On the complexity of integer programming

Friedrich Eisenbrand

Integer Programming
$\max \left\{c^{T} x: x \in \mathbb{Z}^{n}, A x \leq b\right\}$

NP-complete versatile optimization problem. Example: SAT

$$
\begin{array}{r}
\oint \cdot\left\{x_{2}, \overline{x_{4}}, x_{7}\right\},\left\{x_{3}, \overline{x_{4}}, x_{5}\right\}, \ldots \\
x_{2}+\left(1-x_{4}\right)+x_{7} \\
x_{3}+\left(1-x_{4}\right)+x_{5} \geq 1 \\
\vdots \\
\vdots \\
\text { \& } \mathbf{X} \geq \mathbf{0}, \quad \boldsymbol{X} \in \mathbb{Z}^{\boldsymbol{K}}
\end{array}
$$

Other examples: Scheduling, TSP, Cryptography, etc.
ϕ is sot. $\Leftrightarrow A x \leq b$ $x \in \mathbb{N}^{n}$ is feasible

Integer Programming

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Standard Form
$(m \cdot \Delta)^{O\left(m^{2}\right)}$
(Papadimitriou 1981)

Integer Programming

$\begin{array}{cccc}\max & c^{T} x & & \\ A x & = & b & A \in \mathbb{Z}^{\mathrm{m} \times n} \\ x & \geq & 0 & b \in \mathbb{Z}^{\mathrm{m}} \\ x & \in & \mathbb{Z}^{n} & \|A\|_{\infty} \leq \Delta \\ & \|b\|_{\infty} \leq \Delta\end{array}$

Standard Form
$(m \cdot \Delta)^{O\left(m^{2}\right)}$
(Papadimitriou 1981)

Integer Programming

\max	$c^{T} x$				
$A x$	$=$	b			
x	\geq	0	$\\| \mathbb{Z}^{\mathrm{m} \times n}$		
x	\in	\mathbb{Z}^{n}	$\\|A\\|_{\infty} \leq \Delta$		
x	$\\|b\\|_{\infty} \leq \Delta$				

$$
\begin{array}{ccc}
\max & c^{T} x \\
A x & \leq & b \\
x & \in & \mathbb{Z}^{n} \\
n & = & \text { VAR: }
\end{array}
$$

Standard Form
$(m \cdot \Delta)^{O\left(m^{2}\right)}$
(Papadimitriou 1981)
Here:

Inequality Form
lenstre $19832^{{\alpha\left(n^{2}\right)}^{\alpha}}$ KANNAN 1986
Bo DADUSA bost
$(m \cdot \Delta)^{O(m)} \cdot\|b\|_{\infty}^{2}$ upper bound

Matching lower bound even for 0/1-matrices

$(m \cdot \Delta)^{O\left(m^{2}\right)}$ - Papadimitriou 1981

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Fact: There exists optimal solution x^{*} with

$$
\left\|x^{*}\right\|_{\infty} \leq U=(m \cdot \Delta)^{m}
$$

$(m \cdot \Delta)^{O\left(m^{2}\right)}$ — Papadimitriou 1981

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Fact: There exists optimal solution x^{*} with

$$
\left\|x^{*}\right\|_{\infty} \leq U=(m \cdot \Delta)^{m}
$$

$$
b^{\prime}=x_{1}^{*} \cdot a_{1}+\cdots+x_{i}^{*} \cdot a_{i}
$$

$\|b\|_{\infty} \approx(m \cdot \Delta)^{m}$

Number of Nodes approximately $(m \cdot \Delta)^{m^{2}}$

$(m \cdot \Delta)^{O\left(m^{2}\right)}$ - Papadimitriou 1981

Number of Nodes approximately $(m \cdot \Delta)^{m^{2}}$
$\Rightarrow(m \cdot \Delta)^{m}$

The Steinitz Lemma (Steinitz 1913)

Let $x_{1}, \ldots x_{n} \in \mathbb{R}^{m}$ such that $\left\|x_{i}\right\| \leq 1$ for each i and $\sum_{i} x_{i}=0$, then there exists a permutation π such that

$$
\left\|\sum_{i=1}^{k} x_{\pi_{i}}\right\| \leq m \text { for each } k .
$$

$(m \cdot \Delta)^{O(m)}$ - A smaller Steinitz state space

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption:

