Relaxation Complexity: Algorithmic Possibilities and Limitations

joint work with Manuel Aprile, Gennadiy Averkov, Marco Di Summa, and Matthias Schymura

Introduction

Main Goal: find "good" linear representations of integer points X in polytopes P

Motivation: integer programming formulations

What does "good" mean?

Introduction

Main Goal: find "good" linear representations of integer points X in polytopes P

Motivation: integer programming formulations

What does "good" mean?

- integer hull: LP = IP, but possibly high number of constraints

Introduction

Main Goal: find "good" linear representations of integer points X in polytopes P

Motivation: integer programming formulations

What does "good" mean?

- integer hull: LP = IP, but possibly high number of constraints
- extended formulations: allow additional variables for description

source: Extended Formulations for Polygons, Fiorini, Rothvoß, Tiwary. Discr. \& Comp. Geom. 48, 2012

Introduction

Main Goal: find "good" linear representations of integer points X in polytopes P

Motivation: integer programming formulations

What does "good" mean?

- integer hull: LP = IP, but possibly high number of constraints
- extended formulations: allow additional variables for description
- relaxation complexity: minimal number of linear constraints

Relaxation Complexity—Definition

Let $P \subseteq \mathbb{R}^{d}$ be a polytope and let

$$
X=P \cap \mathbb{Z}^{d} .
$$

Any such X is called lattice-convex, because

$$
\operatorname{conv}(X) \cap \mathbb{Z}^{d}=X
$$

Relaxation Complexity—Definition

Let $P \subseteq \mathbb{R}^{d}$ be a polytope and let

$$
X=P \cap \mathbb{Z}^{d} .
$$

Any such X is called lattice-convex, because

$$
\operatorname{conv}(X) \cap \mathbb{Z}^{d}=X
$$

Definition (Weltge 2015, Kaibel \& Weltge 2015)

Any polyhedron $Q \subseteq \mathbb{R}^{d}$ with $X=Q \cap \mathbb{Z}^{d}$ is called a relaxation of X.
The relaxation complexity $\mathrm{rc}(X)$ is the minimal number of facets of a relaxation of X.

Relaxation Complexity-Examples

0/1 cube

cross-polytope

Relaxation Complexity-Examples

cross-polytope

Relaxation Complexity-Examples

Relaxation Complexity—Basic Properties

Let $P \subseteq \mathbb{R}^{d}$ be a polytope and let $X=P \cap \mathbb{Z}^{d}$

Definition (Weltge 2015, Kaibel \& Weltge 2015)

Any polyhedron $Q \subseteq \mathbb{R}^{d}$ with $X=Q \cap \mathbb{Z}^{d}$ is called a relaxation of X. The relaxation complexity $\mathrm{rc}(X)$ is the minimal number of facets of a relaxation of X.

- $\mathrm{rc}(X)$ is the minimal number of inequalities needed to separate X from $\mathbb{Z}^{d} \backslash X$ (within aff (X))
- more generally, for $Y \subseteq \mathbb{Z}^{d}$, the minimal number of inequalities needed to separate X from $Y \backslash X$ is $\mathrm{rc}(X, Y) \Rightarrow \mathrm{rc}(X, Y) \leq \mathrm{rc}(X)$
- $\mathrm{rc}_{\mathrm{Q}}(X)$ and $\mathrm{rc}_{\mathrm{Q}}(X, Y)$ mean restricting to rational polyhedra $\Rightarrow \mathrm{rc}(X) \leq \mathrm{rc}_{\mathbb{Q}}(X)$
- $\mathrm{rc}(X) \leq \#$ facets of $\operatorname{conv}(X)$

Fundamental Questions

Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex.

Question

Are $r c(X)$ and $\mathrm{rc}_{Q}(X)$, and corresponding minimal relaxations, computable?

Let $\Delta_{d}=\left\{0, e^{1}, \ldots, e^{d}\right\}$.

Question (Kaibel \& Weltge 2015)

Does $\mathrm{rc}(X)=\mathrm{rc}_{\mathrm{Q}}(X)$ hold? In particular, is $\mathrm{rc}\left(\Delta_{d}\right)=\mathrm{rc}_{\mathrm{Q}}\left(\Delta_{d}\right)$ true?

