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Setting: Online Supervised Learning

For t = 1, 2, ...,T

▶ Receive feature xt ∈ X
▶ Play action at ∈ A
▶ Receive loss ℓ(at , yt) with yt ∈ Y

Performance against F = {fθ : X → A | θ ∈ Θ} measured by

RT (θ) =
T∑
t=1

ℓ(at , yt)−
T∑
t=1

ℓ(fθ(xt), yt) for θ ∈ Θ

Online Convex Optimization:

▶ Assume θ 7→ ℓt(θ) := ℓ(fθ(xt), yt) convex and Θ ⊆ Rd

▶ Play parameter θt ∈ Θ
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Adaptivity to Gradients and Comparator in OCO

Two main goals:
▶ Adapt to ∥θ∥ (comparator norm)
▶ Adapt to G = max

t∈[T ]
∥∇ℓt(θt)∥ (gradient length/data range)

▶ U ⩾ ∥θ∥ known, G (possibly) unknown: [Zinkevich ’03, Duchi et al. ’11]

RT (θ) = O
(
UG

√
T
)

▶ G known, U unknown: [McMahan and Streeter ’12]

RT (θ) = O
(
∥θ∥G

√
T log(1 + ∥θ∥T )

)
▶ Both G and U unknown: [Cutkosky ’19, Mhammedi and Koolen ’20]

RT (θ) = O
(
∥θ∥G

√
T log(1 + ∥θ∥T ) + G∥θ∥3

)
Price for adaptivity!
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Plot Twist: Adaptivity for Free
in Online Supervised Learning

1-Lipschitz losses, linear model fθ(x) = θ⊺x (e.g. Hinge loss)
[Kempka et al. ’19, Mhammedi, Koolen ’20]:

▶ ∥∇ℓt(θt)∥⩽ ∥xt∥
▶ Adapt to both ∥θ∥ and X = max ∥xt∥ almost for free

RT (θ) = O
(
∥θ∥X

√
T log(∥θ∥XT )

)
▶ Scale-free algorithms get the right dependence on X

Q: For other losses, what is the cost of adapting to ∥θ∥ and the data range?

A: In many cases, free!
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Approach

▶ Key property: η-Mixability of the loss ℓ:

Definition (η-Mixability)

A loss ℓ : A → R is called η-mixable if, for some η > 0 and all p ∈ PA
there exists some ζ : PA → A such that

ℓ(ζ(p)) ⩽ −1

η
lnEa∼p

[
e−ηℓ(a)

]

▶ ℓ(pθ, y) = −lnpθ(y) is 1-mixable under ζ(p′) = Eθ∼p′pθ since
ℓ(p′) = −lnEθ∼p′pθ

Definition (α-Exp-concavity)

A convex function f is called α-exp-concave if the mapping x 7→ e−αf (x)

is a concave function

▶ η-Mixability is just η-Exp-concavity with ζ(p) := Ea∼p[a]!
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Example: Least Squares Estimation

▶ For y , a ∈ Rd , ℓ(a, y) = ∥a− y∥22 is η-exp-concave with η = 1
4Y 2

RT (θ) =
1

2

T∑
t=1

∥at − yt∥22−∥θ − yt∥22

⩽ 2Y 2
T∑
t=1

−lnEa∼pt

[
e−

1
4Y 2 ∥at−yt∥2

2

]
+ lne−

1
4Y 2 ∥θ−yt∥2

2

= 2Y 2
T∑
t=1

−lnEa∼pt

[
e−

1
2σ2 ∥at−yt∥2

2

(2πσ2)d/2

]
+ ln

e−
1

2σ2 ∥θ−yt∥2
2

(2πσ2)d/2
(σ=

√
2Y )

= 2Y 2
T∑
t=1

ℓlog(pt(yt))− ℓlog(pθ(yt))

▶ Predictions using single actions easier than with mixtures up to a
range-dependent constant!
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▶ For all squared losses, exp-concavity ranges depend on domains Yt

Lemma (van der Hoeven et al. ’18)

For t − 1, ...,T , suppose the loss ℓ is ηt-mixable on (A,Yt) with Yt ⊆ Y
for sub-fun ζt . Then the exponentially-weighted forecaster algorithm with
nonincreasing learning rates η1 ⩾ ... ⩾ ηT > 0 and substitution functions
ζ1, ..., ζT achieves

T∑
t=1

ℓ(at , yt) ⩽ Eθ∼γ

[
T∑
t=1

ℓ(fθ(xt), yt)

]
+

KL(γ|π)
ηT

For all priors π and gamma such that KL(γ|πt) < ∞, provided that the
knowlege yt ∈ Yt is correct.

