Decomposition of Probability Marginals for Security Games in Abstract Networks

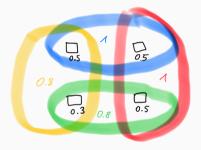
Jannik Matuschke

KU Leuven

From Marginals to Distributions

Input:

- $\boldsymbol{\cdot}$ ground set E
- set system $\mathcal{P}\subseteq 2^E$
- + requirements $\pi \in [0,1]^{\mathcal{P}}$
- + marginals $\rho \in [0,1]^E$



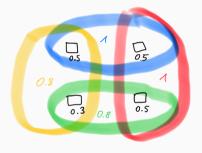
From Marginals to Distributions

Input:

- $\boldsymbol{\cdot}$ ground set E
- set system $\mathcal{P}\subseteq 2^E$
- + requirements $\pi \in [0,1]^{\mathcal{P}}$
- + marginals $\rho \in [0,1]^E$

Goal: Find distribution for random set $S \subseteq E$ such that

$$\Pr\left[e \in S\right] = \rho_e \qquad \forall \, e \in E,$$
$$\Pr\left[P \cap S \neq \emptyset\right] \geq \pi_P \qquad \forall \, P \in \mathcal{P}.$$



1

We call a random set S with

$$\begin{split} & \Pr\Big[e \in S\Big] \;=\; \rho_e \qquad \forall \, e \in E, \\ & \Pr\Big[P \cap S \neq \emptyset\Big] \;\geq\; \pi_P \qquad \forall \, P \in \mathcal{P}, \end{split}$$

a feasible decomposition of ρ w.r.t. (\mathcal{P}, π) .

We call a random set S with

$$\begin{split} & \Pr\Big[e \in S\Big] \ \le \ \rho_e \qquad \forall \, e \in E, \\ & \Pr\Big[P \cap S \neq \emptyset\Big] \ \ge \ \pi_P \qquad \forall \, P \in \mathcal{P}, \end{split}$$

a feasible decomposition of ρ w.r.t. (\mathcal{P}, π) .

We call a random set \boldsymbol{S} with

$$\Pr\left[e \in S\right] \leq \rho_e \qquad \forall e \in E,$$
$$\Pr\left[P \cap S \neq \emptyset\right] \geq \pi_P \qquad \forall P \in \mathcal{P},$$

a **feasible decomposition** of ρ w.r.t. (\mathcal{P}, π) .

We say ρ is **feasible** if it has a feasible decomposition.

We call a random set \boldsymbol{S} with

$$\begin{split} & \Pr\Big[e \in S\Big] \ \le \ \rho_e \qquad \forall \, e \in E, \\ & \Pr\Big[P \cap S \neq \emptyset\Big] \ \ge \ \pi_P \qquad \forall \, P \in \mathcal{P}, \end{split}$$

a feasible decomposition of ρ w.r.t. (\mathcal{P}, π) .

We say ρ is **feasible** if it has a feasible decomposition.

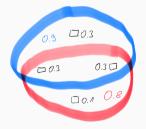
Can we describe the set of feasible ρ ?

We call a random set S with

$$\begin{split} & \Pr\Big[e \in S\Big] \ \leq \ \rho_e \qquad \forall \, e \in E, \\ & \Pr\Big[P \cap S \neq \emptyset\Big] \ \geq \ \pi_P \qquad \forall \, P \in \mathcal{P}, \end{split}$$

a feasible decomposition of ρ w.r.t. $(\mathcal{P},\pi).$

We say ρ is **feasible** if it has a feasible decomposition.



feasible?

Can we describe the set of feasible ρ ?

A Necessary Condition

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

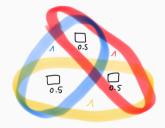
Observation: If ρ is feasible, then it must fulfil (*).

A Necessary Condition

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

Observation: If ρ is feasible, then it must fulfil (*).

But (\star) is not always sufficient:

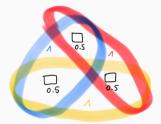


A Necessary Condition

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \, P \in \mathcal{P} \quad (\star)$$

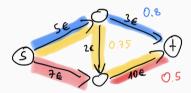
Observation: If ρ is feasible, then it must fulfil (*).

But (\star) is not always sufficient:



A system (\mathcal{P}, π) is (\star) -sufficient if for all $\rho \in [0, 1]^E$: ρ is feasible. $\Leftrightarrow \rho$ fulfils (\star) .

