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From Marginals to Distributions

Input:
• ground set 𝐸
• set system 𝒫 ⊆ 2𝐸

• requirements 𝜋 ∈ [0, 1]𝒫

• marginals 𝜌 ∈ [0, 1]𝐸

Goal: Find distribution for random set 𝑆 ⊆ 𝐸
such that

Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫.
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Feasible Decompositions

We call a random set 𝑆 with

Pr[𝑒 ∈ 𝑆] = 𝜌𝑒 ∀ 𝑒 ∈ 𝐸,

Pr[𝑃 ∩ 𝑆 ≠ ∅] ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫,

a feasible decomposition of 𝜌 w.r.t. (𝒫, 𝜋).

We say 𝜌 is feasible if it has a feasible decomposition.

Can we describe the set of feasible 𝜌?
feasible?
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A Necessary Condition

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Observation: If 𝜌 is feasible, then it must fulfil (⋆).

But (⋆) is not always sufficient:

A system (𝒫, 𝜋) is (⋆)-sufficient if for all 𝜌 ∈ [0, 1]𝐸 :
𝜌 is feasible. ⇔ 𝜌 fulfils (⋆).

3



A Necessary Condition

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Observation: If 𝜌 is feasible, then it must fulfil (⋆).
But (⋆) is not always sufficient:

A system (𝒫, 𝜋) is (⋆)-sufficient if for all 𝜌 ∈ [0, 1]𝐸 :
𝜌 is feasible. ⇔ 𝜌 fulfils (⋆).

3



A Necessary Condition

∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

Observation: If 𝜌 is feasible, then it must fulfil (⋆).
But (⋆) is not always sufficient:

A system (𝒫, 𝜋) is (⋆)-sufficient if for all 𝜌 ∈ [0, 1]𝐸 :
𝜌 is feasible. ⇔ 𝜌 fulfils (⋆).

3



Motivation: Security Games

Given: set system (𝐸, 𝒫),
costs 𝑐 ∈ ℝ𝐸

+ ,
requirements 𝜋 ∈ [0, 1]𝒫

selects random set 𝑆 ⊆ 𝐸 at cost ∑𝑒∈𝑆 𝑐𝑒
wants to deter any attack at minimum cost

Defender

selects 𝑃 ∈ 𝒫 or remains inactive
𝜋𝑃 : risk threshold for deterring attacker from 𝑃

Attacker
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Motivation: Security Games

Defender’s problem:

min ∑
𝑆⊆𝐸

∑
𝑒∈𝑆

𝑐𝑒 𝑥𝑆

s.t. ∑
𝑆∶𝑃∩𝑆≠∅

𝑥𝑆 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫

∑
𝑆⊆𝐸

𝑥𝑆 = 1

𝑥 ≥ 0

If (⋆) is sufficient:

min ∑
𝑒∈𝐸

𝑐𝑒 𝜌𝑒

s.t. ∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫

𝜌 ≥ 0

Exponentially smaller
dimension :)

further applications: fairness/balance constraints in social choice,
randomized algorithms

similar: Border’s Theorem for auctions
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Previous Results [Dahan, Amin, Jaillet, MOR 2022]

𝒫 = {𝑠-𝑡-paths in a DAG}, two settings for 𝜋:
(A) Affine requirements: 𝜋𝑃 = 1 − ∑𝑒∈𝐸 𝜇𝑒 for some 𝜇 ∈ [0, 1]𝐸

(C) Conservation law: 𝜋𝑃 + 𝜋𝑄 = 𝜋𝑃×𝑣𝑄 + 𝜋𝑄×𝑣𝑃 for 𝑃 , 𝑄 ∈ 𝒫, 𝑣 ∈ 𝑃 ∩ 𝑄

Note: (A) ⇒ (C).

Their results:
• For (C): (𝒫, 𝜋) is (⋆)-sufficient.
• For (A): Decomposition can be computed efficiently.
• Consequence: Computation of Nash equilibria in interdiction game on DAG.
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New Results

DAGs

Abstract Networks Max-Flow/Min-Cut

(Dahan et al.)

(incl. digraphs w. cycles)

Affine efficient algorithm

efficient algorithm characterize
⇕ (explicit description)⨁ (⋆)-sufficiency

Conservation (⋆)-sufficient

(⋆)-sufficient (oracle-poly)

(exp.-time algorithm)

(oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks

Also: NP-hard to decide feasibility of given 𝜌 in general systems
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Feasible Decompositions for Max-Flow/Min-Cut Systems



The Max-Flow/Min-Cut Property

𝒫 has the max-flow/min-cut property if

𝑄𝒫 ∶= { ∑𝑒∈𝑃 𝑦𝑒 ≥ 1 ∀ 𝑃 ∈ 𝒫
𝑦𝑒 ≥ 0 ∀ 𝑒 ∈ 𝐸 } is integral.