$\|A\|_{\infty},\|b\|_{\infty} \leq \Delta$
$(m \cdot \Delta)^{O(m)}$ - A smaller Steinitz state space

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption:
$\|A\|_{\infty},\|b\|_{\infty} \leq \Delta$

- Let x^{*} be optimal solution
- Steinitz sequence:
$\int=\underbrace{a_{1}+\cdots+a_{1}}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}+\cdots+a_{n}}_{x_{n}^{*} \text { times }}-b$
$(m \cdot \Delta)^{O(m)}$ - A smaller Steinitz state space

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption:
$\|A\|_{\infty},\|b\|_{\infty} \leq \Delta$

- Let x^{*} be optimal solution
- Steinitz sequence:

$$
\underbrace{a_{1}+\cdots+a_{1}}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}+\cdots+a_{n}}_{x_{n}^{*} \text { times }}-b
$$

- Can be re-arranged such that partial sums of columns have $\|\cdot\|_{\infty} \leq 2 m \cdot \Delta$
$(m \cdot \Delta)^{O(m)}$ - A smaller Steinitz state space

- Can be re-arranged such that partial sums of columns have $\|\cdot\|_{\infty} \leq 2 m \cdot \Delta$

Qu' $(m \cdot \Delta)^{m}$ hang nodes: $y-x=a_{i}$
$(m \cdot \Delta)^{O(m)}$ - A smaller Steinitz state space

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption:
$\|A\|_{\infty},\|b\|_{\infty} \leq \Delta$

- Let x^{*} be optimal solution
- Steinitz sequence:

$$
\underbrace{a_{1}+\cdots+a_{1}}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}+\cdots+a_{n}}_{x_{n}^{*} \text { times }}-b
$$

- Can be re-arranged such that partial sums of columns have $\|\cdot\|_{\infty} \leq 2 m \cdot \Delta$
$y-x=a_{i}$
$(m \cdot \Delta)^{O(m)}$ - A smaller Steinitz state space

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption:
$\|A\|_{\infty},\|b\|_{\infty} \leq \Delta$

- Let x^{*} be optimal solution
- Steinitz sequence:

$$
\underbrace{a_{1}+\cdots+a_{1}}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}+\cdots+a_{n}}_{x_{n}^{*} \text { times }}-b
$$

- Can be re-arranged such that partial sums of columns have $\|\cdot\|_{\infty} \leq 2 m \cdot \Delta$
- $(m \cdot \Delta)^{O(m)}$ nodes

Feartizility problem in $(m \cdot \Delta)^{(i m)}$ time.
$y-x=a_{i}$
$(m \cdot \Delta)^{O(m)} \cdot\|b\|-A$ milder dependence on b

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

- Let x^{*} be optimal solution with $k=\left\|x^{*}\right\|_{1}$

Assumption: Only
$\|A\|_{\infty} \leq \Delta$

$(m \cdot \Delta)^{O(m)} \cdot\|b\|-A$ milder dependence on b

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

- Let x^{*} be optimal solution with $k=\left\|x^{*}\right\|_{1}$
- Steinitz sequence:

Assumption: Only $\|A\|_{\infty} \leq \Delta$

$$
0=\underbrace{a_{1}-b / k+\cdots+a_{1}-b / k}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}-b / k+\cdots+a_{n}-b / k}_{x_{n}^{*} \text { times }}
$$

$(m \cdot \Delta)^{O(m)} \cdot\|b\|-A$ milder dependence on b

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption: Only $\|A\|_{\infty} \leq \Delta$

- Let x^{*} be optimal solution with $k=\left\|x^{*}\right\|_{1}$
- Steinitz sequence:

$$
\underbrace{a_{1}-b / k+\cdots+a_{1}-b / k}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}-b / k+\cdots+a_{n}-b / k}_{x_{n}^{*} \text { times }}
$$