Given: set system (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$, requirements $\pi \in [0, 1]^{\mathcal{P}}$

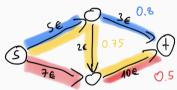


Given: set system (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$, requirements $\pi \in [0, 1]^{\mathcal{P}}$

selects random set $S \subseteq E$ at cost $\sum_{e \in S} c_e$ wants to deter any attack at minimum cost

Given: set system (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$, requirements $\pi \in [0, 1]^{\mathcal{P}}$

selects random set $S\subseteq E$ at cost $\sum_{e\in S}c_e$ wants to deter any attack at minimum cost



selects $P \in \mathcal{P}$ or remains inactive

 π_P : risk threshold for deterring attacker from P

Attacker

Defender's problem:

$$\begin{array}{ll} \min \ \sum_{S \subseteq E} \sum_{e \in S} c_e \, x_S \\ \text{s.t.} \ \sum_{S: P \cap S \neq \emptyset} x_S \ \geq \ \pi_P \quad \forall \, P \in \mathcal{P} \\ \sum_{S \subseteq E} x_S \ = \ 1 \\ x \ \geq \ 0 \end{array}$$

Defender's problem:

$$\begin{array}{ll} \min & \displaystyle \sum_{e \in E} c_e \displaystyle \sum_{S:e \in S} x_S \\ \text{s.t.} \displaystyle \sum_{S:P \cap S \neq \emptyset} x_S \geq \pi_P \quad \forall \ P \in \mathcal{P} \\ & \displaystyle \sum_{S \subseteq E} x_S \ = \ 1 \\ & \displaystyle x \ \geq \ 0 \end{array}$$

Defender's problem:

$$\begin{array}{ll} \min & \displaystyle \sum_{e \in E} c_e \displaystyle \sum_{S: e \in S} x_S \\ \text{s.t.} \displaystyle \sum_{S: P \cap S \neq \emptyset} x_S \geq \pi_P \quad \forall \, P \in \mathcal{P} \\ & \displaystyle \sum_{S \subseteq E} x_S \, = \, 1 \end{array}$$

 $x \geq 0$

If (\star) is sufficient:

$$\begin{array}{ll} \min & \sum_{e \in E} c_e \, \rho_e \\ \text{s.t.} & \sum_{e \in P} \rho_e \ \geq \ \pi_P \quad \forall \, P \in \mathcal{P} \\ & \rho \ \geq \ 0 \end{array}$$

Exponentially smaller dimension :)

further applications: fairness/balance constraints in social choice, randomized algorithms similar: Border's Theorem for auctions

Previous Results

- $\mathcal{P} = \{s\text{-}t\text{-}paths in a DAG\}, two settings for <math>\pi$:
- (A) Affine requirements: $\pi_P = 1 \sum_{e \in E} \mu_e$ for some $\mu \in [0, 1]^E$
- (C) Conservation law: $\pi_P + \pi_Q = \pi_{P \times_v Q} + \pi_{Q \times_v P}$ for $P, Q \in \mathcal{P}, v \in P \cap Q$

Previous Results

 $\mathcal{P} = \{s\text{-}t\text{-}paths in a DAG\}, two settings for <math>\pi$:

0

(A) Affine requirements: $\pi_P = 1 - \sum_{e \in E} \mu_e$ for some $\mu \in [0, 1]^E$

(C) Conservation law: $\pi_P + \pi_Q = \pi_{P \times_v Q} + \pi_{Q \times_v P}$ for $P, Q \in \mathcal{P}, v \in P \cap Q$ Note: (A) \Rightarrow (C).

QxyP

Previous Results

- $\mathcal{P} = \{s\text{-}t\text{-}paths in a DAG\}, two settings for <math>\pi$:
- (A) Affine requirements: $\pi_P = 1 \sum_{e \in E} \mu_e$ for some $\mu \in [0, 1]^E$
- (C) Conservation law: $\pi_P + \pi_Q = \pi_{P \times_v Q} + \pi_{Q \times_v P}$ for $P, Q \in \mathcal{P}, v \in P \cap Q$

Their results:

- For (C): (\mathcal{P}, π) is (\star) -sufficient.
- For (A): Decomposition can be computed efficiently.
- Consequence: Computation of Nash equilibria in interdiction game on DAG.

DAGS (Dahan et al.)

Affine efficient algorithm

Conservation

New Results

DAGs (Dahan et al.) Abstract Networks (incl. digraphs w. cycles) Affine efficient algorithm (explicit description)

Conservation

(*****)-sufficient (exp.-time algorithm)

New Results

DAGs
(Dahan et al.)Abstract Networks
(incl. digraphs w. cycles)Max-Flow/Min-CutAffineefficient algorithm
(explicit description) ⊕characterize
(*)-sufficiency
(oracle-poly)Conservation(*)-sufficient
(exp.-time algorithm)characterize
(*)-sufficiency
(oracle-poly)

New Results

 \bigoplus combinatorial shortest-path algorithm for abstract networks Also: NP-hard to decide feasibility of given ρ in general systems

Feasible Decompositions for Max-Flow/Min-Cut Systems

The Max-Flow/Min-Cut Property

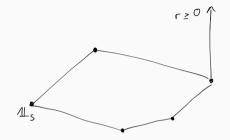
 $\begin{array}{l} \mathcal{P} \text{ has the max-flow/min-cut property if} \\ Q_{\mathcal{P}} := \left\{ \begin{array}{c} \sum_{e \in P} y_e \, \geq \, 1 \quad \forall \, P \in \mathcal{P} \\ y_e \, \geq \, 0 \quad \forall \, e \in E \end{array} \right\} \text{ is integral.} \end{array}$

