-time algorithm)

Abstract Networks Max-Flow/Min-Cut (incl. digraphs w. cycles)
efficient algorithm (explicit description) \bigoplus
(*)-sufficient
(oracle-poly)
characterize (*)-sufficiency TDI systems?
\bigoplus combinatorial shortest-path algorithm for abstract networks Strongly poly-time algorithm for Abstract Max Flow?

Also: NP-hard to decide feasibility of given ρ in general systems Poly-time algorithms for some non-(*)-sufficient systems?
(\star)-sufficiency under additional constraints on decomposition?

Copyright note

"Portrait of Edsger W. Dijkstra, one of the greatest mathematicans in history of modern mathematics." ©2002 Hamilton Richards
obtained from en.wikipedia.org under CC BY-SA 3.0

