

Parameterized complexity of the Tutte polynomial

Isja Mannens, Jesper Nederlof

Computer Science department, Algorithms & Complexity

Overview

- Preliminaries
- The Tutte polynomial
- Counting forests

Width Measures

- Cover the graph in bags
- Bags have a tree-like structure
- Width is given by the size of the bags

- Cover the graph in bags
- Bags have a path-like structure
- Width is given by the size of the bags

- Order the vertices
- Width is given by #edges crossing a any cut

Parameterized complexity

Treewidth

- Classical complexity:
 - n², 2ⁿ, etc.
- Parameterized complexity:
 - 2^{tw}n^{O(1)}, n^{tw}, etc.
 - FPT: f(tw)n^{O(1)}
 - XP: f(tw)n^{g(tw)}

Both polynomial time!

The Tutte polynomial

- Input:
 - A graph G
 - $(x, y) \in \mathbb{C}^2$
- Output:
 - $T(G; x, y) = \sum_{A \subseteq E} (x 1)^{k(A) k(E)} (y 1)^{k(A) + |A| |V|}$

(k(A) = #components of (V,A))

- How fast can we compute *T* for a fixed pair (*x*, *y*)?
- Why should we care?

The Tutte polynomial, why should we care?

• Any graph parameter that can be defined by a deletioncontraction recurrence $(f(G) = f(G \setminus e) + f(G/e))$

Some specific cases (for connected G):

- T(G; 2, 1) = # forests
- T(G; 1, 2) = # connected subgraphs
- T(G; 1, 1) = # spanning trees
- Etc.

The Tutte polynomial, NP-hardness

• Special curves:

$$H_{\alpha} = \{(x, y): (x - 1)(y - 1) = \alpha\}$$

Easy points (for $j = e^{\frac{2\pi i}{3}}$):
 $\{(1,1), (-1,-1), (0,-1), (-1,0), (i,-i), (-i,i), (j,j^2), (j^2,j)\} \cup H\}$

• Theorem (JVW): NP-hard everywhere else

The Tutte polynomial, NP-hardness

Theorem (JVW): NP-hard everywhere else

Proof overview:

- Idea: lift hardness from some known hard point on H_{α}
- Assume $(x, y) \in H_{\alpha}$ in polynomial time
- Apply 'k-stretch/thickening' to compute n different points on H_{α}

• Interpolate polynomial along H_{α}

The Tutte polynomial, Parameterized Complexity

Theorem (new): Parameterized hardness dichotomy

Proof overview:

- Idea: lift hardness from some known hard point on H_{α}
- Assume $(x, y) \in H_{\alpha}$ in *'certain'* time
- Apply 'k-stretch/insulated k-thickening' to compute n different points on H_{α}

• Interpolate polynomial along H_{α}

The Tutte polynomial, our results

 Lower bounds in terms of ctw and upper bounds in terms of tw

• Since

 $tw \le pw \le ctw$ these bounds hold for all three parameters

Curve	Lower bound	Upper bound
H_0^{χ}	ctw ^{o(ctw)}	$O(tw^{tw})$
$H_0^{\mathcal{Y}}$	$2^{o(ctw)}$	$0(64^{tw})$
H_1		$O(n^{O(1)})$
H_{α} for $\alpha \in \mathbb{Z}_{\geq 2}$	$O(\alpha^{ctw})$	$O(\alpha^{tw})$
H_{α} for $\alpha \in \mathbb{Z}_{<0}$	ctw ^{o(ctw)}	$O(tw^{tw})$
H_{α} for $\alpha \in \mathbb{C} \backslash \mathbb{Z}$	$2^{o(ctw)}$	$O(tw^{tw})$
	Not tight (yet)	

Counting forests (T(G; 2, 1))

Problem: Count the number of edgesets $A \subseteq E$, such that (V, A) is a forest

- This is a special case of the Tutte polynomial (T(G; 2, 1))
- We can do this in $O(64^{tw})$ time
- Surprisingly T(G; 1, 2) cannot be computed in $ctw^{o(ctw)}$ time
- We use the 'rank-based approach'
 - Uses some problem specific matrix M
 - Running time is (often) linear in the rank of M

Forest Compatibility matrix

- Index by forests (partitions into connected components)
- If two forests (partitions) induce a cycle, we put a 0
- Otherwise, we put a 1
- dim(M) is the nth Bell number

rank(M) is the nth Catalan number!
(Non-crossing partitions form a basis
of the matrix)

Forest Compatibility matrix

General proof structure:

- Let N_p be the set of (rows corresponding to) non-crossing partitions relative to permutation p
- Show that $N_{(i,i+1)} \subseteq \text{span}(N_{id})$
- By induction $N_p \subseteq \text{span}(N_{id})$ for any permutation p
 - Every permutation can be written as a product of 2-cycles (i, i+1)
- Any partition is non-crossing for some permutation
- Therefore, the set of non-crossing partitions span all rows

Forest Compatibility matrix

General proof structure:

- Let N_p be the set of (rows corresponding to) non-crossing partitions relative to permutation p
- Show that $N_{(i,i+1)} \subseteq \text{span}(N_{id})$
- By induction $N_p \subseteq \text{span}(N_{id})$ for any permutation p
 - Every permutation can b written as a product of 2-cycles (i, i+1)
- Any partition is non-crossing for some permutation
- Therefore, the set of non-crossing partitions span all rows

Forest Compatibility matrix, uncrossing a swap

What's next?

- Complete dichotomy
 - Sharpen bounds for H_{α} for $\alpha \in \mathbb{C} \setminus \mathbb{Z}$ and $H_0^{\mathcal{Y}}$
- Different Parameters?
- Dichotomy mod p

Thank you for listening!