The Max-Flow/Min-Cut Property

$$\begin{array}{l} \mathcal{P} \text{ has the max-flow/min-cut property if} \\ Q_{\mathcal{P}} \coloneqq \left\{ \begin{array}{c} \sum_{e \in P} y_e \geq 1 & \forall P \in \mathcal{P} \\ y_e \geq 0 & \forall e \in E \end{array} \right\} \text{ is integral} \end{array}$$

Note: $Q_{\mathcal{P}}$ is integral iff every vertex is of the form $\mathbb{1}_S$ for some $S \in \mathcal{S}$.

$$\mathcal{S} := \{ S \subseteq E : P \cap S \neq \emptyset \quad \forall P \in \mathcal{P} \}$$



The Max-Flow/Min-Cut Property

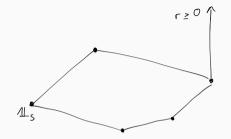
$$\begin{array}{l} \mathcal{P} \text{ has the max-flow/min-cut property if} \\ Q_{\mathcal{P}} \coloneqq \left\{ \begin{array}{c} \sum_{e \in P} y_e \geq 1 & \forall P \in \mathcal{P} \\ y_e \geq 0 & \forall e \in E \end{array} \right\} \text{ is integral.} \end{array}$$

Note: $Q_{\mathcal{P}}$ is integral iff every vertex is of the form $\mathbb{1}_S$ for some $S \in \mathcal{S}$.

 $\mathcal{S} := \{ S \subseteq E : P \cap S \neq \emptyset \quad \forall P \in \mathcal{P} \}$

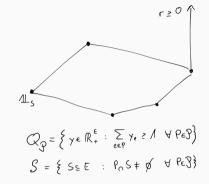
Theorem. The following two statements are equivalent:

- 1. \mathcal{P} has the MF/MC property.
- 2. (\mathcal{P}, π) is (\star) -sufficient for all π fulfiling (A).



Proof: MF/MC implies (\star)-sufficiency for affine π

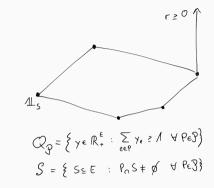
$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$



Proof: MF/MC implies (*)-sufficiency for affine π

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$

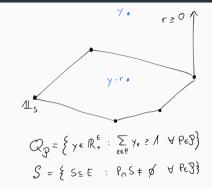
 $y := \rho + \mu \in Q_{\mathcal{P}}$



Proof: MF/MC implies (\star)-sufficiency for affine π

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$

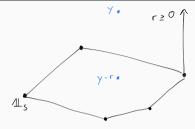


Proof: MF/MC implies (*)-sufficiency for affine π

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$

$$\begin{array}{ll} \text{Definition} & \Pr[S \cap P \neq \emptyset] & \Pr[e \in S] \\ R_1 & \Pr[R_1 = S] = \lambda_S & 1 & y_e - r_e \end{array}$$

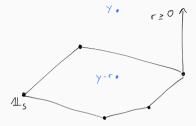


$$Q_{g} = \left\{ \gamma \in \mathbb{R}_{+}^{\varepsilon} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ Peg \right\}$$
$$S = \left\{ S \subseteq E : P_{0} S \neq \emptyset \ \forall \ Peg \right\}$$

Proof: MF/MC implies (*)-sufficiency for affine π

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$



$$Q_{g} = \left\{ \gamma \in \mathbb{R}_{+}^{\varepsilon} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ Peg \right\}$$
$$S = \left\{ S \subseteq E : P_{n}S \neq \emptyset \ \forall \ Peg \right\}$$

 $\begin{array}{ll} R_1 & \Pr[R_1=S] = \lambda_S & 1 & y_e - r_e \\ R_2 & \text{indep. from } R_1 & \min\left\{\frac{\rho_e}{y_e - r_e}, 1\right\} \end{array}$

Definition $\Pr[S \cap P \neq \emptyset] \quad \Pr[e \in S]$

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$

$$\begin{array}{ll} \text{Definition} & \Pr[S \cap P \neq \emptyset] & \Pr[e \in S] \\ R_1 & \Pr[R_1 = S] = \lambda_S & 1 & y_e - r_e \\ R_2 & \text{indep. from } R_1 & \min\left\{\frac{\rho_e}{y_e - r_e}, 1\right\} \end{array}$$

$$Q_{3} = \left\{ \gamma \in \mathbb{R}_{+}^{\varepsilon} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ Pe3 \right\}$$
$$S = \left\{ S \subseteq E : P_{0}S \neq \emptyset \ \forall \ Pe3 \right\}$$

 $R = R_1 \cap R_2$

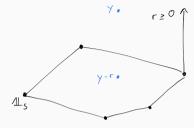
$$\leq \rho_{\epsilon}$$

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$

$$\begin{array}{lll} \mbox{Definition} & \Pr[S\cap P\neq \emptyset] & \Pr[e\in S] \\ R_1 & \Pr[R_1=S]=\lambda_S & 1 & y_e-r_e \end{array}$$

$$egin{aligned} R_2 & ext{indep. from } R_1 & ext{min} \left\{ rac{
ho_e}{y_e - r_e}, 1
ight\} \ R &= R_1 \cap R_2 & \geq \pi_P? & \leq
ho_e \end{aligned}$$



$$Q_{\mathfrak{P}} = \left\{ \gamma \in \mathbb{R}^{\mathfrak{e}}_{+} : \sum_{e \in \mathfrak{P}} \gamma_{e} \ge \Lambda \quad \forall \; \mathsf{Pe} \mathfrak{P} \right\}$$
$$S = \left\{ S \subseteq \mathsf{E} : \mathsf{P}_{\mathsf{O}} S \neq \emptyset \quad \forall \; \mathsf{Pe} \mathfrak{P} \right\}$$