Outline

Basic Concepts

Computability in Dimension 2

Computable Bounds

The Role of Rationality

Main Tool—Observers

Definition (Observers)

Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex. A point $y \in \mathbb{Z}^{d} \backslash X$ is called an observer of X, if $\operatorname{conv}(X \cup\{y\}) \cap \mathbb{Z}^{d}=X \cup\{y\}$, that is, $X \cup\{y\}$ is also lattice-convex.
We write

$$
\operatorname{Obs}(X):=\left\{y \in \mathbb{Z}^{d} \backslash X: y \text { is an observer of } X\right\} .
$$

Observers

The observers are certifying the separation of X from $\mathbb{Z}^{d} \backslash X$!
Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and let $A x \leq b$ be a system of linear inequalities. The following are equivalent:

- The system $A x \leq b$ separates X from $\mathbb{Z}^{d} \backslash X$.
- The system $A x \leq b$ separates X from Obs (X).
$\Longrightarrow \mathrm{rc}(X)=\mathrm{rc}(X, \operatorname{Obs}(X))$

Observers

The observers are certifying the separation of X from $\mathbb{Z}^{d} \backslash X$!
Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and let $A x \leq b$ be a system of linear inequalities. The following are equivalent:

- The system $A x \leq b$ separates X from $\mathbb{Z}^{d} \backslash X$.
- The system $A x \leq b$ separates X from $\operatorname{Obs}(X)$.
$\Longrightarrow \mathrm{rc}(X)=\mathrm{rc}(X, \operatorname{Obs}(X))$

Observation on Computability (Averkov \& Schymura 2021)

If $\operatorname{Obs}(X)$ is finite (and computable), then deciding Is $\mathrm{rc}(X) \leq k$? reduces to solving a MIP with binary integer variables.

Finitely Many Observers

Theorem (Averkov \& Schymura 2021)
Let $X \subseteq \mathbb{Z}^{d}$ be lattice convex and full-dimensional. If

1. X is parity-complete, or
2. conv (X) contains an interior lattice point, or
3. the lattice width $w(X)$ of X satisfies $w(X)>w^{\infty}(d)$, where $w^{\infty}(d)$ is the so-called finiteness threshold width, then $\operatorname{Obs}(X)$ is finite.

Finitely Many Observers

Theorem (Averkov \& Schymura 2021)
Let $X \subseteq \mathbb{Z}^{d}$ be lattice convex and full-dimensional. If

1. X is parity-complete, or
2. conv (X) contains an interior lattice point, or
3. the lattice width $w(X)$ of X satisfies $w(X)>w^{\infty}(d)$, where $w^{\infty}(d)$ is the so-called finiteness threshold width, then $\operatorname{Obs}(X)$ is finite.

Finitely Many Observers

Theorem (Averkov \& Schymura 2021)
Let $X \subseteq \mathbb{Z}^{d}$ be lattice convex and full-dimensional. If

1. X is parity-complete, or
2. conv (X) contains an interior lattice point, or
3. the lattice width $w(X)$ of X satisfies $w(X)>w^{\infty}(d)$, where $w^{\infty}(d)$ is the so-called finiteness threshold width, then $\operatorname{Obs}(X)$ is finite.

Finitely Many Observers

Theorem (Averkov \& Schymura 2021)

Let $X \subseteq \mathbb{Z}^{d}$ be lattice convex and full-dimensional. If

1. X is parity-complete, or
2. $\operatorname{conv}(X)$ contains an interior lattice point, or
3. the lattice width $w(X)$ of X satisfies $w(X)>w^{\infty}(d)$, where $w^{\infty}(d)$ is the so-called finiteness threshold width, then $\operatorname{Obs}(X)$ is finite.

Computability in Dimension 2

Observers for $d=2$

- let $X \subseteq \mathbb{Z}^{2}$ be finite and lattice convex with $\operatorname{conv}(X)=\left\{x \in \mathbb{R}^{2}: a_{i} x_{1}+b_{i} x_{2} \leq c_{i}, i \in[m]\right\}$
- for each $i \in[m]$, assume a_{i} and b_{i} are co-prime

Proposition (Weltge 2015)

If $X \subseteq \mathbb{Z}^{2}$ is full-dimensional, finite, and lattice-convex, $\operatorname{Obs}(X)$ are the lattice points on the boundary of

$$
\left\{x \in \mathbb{R}^{2}: a_{i} x_{1}+b_{i} x_{2} \leq c_{i}+1, i \in[m]\right\} .
$$

Finding Relaxation Complexity for $d=2$
Theorem (Averkov, H., \& Schymura 2021)
Let $V \subseteq \mathbb{Z}^{2}$ be finite and 2-dimensional, let $X=\operatorname{conv}(V) \cap \mathbb{Z}^{2}$, and $Y=\operatorname{Obs}(X)$. Then,

1. $\operatorname{Obs}(X)$ can be computed in $O(|V| \log |V|+|Y|+\gamma|V|)$ time;
2. rc(X) can be computed in $O(|V| \log |V|+|V||Y| \log |Y|+\gamma|V|)$ time, where γ is an upper bound on the binary encoding size of any point in V.