▶ As it turns out, the cost for not knowing Yt one-step in advance is
O( 1

ηT
) for squared losses!

▶ Aggregate any hyperparameter α on an exponentially spaced grid

RT (Aggregated, θ) ≲ RT (α
⋆, θ) +

log logα⋆

η
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Online Multiclass Logistic Regression
▶ yt ∈ {1, . . . ,K}, Actions: probabilities over K classes

▶ Log loss: ℓ(p, y) = − ln p(y)

▶ Comparators parameterized by matrix θ ∈ RK×d as pθ,t(y) ∝ e(θxt)y

Non-adaptive Result: [Foster et al. ’18]

Known U ⩾ ∥θ∥, unknown X = maxt∈[T ]∥xt∥

RT (θ) ⩽ 5dK ln

(
UXT

dK
+ e

)
Adaptive Result:

We show, with both U,X unknown:

RT (θ) ⩽ 5dK ln

(
2∥θ∥XT

dK
+ 2e

)
︸ ︷︷ ︸

Adaptive rate

+ O (log logT )︸ ︷︷ ︸
Cost of adaptation

Aggregate U ∈ {2iε/∥x1∥ : i ∈ N}: poor dependence on εX/∥x1∥
Aggregate again ε ∈ {2−i} to improve to +O(log log(X/∥x1∥))
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Logistic Regression II: Efficient Algorithm

Non-adaptive Result: [Agarwal et al. ’21]

Slightly worse rate but practical runtime:

RT (θ) = Õ
(
UXdK lnT

)
in Õ

(
d2K 3 + UXK 2

)
time/round

Linear dependence on ∥θ∥ → more to gain through adaptation

Adaptive Result:
We show, for any β > 0 with ∥θ∥X ⩽ Tβ :

RT (θ) = Õ
(
∥θ∥XdK lnT

)
in Õ

(
d2K 3 + TβK 2

)
time/round

Challenge: Keeping Runtime Low

▶ Aggregate over a finite grid of U + doubling trick on X

▶ Total runtime is dominated by slowest algorithm
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Online Least-squares Estimation

▶ yt , at ∈ Rd , square loss ℓ(a, y) = ∥a− y∥2/2
▶ fθ = θ ∈ Rd ; Y = max ∥yt∥

Non-adaptive result:
Gradient Descent tuned with Y and U, for ∥θ∥ ⩽ U,

RT (θ) ⩽ 2Y 2 ln

(
1 +

U2T

Y 2

)
+

Y 2

2

Adaptive result:
We show, for any θ ∈ Rd

RT (θ) ⩽ 2Y 2 ln

(
2 +

∥θ∥2T
Y 2

)
+O

(
Y 2 log log

(
Y 2

∥θ∥2

))
Challenge: Mixability depends on unknown range of yt
▶ Clip to previous largest ∥ys∥ for +Y 2 cost
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Online Linear Least-squares Regression

▶ at , yt ∈ R, features xt ∈ Rd , square loss ℓ(a, y) = |a− y |2/2
▶ fθ(xt) = θ⊺xt ; Y = max ∥yt∥ and X = max ∥xt∥

Non-adaptive: [Vovk’01, Azoury-Warmuth’01]

VAW forecaster tuned with Y ,X and U ⩾ ∥θ∥

RT (θ) ⩽
dY 2

2
ln

(
1 +

U2X 2T

d2Y 2

)
+O(1)

Adaptive:
We show for any θ ∈ Rd ,

RT (θ) ⩽
dY 2

2
ln

(
1 +

∥θ∥2X 2T

d2Y 2

)
+O

(
log

∣∣∣∣ log ( Y 2

∥θ∥2X 2

)∣∣∣∣)
▶ Aggregate over regularization + clipping to maintain mixability

▶ Scale-invariance by setting the grid according to scale ∥x1∥
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Conclusion

No cost for adaptation in many online learning tasks

▶ Logistic regression, least-squares estimation, least-squares regression

More results in paper:

▶ Normal location, nonparametric classes

▶ Matching lower bounds with dependence on U,Y ,X

Thanks for your attention!
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