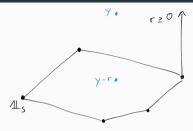
$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$

Definition
$$\Pr[S \cap P \neq \emptyset]$$
 $\Pr[e \in S]$
 $R_1 \quad \Pr[R_1 = S] = \lambda_S$ 1 $y_e - r_e$

$$\begin{split} &\Pr[R_1=S]=\lambda_S \qquad \qquad 1 \qquad \qquad y_e-r_e \\ &\text{indep. from } R_1 \qquad \qquad \min\left\{\frac{\rho_e}{y_e-r_e},1\right\} \end{split}$$

$$= R_1 \cap R_2 \qquad \qquad \geq \pi_P? \qquad \qquad \leq \rho_e$$



$$Q_{\mathfrak{P}} = \left\{ \gamma \in \mathbb{R}^{\mathfrak{e}}_{+} : \sum_{e \in \mathfrak{P}} \gamma_{e} \ge \Lambda \quad \forall \; \mathsf{Pe} \mathfrak{P} \right\}$$
$$S = \left\{ S \subseteq \mathsf{E} : \mathsf{P}_{\mathsf{O}} S \neq \emptyset \quad \forall \; \mathsf{Pe} \mathfrak{P} \right\}$$

 $\Pr\left[R \cap P = \emptyset\right] \leq \Pr\left[\exists e \in P \cap R_1 \backslash R_2\right]$

 R_2

R

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \sum_{\substack{S \in \mathcal{S}} \\ \text{convex combination}} + \underbrace{r}_{\geq 0}$$

$$\begin{array}{lll} \mbox{Definition} & \Pr[S\cap P\neq \emptyset] & \Pr[e\in S] \\ R_1 & \Pr[R_1=S]=\lambda_S & 1 & y_e-r_e \end{array}$$

$$R_2$$
 indep. from R_1 $\min\left\{\frac{\rho_e}{y_e-r_e},1
ight\}$

$$Q_{g} = \left\{ \gamma \in \mathbb{R}_{+}^{\varepsilon} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ Peg \right\}$$
$$S = \left\{ S \subseteq E : P_{0} S \neq \emptyset \ \forall \ Peg \right\}$$

 $R = R_1 \cap R_2 \qquad \ge \pi_P? \qquad \le \rho_e$

$$\Pr\left[R \cap P = \emptyset\right] \leq \sum_{e \in P} \Pr\left[e \in R_1\right] \cdot \Pr\left[e \notin R_2\right]$$

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$

Definition
$$\Pr[S \cap P \neq \emptyset]$$
 $\Pr[e \in S]$
 $R_1 \quad \Pr[R_1 = S] = \lambda_S$ 1 $y_2 - r_3$

 $R \quad = R_1 \cap R_2 \qquad \qquad \geq \pi_P? \qquad \qquad \leq \rho_e$

$$Q_{g} = \left\{ \gamma \in \mathbb{R}_{+}^{\varepsilon} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ P \in 3 \right\}$$
$$S = \left\{ S \subseteq E : P_{0} S \neq \emptyset \ \forall \ P \in 3 \right\}$$

$$\Pr\left[R \cap P = \emptyset\right] \leq \sum_{e \in P} (y_e - r_e) \cdot \left(1 - \min\left\{\frac{\rho_e}{y_e - r_e}, 1\right\}\right)$$

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \sum_{\substack{S \in \mathcal{S}} \\ \text{convex combination}} + \underbrace{r}_{\geq 0}$$

$$\begin{array}{lll} \mbox{Definition} & \Pr[S\cap P\neq \emptyset] & \Pr[e\in S] \\ R_1 & \Pr[R_1=S]=\lambda_S & 1 & y_e-r_e \end{array}$$

$$R_2$$
 indep. from R_1 $\min\left\{rac{
ho_e}{y_e-r_e},1
ight\}$

 $R \quad = R_1 \cap R_2 \qquad \qquad \geq \pi_P? \qquad \qquad \leq \rho_e$

$$Q_{g} = \left\{ \gamma \in \mathbb{R}_{+}^{\varepsilon} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ Peg \right\}$$
$$S = \left\{ S \subseteq E : P_{0} S \neq \emptyset \ \forall \ Peg \right\}$$

$$\Pr\left[R\cap P=\emptyset\right] \;\leq\; \sum_{e\in P} (y_e-r_e)\cdot \max\left\{1-\frac{\rho_e}{y_e-r_e},\,0\right\}$$