- Can be re-arranged such that partial sums of columns have distance $\|\cdot\|_{\infty} \leq 2 m \cdot \Delta$ from line-segment $0, b$

$(m \cdot \Delta)^{O(m)} \cdot\|b\|-A$ milder dependence on b

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption: Only $\|A\|_{\infty} \leq \Delta$

- Let x^{*} be optimal solution with $k=\left\|x^{*}\right\|_{1}$
- Steinitz sequence:

$$
\underbrace{a_{1}-b / k+\cdots+a_{1}-b / k}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}-b / k+\cdots+a_{n}-b / k}_{x_{n}^{*} \text { times }}
$$

- Can be re-arranged such that partial sums of columns have distance $\|\cdot\|_{\infty} \leq 2 m \cdot \Delta$ from line-segment $0, b$
$(m \cdot \Delta)^{O(m)} \cdot\|b\|$

$(m \cdot \Delta)^{O(m)} \cdot\|b\|-A$ milder dependence on b

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption: Only $\|A\|_{\infty} \leq \Delta$

- Let x^{*} be optimal solution with $k=\left\|x^{*}\right\|_{1}$
- Steinitz sequence:

$$
\underbrace{a_{1}-b / k+\cdots+a_{1}-b / k}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}-b / k+\cdots+a_{n}-b / k}_{x_{n}^{*} \text { times }}
$$

- Can be re-arranged such that partial sums of columns have distance $\|\cdot\|_{\infty} \leq 2 m \cdot \Delta$ from line-segment $0, b$
- $(m \cdot \Delta)^{O(m)} \cdot\|b\|$ nodes

$(m \cdot \Delta)^{O(m)} \cdot\|b\|-A$ milder dependence on b

\max	$c^{T} x$	
$A x$	$=$	b
x	\geq	0
x	\in	\mathbb{Z}^{n}

Assumption: Only $\|A\|_{\infty} \leq \Delta$

- Let x^{*} be optimal solution with $k=\left\|x^{*}\right\|_{1}$
- Steinitz sequence:

$$
\underbrace{a_{1}-b / k+\cdots+a_{1}-b / k}_{x_{1}^{*} \text { times }}+\cdots+\underbrace{a_{n}-b / k+\cdots+a_{n}-b / k}_{x_{n}^{*} \text { times }}
$$

- Can be re-arranged such that partial sums of columns have distance $\|\cdot\|_{\infty} \leq 2 m \cdot \Delta$ from line-segment $0, b$
- $(m \cdot \Delta)^{O(m)} \cdot\|b\|$ nodes

Theorem: IP can be solved in time $(m \cdot \Delta)^{O(m)} \cdot\|b\|$.

Lower bounds based on ETH

Exponential Time Hypothesis (ETH): There exists $\epsilon>0$ such that 3-SAT cannot be solved in time $2^{\epsilon \cdot n}$.

Theorem: For 0/1-matrices A, there is no $2^{o(m \log m)}\left(n+\|b\|_{\infty}\right)^{o(m)}$ algorithm for IP, unless ETH is false.
(Knop, Pilipczuk, \& Wrochna 2019)

$$
(m \cdot \Delta)^{o(m)} \quad \Delta=\|A\|_{\infty}
$$

$$
011: \Delta=1
$$

Spausification Lemma
Impagliazo, Patuvi \&Zone 2001.
$\varepsilon>0, \frac{\Phi}{2}$ \&.SAT FORMULA
SPARSIFICATION
$\underline{\Phi}_{i}$: each variable appears in at most $c(k, \varepsilon)$ clauses

ETH $\Rightarrow \exists \varepsilon>0$ s.th. 3-SAT, each variable appears in constant may clauses cannot be solved in $2^{\varepsilon \cdot n}$

ETH
$\exists \varepsilon>0$ st. IP? $A x=b$
\Downarrow

$$
\text { in } 2^{8 . n}
$$

$$
x \geq 0, x \in \mathbb{2}^{n}
$$

$$
x_{1}+z_{2}+x_{3}-S_{1}-S_{2}=1
$$

$$
O(n) \times O(n)
$$

$|-1| \leftarrow$ constant number of nonzero entries.