Note: 𝑄𝒫 is integral iff every vertex is
of the form 1𝑆 for some 𝑆 ∈ 𝒮.

𝒮 ∶= {𝑆 ⊆ 𝐸 ∶ 𝑃 ∩ 𝑆 ≠ ∅ ∀ 𝑃 ∈ 𝒫}

Theorem. The following two statements are equivalent:
1. 𝒫 has the MF/MC property.
2. (𝒫, 𝜋) is (⋆)-sufficient for all 𝜋 fulfiling (A).
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Proof: MF/MC implies (⋆)-sufficiency for affine 𝜋

(A) 𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒 for some 𝜇 ∈ [0, 1]𝐸
(⋆) ∑𝑒∈𝑃 𝜌𝑒 ≥ 𝜋𝑃 for all 𝑃 ∈ 𝒫

𝑦 ∶= 𝜌 + 𝜇 ∈ 𝑄𝒫 ⇒ 𝑦 = ∑𝑆∈𝒮 𝜆𝑆1𝑆⎵⎵⎵⎵⎵
convex combination

+ 𝑟⎵
≥0

Definition Pr[𝑆 ∩ 𝑃 ≠ ∅] Pr[𝑒 ∈ 𝑆]
𝑅1 Pr[𝑅1 = 𝑆] = 𝜆𝑆 1 𝑦𝑒 − 𝑟𝑒

𝑅2 indep. from 𝑅1 min { 𝜌𝑒
𝑦𝑒−𝑟𝑒

, 1}
𝑅 = 𝑅1 ∩ 𝑅2

≥ 𝜋𝑃 ?

≤ 𝜌𝑒

Pr [𝑅 ∩ 𝑃 = ∅] ≤

9
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Abstract Networks



Abstract Networks

An abstract network is a set system (𝐸, 𝒫) such that
• for every 𝑃 ∈ 𝒫, there is an order ⪯𝑃 on 𝑃 ,
• for every 𝑃 , 𝑄 ∈ 𝒫 and 𝑒 ∈ 𝑃 ∩ 𝑄, there is 𝑃 ×𝑒 𝑄 ∈ 𝒫 with

𝑃 ×𝑒 𝑄 ⊆ {𝑝 ∈ 𝑃 ∶ 𝑝 ⪯𝑃 𝑒} ∪ {𝑞 ∈ 𝑄 ∶ 𝑒 ⪯ 𝑞}.
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Example: 𝑠-𝑡-Paths in a Digraph

Digraph 𝐷 = (𝑉 , 𝐴) → 𝐸 = 𝐴 (or 𝐸 = 𝑉 , or 𝐸 = 𝑉 ∪ 𝐴)
𝒫 = {𝑠-𝑡-paths in 𝐷}
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Another Example

𝐸 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑠1, 𝑠2, 𝑡1, 𝑡2}
𝒫 = {{𝑎, 𝑏, 𝑐, 𝑑}, {𝑠1, 𝑏, 𝑡1}, {𝑠2, 𝑐, 𝑡3},

{𝑠1, 𝑑}, {𝑠2, 𝑑}, {𝑎, 𝑡1}, {𝑎, 𝑡2}}

Note: No path starting with 𝑠1 and ending with 𝑡2.
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Abstract Networks and Max-Flow/Min-Cut

Abstract Max Flow

max ∑
𝑃∈𝒫

𝑥𝑃

s.t. ∑
𝑃∶𝑒∈𝑃

𝑥𝑃 ≤ 𝑢𝑒 ∀ 𝑒 ∈ 𝐸

𝑥 ≥ 0

Abstract Min Cut

min ∑
𝑒∈𝐸

𝑢𝑒𝑦𝑒

s.t. ∑
𝑒∈𝑃

𝑦𝑒 ≥ 1 ∀ 𝑃 ∈ 𝒫

𝑦 ≥ 0

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI.

, even with weights fulfilling
“weak conservation law”: 𝑟𝑃×𝑒𝑄 + 𝑟𝑄×𝑒𝑃 ≥ 𝑟𝑃 + 𝑟𝑄

McCormick (SODA 1996): combinatorial algorithm (unweighted version)

Martens & McCormick (IPCO 2008): combinatorial algorithm for weighted version
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Feasible Decompositions in Abstract Networks (𝜋𝑃 = 1 − ∑𝑒∈𝑃 𝜇𝑒)

𝑆𝜏 ∶= {𝑒 ∈ 𝐸 ∶ 𝛼𝑒 − 𝜌𝑒 ≤ 𝜏 ≤ 𝛼𝑒}

with

𝛼𝑒 ∶= min
𝑃∈𝒫

∑
𝑓∈[𝑃,𝑒]

𝜌𝑓 + 𝜇𝑓

and 𝜏 ∼ 𝑈[0, 1]