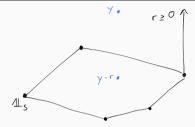
$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$

$$\begin{array}{lll} \mbox{Definition} & \Pr[S\cap P\neq \emptyset] & \Pr[e\in S] \\ R_1 & \Pr[R_1=S]=\lambda_S & 1 & y_e-r_e \end{array}$$

$$R_2$$
 indep. from R_1 $\min\left\{rac{
ho_e}{y_e-r_e},1
ight\}$

$$R = R_1 \cap R_2 \qquad \qquad \geq \pi_P? \qquad \qquad \leq \rho_e$$



$$Q_{g} = \left\{ \gamma \in \mathbb{R}_{+}^{\varepsilon} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ Peg \right\}$$
$$S = \left\{ S \subseteq E : P_{0}S \neq \emptyset \ \forall \ Peg \right\}$$

$$\Pr\left[R \cap P = \emptyset\right] \leq \sum_{e \in P} \max\left\{y_e - r_e - \rho_e, \ 0\right\}$$

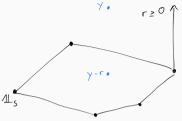
$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \sum_{\substack{S \in \mathcal{S}} \\ \text{convex combination}} + \underbrace{r}_{\geq 0}$$

$$\begin{array}{lll} \text{Definition} & \Pr[S \cap P \neq \emptyset] & \Pr[e \in S] \\ R_1 & \Pr[R_1 = S] = \lambda_S & 1 & y_e - r_e \end{array}$$

$$egin{aligned} R_2 & ext{indep. from } R_1 & ext{min} \left\{ rac{
ho_e}{y_e - r_e}, 1
ight\} \ R &= R_1 \cap R_2 & \geq \pi_P? & \leq
ho_e \end{aligned}$$

]
$$\Pr[e \in S]$$
 $\mathcal{Q}_{\mathfrak{P}} = \{\gamma \}$
 $y_e - r_e$ $\mathcal{S} = \{\varsigma \}$



$$Q_{\mathcal{F}} = \left\{ \gamma \in \mathbb{R}_{+}^{\varepsilon} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ P \in \mathcal{F} \right\}$$
$$S = \left\{ S \subseteq E : P_{O} S \neq \emptyset \ \forall \ P \in \mathcal{F} \right\}$$

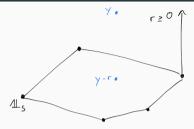
$$\Pr\left[R \cap P = \emptyset\right] \leq \sum_{e \in P} \max\left\{y_e - \rho_e, \ 0\right\}$$

$$\begin{array}{l} \text{(A)} \ \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0,1]^E \\ \text{(\star)} \ \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \end{array}$$

$$y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbb{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0}$$

$$\begin{array}{lll} \mbox{Definition} & \Pr[S\cap P\neq \emptyset] & \Pr[e\in S] \\ R_1 & \Pr[R_1=S]=\lambda_S & 1 & y_e-r_e \end{array}$$

$$\begin{array}{ll} \prod [R_1 = S] = \lambda_S & \prod & g_e = r_e \\ \text{indep. from } R_1 & \min \left\{ \frac{\rho_e}{y_e - r_e}, 1 \right\} \\ = R_1 \cap R_2 & \geq \pi_P? & \leq \rho_e \end{array}$$



$$Q_{g} = \left\{ \gamma \in \mathbb{R}^{E}_{+} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ Peg \right\}$$
$$S = \left\{ S \subseteq E : P_{0}S \neq \emptyset \ \forall \ Peg \right\}$$

$$\Pr\left[R \cap P = \emptyset\right] \leq \sum_{e \in P} \mu_e$$

 R_2

R

9

$$\begin{array}{ll} \text{(A)} & \pi_P = 1 - \sum_{e \in P} \mu_e \text{ for some } \mu \in [0, 1]^E \\ \text{(*)} & \sum_{e \in P} \rho_e \geq \pi_P \text{ for all } P \in \mathcal{P} \\ \\ y := \rho + \mu \in Q_{\mathcal{P}} \quad \Rightarrow \quad y = \underbrace{\sum_{S \in \mathcal{S}} \lambda_S \mathbbm{1}_S}_{\text{convex combination}} + \underbrace{r}_{\geq 0} \\ \\ \text{Definition} & \Pr[S \cap P \neq \emptyset] \quad \Pr[e \in S] \\ \\ R_1 & \Pr[R_1 = S] = \lambda_S \\ \\ R_2 & \text{indep. from } R_1 \\ \end{array}$$

$$y = \xi = 0$$

$$Q_{g} = \left\{ \gamma \in \mathbb{R}_{+}^{E} : \sum_{e \in P} \gamma_{e} \ge \Lambda \ \forall \ Pe3 \right\}$$
$$S = \left\{ S \subseteq E : P_{0}S \neq \emptyset \ \forall \ Pe3 \right\}$$

$$R = R_1 \cap R_2 \qquad \ge \pi_P \qquad \le \rho_e$$

$$\Pr\left[R \cap P = \emptyset\right] \leq \sum_{e \in P} \mu_e \quad \Rightarrow \quad R \text{ is a feasible decomposition of } \rho.$$

Note: We can construct R if we can solve SEPARATION for $Q_{\mathcal{P}}$.

Y .