Computable Bounds

Strategy

$$
\mathrm{rc}(X) \leq \mathrm{rc}_{\mathrm{Q}}(X)
$$

Strategy

$$
\mathrm{rc}(X) \leq \mathrm{rc}_{Q}(X)=\mathrm{rc}_{0}(X)
$$

Strategy

$$
\mathrm{rc}_{\square}(X) \leq \mathrm{rc}(X) \leq \mathrm{rc}_{\mathbb{Q}}(X)=\mathrm{rc}_{0}(X)
$$

Computable Upper Bounds

Approach Give up strict separation of X from $\mathbb{Z}^{d} \backslash X$ for the sake of robustness.

- $X \subseteq \mathbb{Z}^{d}$ full-dimensional and lattice-convex
- for $\varepsilon>0$, let $X_{\varepsilon}:=X+\mathcal{B}_{\varepsilon}^{1}$, where $\mathcal{B}_{\varepsilon}^{1}=\left\{0, \pm \varepsilon \boldsymbol{e}_{1}, \ldots, \pm \varepsilon \boldsymbol{e}_{d}\right\}$

Computable Upper Bounds

Approach Give up strict separation of X from $\mathbb{Z}^{d} \backslash X$ for the sake of robustness.

- $X \subseteq \mathbb{Z}^{d}$ full-dimensional and lattice-convex
- for $\varepsilon>0$, let $X_{\varepsilon}:=X+\mathcal{B}_{\varepsilon}^{1}$, where $\mathcal{B}_{\varepsilon}^{1}=\left\{0, \pm \varepsilon \boldsymbol{e}_{1}, \ldots, \pm \varepsilon \boldsymbol{e}_{d}\right\}$

Definition (ε-relaxation complexity)

A polyhedron $Q \subseteq \mathbb{R}^{d}$ is an ε-relaxation of X, if $X \varepsilon \subseteq$ and $X=\operatorname{int}(Q) \cap \mathbb{Z}^{d}$. We define $\operatorname{rc}_{\varepsilon}(X)$ as the smallest number of facets of an ε-relaxation of X.

- $\varepsilon \geq \varepsilon^{\prime} \Longrightarrow \operatorname{rc}_{\varepsilon}(X) \geq \operatorname{rc}_{\varepsilon^{\prime}}(X)$, since $\operatorname{conv}\left(X_{\varepsilon^{\prime}}\right) \subseteq \operatorname{conv}\left(X_{\varepsilon}\right)$

Computable Upper Bounds

Theorem (Averkov, H., \& Schymura 2021)

1. For any $\varepsilon>0$, there is a computable finite set $Y^{\varepsilon} \subseteq \mathbb{Z}^{d}$ with $\mathrm{rc}_{\varepsilon}(X)=\mathrm{rc}_{\varepsilon}\left(X, Y^{\varepsilon}\right)$.
2. If $\varepsilon>0$ is rational, then $\operatorname{rc}_{\varepsilon}(X)$ can be computed in finite time.
3. $\mathrm{rc}_{\mathrm{Q}}(X)=\mathrm{rc}_{0}(X):=\min _{\varepsilon>0} \mathrm{rc}_{\varepsilon}(X)$

Consequences

\rightsquigarrow finite algorithm to compute (eventually tight) upper bounds on $\mathrm{rc}_{Q}(X)$
\rightsquigarrow we just don't know when to stop

Computable Upper Bounds

Theorem (Averkov, H., \& Schymura 2021)

1. For any $\varepsilon>0$, there is a computable finite set $Y^{\varepsilon} \subseteq \mathbb{Z}^{d}$ with $\mathrm{rc}_{\varepsilon}(X)=\mathrm{rc}_{\varepsilon}\left(X, Y^{\varepsilon}\right)$.
2. If $\varepsilon>0$ is rational, then $\operatorname{rc}_{\varepsilon}(X)$ can be computed in finite time.
3. $\mathrm{rc}_{\mathrm{Q}}(X)=\mathrm{rc}_{0}(X):=\min _{\varepsilon>0} \mathrm{rc}_{\varepsilon}(X)$

Key ideas for the proof

2. computing $\mathrm{rc}_{\varepsilon}\left(X, Y^{\varepsilon}\right)$ for rational $\varepsilon>0$ is a MILP with rational data
3. a rational relaxation of X is bounded and can be perturbed into an ε-relaxation

Computable Upper Bounds

Theorem (Averkov, H., \& Schymura 2021)

1. For any $\varepsilon>0$, there is a computable finite set $Y^{\varepsilon} \subseteq \mathbb{Z}^{d}$ with $\mathrm{rc}_{\varepsilon}(X)=\mathrm{rc}_{\varepsilon}\left(X, Y^{\varepsilon}\right)$.

