Scale-free Unconstrained Online Learning
for Curved Losses

UNIVERSITEITVAN AmsTErpam  CentraleSupélec

Jack Mayo, Hédi Hadijif, Tim van Erven

Dutch Seminar on Optimzation, December 8th, 2022



Setting: Online Supervised Learning

Fort=1,2,...T
» Receive feature x; € X
» Play action a; € A
» Receive loss ¢(a;, y;) with y; € Y

Performance against F = {fp : X — A | 6 € ©} measured by

T T

Rr(0) =Y lae,ye) = Y Ufa(xe),ye) for 6O

t=1

Online Convex Optimization:
> Assume 0 > £+(6) == £(fy(xt), y:) convex and © C R
» Play parameter 6, € ©
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Adaptivity to Gradients and Comparator in OCO

Two main goals:
> Adapt to ||0]| (comparator norm)
»> Adapt to G = m[aT>§||V£t(0f)|| (gradient length/data range)
te
» U > ||0|| known, G (possibly) unknown: [Zinkevich '03, Duchi et al. '11]
Rr(0) = O(UGVT)
» G known, U unknown: [McMahan and Streeter '12]

Rr(0) = O([I0] G/ Tlog(1+ 6] T) )

» Both G and U unknown: [Cutkosky '19, Mhammedi and Koolen '20]

Rr(0) = O(l10G /T log(1 + 0] T) + Gl|6])

Price for adaptivity!

3/12



Plot Twist: Adaptivity for Free
in Online Supervised Learning

1-Lipschitz losses, linear model f(x) = 0Tx (e.g. Hinge loss)
[Kempka et al. '19, Mhammedi, Koolen '20]:

> VL0 [l
> Adapt to both ||#|| and X = max ||x;|| almost for free

Rr(0) = O([101 X/ Tlog([|0]|XT))

> Scale-free algorithms get the right dependence on X

Q: For other losses, what is the cost of adapting to ||0|| and the data range?

A: In many cases, free!
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Approach

> Key property: n-Mixability of the loss ¢:
Definition (n-Mixability)

A loss £ : A — R is called n-mixable if, for some > 0 and all p € P4
there exists some ¢ : P4 — A such that

1
U(P)) < = B [e—ne(a)}

> U(pg,y) = —Inpg(y) is I-mixable under {(p’) = Eg.p pg since
U(p’) = —InEg~p po
Definition (a-Exp-concavity)
A convex function f is called a-exp-concave if the mapping x — e~ *f(%)
is a concave function

> n-Mixability is just n-Exp-concavity with {(p) = E,.p[a]!

5/12



Example: Least Squares Estimation

» For y,a€ R, ((a,y) = |la— y|3 is n-exp-concave with ) = ;&

-
1
= 2 Z”at - }/tH%_HO - ytH%
t=1

T

— L lla,—v,I? — L e—y,I?
<2Y2Y " —InE,.,, {e vz llac ytnﬂ + Ine~ nzllo—xliz
t=1
2Y2 e 202 llae—yell3 | e 2(,2 l10—y:13 s
= ~ + In =V2Y
Z Eap: (2702)d/2 (2mo2)d/2 (@ )

=2Y? Z liog(Pe(ye)) — liog(Po(yr))

t=1

» Predictions using single actions easier than with mixtures up to a
range-dependent constant!
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» For all squared losses, exp-concavity ranges depend on domains ),

Lemma (van der Hoeven et al. '18)

Fort —1,..., T, suppose the loss ¢ is n:-mixable on (A, V) with Yy C Y
for sub-fun (. Then the exponentially-weighted forecaster algorithm with
nonincreasing learning rates n; > ... > nt > 0 and substitution functions
(1,...,(T achieves

T

Z g(fe(xt)’ }’t)

t=1

, KL(1In)

.
> Ut yr) < Eomy
t=1 T

For all priors m and gamma such that KL(y|m;) < oo, provided that the
knowlege y; € Y; is correct.

» As it turns out, the cost for not knowing ); one-step in advance is
O(n%) for squared losses!

> Aggregate any hyperparameter a: on an exponentially spaced grid

log | *
£ 0)+ oglog o

Rr(Aggregated, ) < Rr(a
n
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Online Multiclass Logistic Regression

> y, €{1,...,K}, Actions: probabilities over K classes
> Log loss: ¢(p,y) = —Inp(y)

» Comparators parameterized by matrix § € RK*? as py (y) oc e(®*)r

Non-adaptive Result: [Foster et al. '18]
Known U > [|6]], unknown X = max.c7jl[x:||

UXT
< -
R7(0) < 5dK|n< 9K + e>

Adaptive Result:
We show, with both U, X unknown:

2||0|XT
R7(0) < 5dKIn (”dK + 2e> + O(loglog T)
Adaptive rate Cost of adaptation

Aggregate U € {2'¢/||x1|| : i € N}: poor dependence on X /||x ||
Aggregate again € € {27/} to improve to +O(log log(X/||x1]|))
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Logistic Regression |l: Efficient Algorithm

Non-adaptive Result: [Agarwal et al. '21]
Slightly worse rate but practical runtime:

Rr(0) = O(UXdKInT) in O(d*K® + UXK?) time/round
Linear dependence on ||f|| — more to gain through adaptation

Adaptive Result:
We show, for any 8 > 0 with [|0]| X < T7:

Rr(0) = O(||0]| XdK In T) in O(d?K®+ TPK?) time/round

Challenge: Keeping Runtime Low
> Aggregate over a finite grid of U + doubling trick on X

» Total runtime is dominated by slowest algorithm
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Online Least-squares Estimation

> y;,a; € RY, square loss £(a,y) = ||a — y|?/2
> fy=0cRY; Y =max|y:|

Non-adaptive result:
Gradient Descent tuned with Y and U, for ||0|| < U,

U2T y?2
R <2Y%In 1+ —— —
r) <2y (14 57 ) +

Adaptive result:
We show, for any 6 € R?

01T Y?
Covep (o | :
Rr(60) <2Y<In <2 + v ) + O(Y log log (”9”2

Challenge: Mixability depends on unknown range of y;

» Clip to previous largest ||ys|| for +Y? cost
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Online Linear Least-squares Regression

> a;,y: € R, features x, € RY, square loss £(a,y) = |a — y|?/2
> fo(x:) =0Tx;; Y = max|y:|| and X = max ||x||
Non-adaptive: [Vovk'01, Azoury-Warmuth'01]
VAW forecaster tuned with Y, X and U > ||0||
dy? U2X2T
Adaptive:
We show for any § € RY,

dy? ||9||2X27
R < — JLLINLL
7(9)\ 5 In <1+ 2y2 )+O<Iog

()

> Aggregate over regularization + clipping to maintain mixability

> Scale-invariance by setting the grid according to scale ||xq||

11/12



Conclusion

No cost for adaptation in many online learning tasks

» Logistic regression, least-squares estimation, least-squares regression

More results in paper:
» Normal location, nonparametric classes

» Matching lower bounds with dependence on U, Y, X

Thanks for your attention!
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