Ο

PEJ}

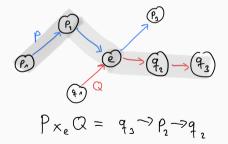
Abstract Networks

Abstract Networks

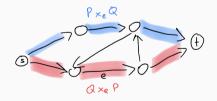
An **abstract network** is a set system (E, \mathcal{P}) such that

- for every $P \in \mathcal{P}$, there is an order \preceq_P on P,
- + for every $P,Q\in \mathcal{P}$ and $e\in P\cap Q$, there is $P\times_e Q\in \mathcal{P}$ with

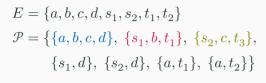
$$P\times_e Q\subseteq \{p\in P \ : \ p\preceq_P e\}\cup \{q\in Q \ : \ e\preceq q\}.$$

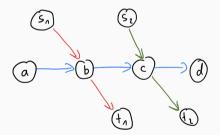


Example: *s*-*t*-Paths in a Digraph



Another Example





Note: No path starting with s_1 and ending with t_2 .

Abstract Max FlowAbstract Min Cut $\max \sum_{P \in \mathcal{P}} x_P$ $\min \sum_{e \in E} u_e y_e$ s.t. $\sum_{P:e \in P} x_P \leq u_e \quad \forall e \in E$ s.t. $\sum_{e \in P} y_e \geq 1 \quad \forall P \in \mathcal{P}$ $x \geq 0$ $y \geq 0$

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI.

Abstract Max FlowAbstract Min Cut $\max \sum_{P \in \mathcal{P}} x_P$ $\min \sum_{e \in E} u_e y_e$ s.t. $\sum_{P:e \in P} x_P \le u_e$ $\forall e \in E$ $x \ge 0$ $y \ge 0$

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI.

McCormick (SODA 1996): combinatorial algorithm

А

bstract Max FlowAbstract Min Cut
$$\max \sum_{P \in \mathcal{P}} r_P x_P$$
 $\min \sum_{e \in E} u_e y_e$ s.t. $\sum_{P:e \in P} x_P \leq u_e \quad \forall e \in E$ s.t. $\sum_{e \in P} y_e \geq r_P \quad \forall P \in \mathcal{P}$ $x \geq 0$ $y \geq 0$

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI, even with weights fulfilling "weak conservation law": $r_{P \times_e Q} + r_{Q \times_e P} \ge r_P + r_Q$

McCormick (SODA 1996): combinatorial algorithm (unweighted version)

А

bstract Max FlowAbstract Min Cut
$$\max \sum_{P \in \mathcal{P}} r_P x_P$$
 $\min \sum_{e \in E} u_e y_e$ s.t. $\sum_{P:e \in P} x_P \leq u_e \quad \forall e \in E$ s.t. $\sum_{e \in P} y_e \geq r_P \quad \forall P \in \mathcal{P}$ $x \geq 0$ $y \geq 0$

Hoffman (Math. Prog. 1974): Abstract Min Cut is TDI, even with weights fulfilling "weak conservation law": $r_{P \times_e Q} + r_{Q \times_e P} \ge r_P + r_Q$

McCormick (SODA 1996): combinatorial algorithm (unweighted version)

Martens & McCormick (IPCO 2008): combinatorial algorithm for weighted version

$$(\pi_P = 1 - \sum_{e \in P} \mu_e)$$

$$\alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f$$

$$\begin{array}{c} 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \end{array}$$

$$[P, e]$$

$$S_{\tau} := \left\{ e \in E \, : \, \alpha_e - \rho_e \leq \tau \leq \alpha_e \right\}$$

$$\text{ with } \alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f \quad \text{ and } \quad \tau \sim U[0,1]$$

Theorem. S_{τ} is a feasible decomposition of ρ .

$$S_{\tau} := \left\{ e \in E \, : \, \alpha_e - \rho_e \leq \tau \leq \alpha_e \right\}$$

$$\text{ with } \alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f \quad \text{ and } \quad \tau \sim U[0,1]$$

Theorem. S_{τ} is a feasible decomposition of ρ .

Proof sketch. Want to show: $\Pr[S_{\tau} \cap P \neq \emptyset] + \sum_{e \in P} \mu_e \ge 1$

$$S_{\tau} := \left\{ e \in E \, : \, \alpha_e - \rho_e \leq \tau \leq \alpha_e \right\}$$

$$\text{ with } \alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f \quad \text{ and } \quad \tau \sim U[0,1]$$

Theorem. S_{τ} is a feasible decomposition of ρ .

 $\begin{array}{ll} \text{Proof sketch.} & \text{Want to show:} \quad \Pr\left[S_{\tau} \cap P \neq \emptyset\right] + \sum_{e \in P} \mu_e \geq 1 \\ & \text{By induction:} \quad \Pr\left[S_{\tau} \cap [P,e] \neq \emptyset \, \land \, \tau \leq \alpha_e\right] \, + \sum_{f \in [P,e]} \mu_f \, \geq \, \alpha_e \\ \end{array}$

$$S_{\tau} := \left\{ e \in E \, : \, \alpha_e - \rho_e \leq \tau \leq \alpha_e \right\}$$

$$\text{ with } \alpha_e := \min_{P \in \mathcal{P}} \sum_{f \in [P,e]} \rho_f + \mu_f \quad \text{ and } \quad \tau \sim U[0,1]$$

Theorem. S_{τ} is a feasible decomposition of ρ .