$$
\begin{aligned}
& x_{i}+z_{i}=1 \\
& x_{i}, z_{i} \geq 0 \\
& S_{i}+\bar{S}_{i}=1 \\
& \left.2 x_{1}, \bar{x}_{2}, x_{3}\right\}
\end{aligned}
$$

Aggiegetion: $\quad S=\left\{x \in\{0,1\}^{n}: \quad A_{i} x=b_{i}\right\}$

$$
\begin{aligned}
& \prime^{\prime} \\
& S^{\prime}=\left\{x \in \quad\left\{0,13^{n}: \quad \lambda^{\top} A_{i} x=\lambda^{\top} \cdot b_{i}\right\}\right\}
\end{aligned}
$$

$\lambda \in\{0, \ldots, N\}^{f(n)}$ etrendom.

$$
\begin{aligned}
& x^{*} \in S^{\prime} \mid S \Leftrightarrow \lambda^{\top} \underbrace{\left(A_{i} x^{*}-b_{i}\right)}_{=b^{\prime}}=0 \quad \lambda^{\top} b^{\prime}=(1, \varkappa) \\
& \|b\|_{6} \leq 6 \quad \lambda_{n} \cdot 1+\infty \\
& \# \text { of } b^{\prime} \leq 6^{\log (m)} \\
& =m^{\log (6)} \\
& \|\lambda\| \leq N=m^{20} \text { et vendomn } \\
& \operatorname{Pr}\left(S \neq S^{\prime}\right) \leqslant \frac{1}{m^{10}} \\
& \begin{array}{rl}
A & x=b \\
x & \geq 0
\end{array} \quad \Rightarrow \quad A^{\prime} x=b^{\prime} \quad A^{\prime} \in \mathbb{Z}^{\frac{n}{\lg (n)} \times n} \\
& \Delta=\Omega
\end{aligned}
$$

IP vunnaig t(me: $n^{o\left(\frac{n}{\operatorname{lig}_{(n)}}\right)}=2^{O(n)}$
Lowar bound : $2^{\Omega(n)}$ (ETH)

Proximity bounds

There exists integer optimal solution z^{*} with

$$
\left\|z^{*}-x^{*}\right\|_{\infty} \leq n^{2} \Delta^{n}
$$

x^{*} opt. sol of LP
(Cook et al. 1986)

Proximity bounds

```
max}\mp@subsup{c}{}{T}
Ax=b
    u\geqx\geq0
x* opt. sol of LP
relaxation
```

There exists integer optimal solution z^{*} with

$$
\left\|z^{*}-x^{*}\right\|_{1} \leq m \cdot(2 m \cdot \Delta+1)^{m}
$$

generalization of a result of Aliev, Henk \& Oertel (2017)

IP with upper bounds on the variables

$$
\begin{aligned}
& \max c^{T} x \quad \text { Consider } x \in\{0,1\}^{n} \text { and } A \in\{0,1\}^{m \times n} \\
& A x=b \\
& 0 \leq x \leq u \\
& x^{*} \text { LP-OPT } \\
& \begin{array}{c}
\max c^{T}\left(z-\left\lfloor x^{*}\right\rfloor\right) \\
A\left(z-\left[x^{*}\right]\right)=A\left\{x^{*}\right\} \\
\left(z-\left[x^{*}\right]\right) \in\{0, \pm 1\}^{n} \\
\left\|z-\left\lfloor x^{*}\right\rfloor\right\|_{1} \leq m^{O(m)}
\end{array} \\
& A \cdot x^{*}=b \\
& A \cdot z=b \\
& A\left(z-x^{*}\right)=0 \\
& m^{O\left(m^{2}\right)} \\
& \left.A-\left(z-x^{2} 9\right)=A-z_{k}\right)
\end{aligned}
$$

$$
m \in\left\{\begin{array}{l}
0 \\
\vdots \\
\vdots \\
\vdots
\end{array}\right.
$$

(E. \& Weismantel 2018)

Open problem
Is there an $(m \Delta)^{O(m)}$ algorithm for IP with upper bounds on the variables?