Theorem. 𝑆𝜏 is a feasible decomposition of 𝜌.
Proof sketch. Want to show: Pr [𝑆𝜏 ∩ 𝑃 ≠ ∅] + ∑𝑒∈𝑃 𝜇𝑒 ≥ 1

By induction: Pr [𝑆𝜏 ∩ [𝑃 , 𝑒] ≠ ∅ ∧ 𝜏 ≤ 𝛼𝑒] + ∑
𝑓∈[𝑃,𝑒]

𝜇𝑓 ≥ 𝛼𝑒

By (⋆): 𝛼𝑡 ≥ 1 for last element 𝑡 of 𝑃
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Shortest Paths in Abstract Networks



How Do We Access Abstract Networks?

Membership oracle for an abstract network:
Given 𝐹 ⊆ 𝐸, either
• return 𝑃 ∈ 𝒫 (and ⪯𝑃 ) with 𝑃 ⊆ 𝐹 ,
• or assert that no such 𝑃 exists.

McCormick’s Max Abstract Flow algorithm uses membership oracle.

Question (McCormick 1996): Can a stronger oracle (e.g., shortest paths) yield a
strongly poly-time algorithm for Max Abstract Flow?

15



How Do We Access Abstract Networks?

Membership oracle for an abstract network:
Given 𝐹 ⊆ 𝐸, either
• return 𝑃 ∈ 𝒫 (and ⪯𝑃 ) with 𝑃 ⊆ 𝐹 ,
• or assert that no such 𝑃 exists.

McCormick’s Max Abstract Flow algorithm uses membership oracle.

Question (McCormick 1996): Can a stronger oracle (e.g., shortest paths) yield a
strongly poly-time algorithm for Max Abstract Flow?

15



Shortest Paths in Abstract Networks

Given: abstract network (𝐸, 𝒫), costs 𝑐 ∈ ℝ𝐸
+

Task: find 𝑃 ∈ 𝒫 minmizing 𝑐(𝑃 ) ∶= ∑𝑒∈𝑃 𝑐𝑒

WWDD?

Dijkstra’s Algorithm

(adapted)

• initialize:
• label 𝜙𝑣 for 𝑣 ∈ 𝑉
• 𝑠-𝑣-path 𝑄𝑣 with 𝜙𝑣 = 𝑐(𝑄𝑣)
• set of processed nodes 𝑇

• while min𝑣∈𝑉 \𝑇 𝜙𝑣 < 𝜙𝑡
pick 𝑣 ∈ argmin𝑤∈𝑉 \𝑇 𝜙𝑤
process(𝑣)

(w.l.o.g.: every 𝑃 ∈ 𝒫 starts with 𝑠 and ends with 𝑡)
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Processing Elements

How to find all relevant ways to continue [𝑄𝑒, 𝑒]?

process(𝑒)
• 𝐹 ∶= 𝑇 \[𝑄𝑒, 𝑒]

• while ∃𝑃 ∈ 𝒫 with 𝑃 ⊆ 𝐸\𝐹 :
𝑓 ∶= min⪯𝑃

𝑃\[𝑄𝑒, 𝑒]
𝐹 ∶= 𝐹 ∪ {𝑓}
if 𝑐([𝑃 , 𝑓]) < 𝜙𝑓 then update 𝜙𝑓 and 𝑄𝑓

• 𝑇 ∶= 𝑇 ∪ {𝑒}

Lemma. After process(𝑒), for every 𝑃 ∈ 𝒫 with 𝑒 ∈ 𝑃 :
• there is 𝑓 ∈ 𝑃\𝑇 with 𝜙𝑓 ≤ 𝜙𝑒 + 𝑐𝑓 .
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Conclusion

• (⋆)-sufficiency allows formulating problems via their marginals:
∑
𝑒∈𝑃

𝜌𝑒 ≥ 𝜋𝑃 ∀ 𝑃 ∈ 𝒫 (⋆)

• many systems are (⋆)-sufficient, including abstract networks
• feasible decompositions can be computed via a shortest-path algorithm
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Overview & Open Questions

DAGs Abstract Networks Max-Flow/Min-Cut
(Dahan et al.) (incl. digraphs w. cycles)

Affine efficient algorithm efficient algorithm characterize
⇕ (explicit description)⨁ (⋆)-sufficiency

Conservation (⋆)-sufficient (⋆)-sufficient TDI systems?
(exp.-time algorithm) (oracle-poly)

⨁ combinatorial shortest-path algorithm for abstract networks
Strongly poly-time algorithm for Abstract Max Flow?

Also: NP-hard to decide feasibility of given 𝜌 in general systems
Poly-time algorithms for some non-(⋆)-sufficient systems?
(⋆)-sufficiency under additional constraints on decomposition?
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