Proof sketch. Want to show: $\Pr[S_{\tau} \cap P \neq \emptyset] + \sum_{e \in P} \mu_e \ge 1$ By induction: $\Pr[S_{\tau} \cap [P, e] \neq \emptyset \land \tau \le \alpha_e] + \sum_{f \in [P, e]} \mu_f \ge \alpha_e$ By (*): $\alpha_t \ge 1$ for last element t of P

Membership oracle for an abstract network: Given $F \subseteq E$, either

- return $P \in \mathcal{P}$ (and \leq_P) with $P \subseteq F$,
- \cdot or assert that no such P exists.

Membership oracle for an abstract network: Given $F \subseteq E$, either

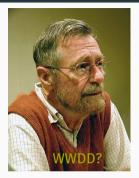
- return $P \in \mathcal{P}$ (and \leq_P) with $P \subseteq F$,
- \cdot or assert that no such P exists.

McCormick's Max Abstract Flow algorithm uses membership oracle.

Question (McCormick 1996): Can a stronger oracle (e.g., shortest paths) yield a strongly poly-time algorithm for Max Abstract Flow?

Given: abstract network (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$ Task: find $P \in \mathcal{P}$ minmizing $c(P) := \sum_{e \in P} c_e$

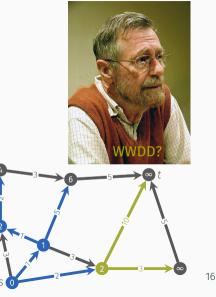
Given: abstract network (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$ Task: find $P \in \mathcal{P}$ minmizing $c(P) := \sum_{e \in P} c_e$



Given: abstract network (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$ Task: find $P \in \mathcal{P}$ minmizing $c(P) := \sum_{e \in P} c_e$

Dijkstra's Algorithm

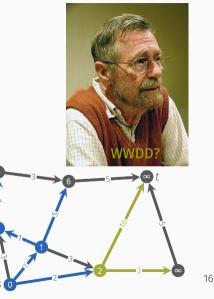
- initialize:
 - · label ϕ_v for $v \in V$
 - + s-v-path Q_v with $\phi_v = c(Q_v)$
 - $\cdot\,$ set of processed nodes T
- while $\min_{v \in V \setminus T} \phi_v < \phi_t$ pick $v \in \operatorname{argmin}_{w \in V \setminus T} \phi_w$ process(v)



Given: abstract network (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$ Task: find $P \in \mathcal{P}$ minmizing $c(P) := \sum_{e \in P} c_e$

Dijkstra's Algorithm (adapted)

- initialize:
 - · label ϕ_e for $e \in E$
 - * $Q_e \in \mathcal{P}$ with $\phi_e = c([Q_e,e])$
 - \cdot set of processed elements T
- while $\min_{v \in V \setminus T} \phi_v < \phi_t$ pick $v \in \operatorname{argmin}_{w \in V \setminus T} \phi_w$ process(v)

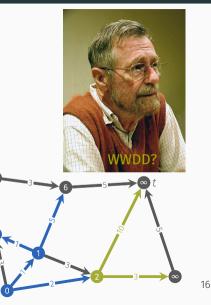


Given: abstract network (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$ Task: find $P \in \mathcal{P}$ minmizing $c(P) := \sum_{e \in P} c_e$

Dijkstra's Algorithm (adapted)

- initialize:
 - · label ϕ_e for $e \in E$
 - $\cdot \ Q_e \in \mathcal{P} \text{ with } \phi_e = c([Q_e,e])$
 - \cdot set of processed elements T
- while $\min_{e \in E \setminus T} \phi_e < \phi_t$ pick $e \in \operatorname{argmin}_{f \in E \setminus T} \phi_f$ process(e)

(w.l.o.g.: every $P \in \mathcal{P}$ starts with s and ends with t)

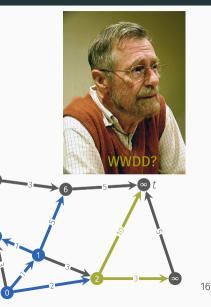


Given: abstract network (E, \mathcal{P}) , costs $c \in \mathbb{R}^E_+$ Task: find $P \in \mathcal{P}$ minmizing $c(P) := \sum_{e \in P} c_e$

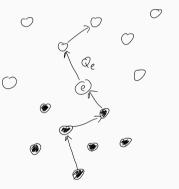
Dijkstra's Algorithm (adapted)

- initialize:
 - · label ϕ_e for $e \in E$
 - $\cdot \ Q_e \in \mathcal{P} \text{ with } \phi_e = c([Q_e,e])$
 - \cdot set of processed elements T
- while $\min_{e \in E \setminus T} \phi_e < \phi_t$ pick $e \in \operatorname{argmin}_{f \in E \setminus T} \phi_f$ **process**(e)

(w.l.o.g.: every $P \in \mathcal{P}$ starts with s and ends with t)



How to find all relevant ways to continue $[Q_e, e]$?

