

Isja Mannens, Jesper Nederlof

Overview

- Preliminaries
- The Tutte polynomial
- Counting forests

Width Measures

- Cover the graph in bags
- Bags have a tree-like structure
- Width is given by the size of the bags

- Cover the graph in bags
- Bags have a path-like structure
- Width is given by the size of the bags
$\leq \quad$ Cutwidth

- Order the vertices
- Width is given by \#edges crossing a any cut

Parameterized complexity

- Classical complexity:
- $\mathrm{n}^{2}, 2^{n}$, etc.
- Parameterized complexity:
- $2^{\mathrm{tw}} \mathrm{n}^{\mathrm{O}(1)}, \mathrm{n}^{\mathrm{tw}}$, etc.
- FPT: f(tw) $\mathrm{n}^{\mathrm{O}(1)}$
- XP: $f(t w) n^{g(t w)}$

Both polynomial time!

The Tutte polynomial

- Input:
- A graph G
- $(x, y) \in \mathbb{C}^{2}$
- Output:
- $T(G ; x, y)=\sum_{A \subseteq E}(x-1)^{k(A)-k(E)}(y-1)^{k(A)+|A|-|V|}$

$$
(\mathrm{k}(\mathrm{~A})=\text { \#components of }(\mathrm{V}, \mathrm{~A}))
$$

- How fast can we compute T for a fixed pair (x, y) ?
- Why should we care?

The Tutte polynomial, why should we care?

- Any graph parameter that can be defined by a deletioncontraction recurrence $(f(G)=f(G \backslash \mathrm{e})+f(G / e))$

Some specific cases (for connected G):

- $\mathrm{T}(\mathrm{G} ; 2,1)=\#$ forests
- $\mathrm{T}(\mathrm{G} ; 1,2)=\#$ connected subgraphs
- $T(G ; 1,1)=\#$ spanning trees
- Etc.

The Tutte polynomial, NP-hardness

- Special curves:

$$
H_{\alpha}=\{(x, y):(x-1)(y-1)=\alpha\}
$$

Easy points (for $j=e^{\frac{2 \pi i}{3}}$):

$$
\begin{array}{llll}
\{(1,1), & (-1,-1), & (0,-1), & (-1,0) \\
(i,-i), & (-i, i), & \left(j, j^{2}\right), & \left.\left(j^{2}, j\right)\right\} \cup H_{1}
\end{array}
$$

- Theorem (JVW): NP-hard everywhere else

The Tutte polynomial, NP-hardness

Theorem (JVW): NP-hard everywhere else
Proof overview:

- Idea: lift hardness from some known hard point on H_{α}
- Assume $(x, y) \in H_{\alpha}$ in polynomial time
- Apply 'k-stretch/thickening' to compute n different points on H_{α}

The Tutte polynomial, Parameterized Complexity

Theorem (new): Parameterized hardness dichotomy
Proof overview:

- Idea: lift hardness from some known hard point on H_{α}
- Assume $(x, y) \in H_{\alpha}$ in 'certain' time
- Apply 'k-stretch/insulated k-thickening' to compute n different points on H_{α}

The Tutte polynomial, our results

- Lower bounds in terms of ctw and upper bounds in terms of tw
- Since
$t w \leq p w \leq c t w$ these bounds hold for all three parameters

Curve	Lower bound	Upper bound
H_{0}^{x}	$c t w^{o(c t w)}$	$O\left(t w^{t w}\right)$
H_{0}^{y}	$2^{o(c t w)}$	$O\left(64^{t w}\right)$
H_{1}		$O\left(n^{O(1)}\right)$
H_{α} for $\alpha \in \mathbb{Z}_{\geq 2}$	$O\left(\alpha^{c t w}\right)$	$O\left(\alpha^{t w}\right)$
H_{α} for $\alpha \in \mathbb{Z}_{<0}$	$c t w^{o(c t w)}$	$O\left(t w^{t w}\right)$
H_{α} for $\alpha \in \mathbb{C} \backslash \mathbb{Z}$	$2^{o(c t w)}$	$O\left(t w^{t w}\right)$

Not tight (yet)

Counting forests (T(G; 2, 1))

Problem: Count the number of edgesets $A \subseteq E$, such that (V, A) is a forest

- This is a special case of the Tutte polynomial $(T(G ; 2,1))$
- We can do this in $O\left(64^{t w}\right)$ time
- Surprisingly $T(G ; 1,2)$ cannot be computed in $c t w^{o(c t w)}$ time
- We use the 'rank-based approach'
- Uses some problem specific matrix M
- Running time is (often) linear in the rank of M

Forest Compatibility matrix

- Index by forests (partitions into connected components)
- If two forests (partitions) induce a cycle, we put a 0
- Otherwise, we put a 1
- $\operatorname{dim}(\mathrm{M})$ is the $\mathrm{n}^{\text {th }}$ Bell number rank(M) is the $\mathbf{n}^{\text {th }}$ Catalan number! (Non-crossing partitions form a basis of the matrix)

Forest Compatibility matrix

General proof structure:

- Let N_{p} be the set of (rows corresponding to) non-crossing partitions relative to permutation p
- Show that $\mathrm{N}_{(\mathrm{i}, \mathrm{i}+1)} \subseteq \operatorname{span}\left(\mathrm{N}_{\mathrm{id}}\right)$
- By induction $\mathrm{N}_{p} \subseteq \operatorname{span}\left(\mathrm{~N}_{\mathrm{id}}\right)$ for any permutation p
- Every permutation can be written as a product of 2-cycles ($\mathrm{i}, \mathrm{i}+1$)
- Any partition is non-crossing for some permutation
- Therefore, the set of non-crossing partitions span all rows

Forest Compatibility matrix

General proof structure:

- Let N_{p} be the set of (rows corresponding to) non-crossing partitions relative to permutation p
- Show that $\mathrm{N}_{(\mathrm{i}, \mathrm{i}+1)} \subseteq \operatorname{span}\left(\mathrm{N}_{\mathrm{id}}\right)$
- By induction $\mathrm{N}_{p} \subseteq \operatorname{span}\left(\mathrm{~N}_{\mathrm{id}}\right)$ for any permutation p
- Every permutation can b written as a product of 2-cycles ($\mathrm{i}, \mathrm{i}+1$)
- Any partition is non-crossing for some permutation
- Therefore, the set of non-crossing partitions span all rows

Forest Compatibility matrix, uncrossing a swap

What's next?

- Complete dichotomy
- Sharpen bounds for H_{α} for $\alpha \in \mathbb{C} \backslash \mathbb{Z}$ and H_{0}^{y}
- Different Parameters?
- Dichotomy mod p

Thank you for listening!

Counting forests (T(G; 2, 1))