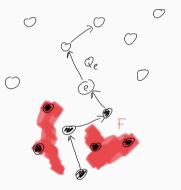


Processing Elements

How to find all relevant ways to continue $[Q_e,e]?$

process(e)

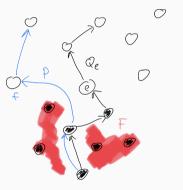
$$\cdot \ F := T \backslash [Q_e, e]$$



How to find all relevant ways to continue $[Q_e,e]?$

- $\cdot \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:

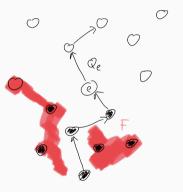
$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue $[Q_e,e]?$

- $\boldsymbol{\cdot} \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:

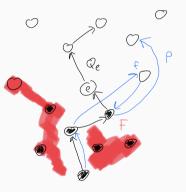
$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue $[Q_e,e]?$

- $\boldsymbol{\cdot} \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:

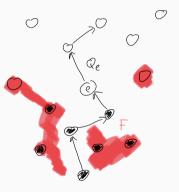
$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue $[Q_e,e]?$

- $\boldsymbol{\cdot} \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:

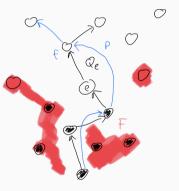
$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue $[Q_e,e]?$

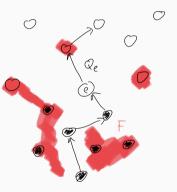
- $\boldsymbol{\cdot} \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:

$$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \end{split}$$



How to find all relevant ways to continue $[Q_e,e]?$

- $\boldsymbol{\cdot} \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:
 - $$\begin{split} f &:= \min_{\preceq_P} P \backslash [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q_f \end{split}$$
- $\boldsymbol{\cdot} \ T := T \cup \{e\}$



How to find all relevant ways to continue $[Q_e,e]?$

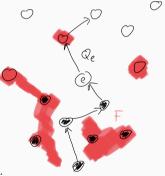
process(e)

- $\boldsymbol{\cdot} \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:

$$\begin{split} f &:= \min_{\leq_P} P \setminus [Q_e, e] \\ F &:= F \cup \{f\} \\ &\text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \\ T &:= T \cup \{e\} \end{split}$$

Lemma. After process(e), for every $P \in \mathcal{P}$ with $e \in P$:

• there is $f \in P \setminus T$ with $\phi_f \leq \phi_e + c_f$.



How to find all relevant ways to continue $[Q_e,e]?$

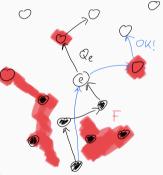
process(e)

- $\boldsymbol{\cdot} \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:

$$\begin{aligned} f &:= \min_{\leq_P} P \setminus [Q_e, e] \\ F &:= F \cup \{f\} \\ \text{if } c([P, f]) < \phi_f \text{ then update } \phi_f \text{ and } Q \\ T &:= T \cup \{e\} \end{aligned}$$

Lemma. After process(e), for every $P \in \mathcal{P}$ with $e \in P$:

• there is $f \in P \setminus T$ with $\phi_f \leq \phi_e + c_f$.



How to find all relevant ways to continue $[Q_e,e]?$

process(e)

- $\boldsymbol{\cdot} \ F := T \backslash [Q_e, e]$
- while $\exists P \in \mathcal{P}$ with $P \subseteq E \setminus F$:

$$f := \min_{\leq_P} P \setminus [Q_e, e]$$

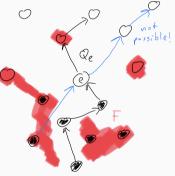
$$F := F \cup \{f\}$$

if $c([P, f]) < \phi_f$ then update ϕ_f and Q

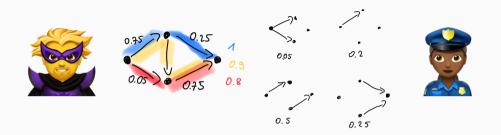
$$T := T \cup \{e\}$$

Lemma. After process(e), for every $P \in \mathcal{P}$ with $e \in P$:

• there is $f \in P \setminus T$ with $\phi_f \leq \phi_e + c_f$.



Conclusion



• (*)-sufficiency allows formulating problems via their marginals:

$$\sum_{e \in P} \rho_e \geq \pi_P \quad \forall \ P \in \mathcal{P} \quad (\star)$$

- many systems are (*)-sufficient, including abstract networks
- feasible decompositions can be computed via a shortest-path algorithm

Overview & Open Questions

⊕ combinatorial shortest-path algorithm for abstract networks Strongly poly-time algorithm for Abstract Max Flow?

Also: NP-hard to decide feasibility of given ρ in general systems Poly-time algorithms for some non-(*)-sufficient systems?

 (\star) -sufficiency under additional constraints on decomposition?

Copyright note

"Portrait of Edsger W. Dijkstra, one of the greatest mathematicans in history of modern mathematics." ©2002 Hamilton Richards

obtained from en.wikipedia.org under CC BY-SA 3.0