Key ideas for the proof

Computable Upper Bounds

Theorem (Averkov, H., \& Schymura 2021)

1. For any $\varepsilon>0$, there is a computable finite set $Y^{\varepsilon} \subseteq \mathbb{Z}^{d}$ with $\mathrm{rc}_{\varepsilon}(X)=\mathrm{rc}_{\varepsilon}\left(X, Y^{\varepsilon}\right)$.

Key ideas for the proof

Computable Upper Bounds

Theorem (Averkov, H., \& Schymura 2021)

1. For any $\varepsilon>0$, there is a computable finite set $Y^{\varepsilon} \subseteq \mathbb{Z}^{d}$ with $\mathrm{rc}_{\varepsilon}(X)=\mathrm{rc}_{\varepsilon}\left(X, Y^{\varepsilon}\right)$.

Key ideas for the proof

- variant of Minkowski's first theorem (van der Corput 1936):
if q is too far away from C, the red region contains more than $|X|$ lattice points
- every ε-relaxation of X is contained in $\operatorname{conv}(X)+c_{d, \varepsilon, X} \cdot \mathcal{B}_{d}^{2}$, for some computable $c_{d, \varepsilon, X}>0$

Lower Bounds

Strategy for Answering "rc($\left.\Delta_{d}\right)=d+1$?"

- derive a strong lower bound $\ell(X)$ on $\mathrm{rc}(X)$
- If $\ell\left(\Delta_{d}\right)=d+1$, we are done.

Hiding Sets and Hiding Graphs

Kaibel \& Weltge 2015:

- Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and $H \subseteq \operatorname{aff}(X) \cap\left(\mathbb{Z}^{d} \backslash X\right)$
- H is a hiding set if, for any distinct $x, y \in H$, we have conv $(\{x, y\}) \cap \operatorname{conv}(X) \neq \emptyset$
- For any hiding set $H, \mathrm{rc}(X) \geq|H|$.

Hiding Sets and Hiding Graphs

Kaibel \& Weltge 2015:

- Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and $H \subseteq \operatorname{aff}(X) \cap\left(\mathbb{Z}^{d} \backslash X\right)$
- H is a hiding set if, for any distinct $x, y \in H$, we have conv $(\{x, y\}) \cap \operatorname{conv}(X) \neq \emptyset$
- For any hiding set $H, \mathrm{rc}(X) \geq|H|$.

Hiding Sets and Hiding Graphs

Kaibel \& Weltge 2015:

- Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and $H \subseteq \operatorname{aff}(X) \cap\left(\mathbb{Z}^{d} \backslash X\right)$
- H is a hiding set if, for any distinct $x, y \in H$, we have $\operatorname{conv}(\{x, y\}) \cap \operatorname{conv}(X) \neq \emptyset$
- For any hiding set $H, \mathrm{rc}(X) \geq|H|$.

Generalization Hiding Graph:

- $G(X)=\left(\mathbb{Z}^{d} \backslash X, E\right)$
- $E=\left\{\{x, y\} \in\binom{V}{2}: x, y\right.$ form hiding set $\}$
- $\mathrm{rc}(X) \geq \chi(G(X))$

Hiding Sets and Hiding Graphs

Kaibel \& Weltge 2015:

- Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and $H \subseteq \operatorname{aff}(X) \cap\left(\mathbb{Z}^{d} \backslash X\right)$
- H is a hiding set if, for any distinct $x, y \in H$, we have $\operatorname{conv}(\{x, y\}) \cap \operatorname{conv}(X) \neq \emptyset$
- For any hiding set $H, \mathrm{rc}(X) \geq|H|$.

Generalization Hiding Graph:

- $G(X)=\left(\mathbb{Z}^{d} \backslash X, E\right)$
- $E=\left\{\{x, y\} \in\binom{V}{2}: x, y\right.$ form hiding set $\}$
- $\mathrm{rc}(X) \geq \chi(G(X))$

Hiding Sets and Hiding Graphs

Kaibel \& Weltge 2015:

- Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and $H \subseteq \operatorname{aff}(X) \cap\left(\mathbb{Z}^{d} \backslash X\right)$
- H is a hiding set if, for any distinct $x, y \in H$, we have $\operatorname{conv}(\{x, y\}) \cap \operatorname{conv}(X) \neq \emptyset$
- For any hiding set $H, \mathrm{rc}(X) \geq|H|$.

Generalization Hiding Graph:

- $G(X)=\left(\mathbb{Z}^{d} \backslash X, E\right)$
- $E=\left\{\{x, y\} \in\binom{V}{2}: x, y\right.$ form hiding set $\}$
- $\mathrm{rc}(X) \geq \chi(G(X))$

Hiding Sets and Hiding Graphs

Kaibel \& Weltge 2015:

- Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and $H \subseteq \operatorname{aff}(X) \cap\left(\mathbb{Z}^{d} \backslash X\right)$
- H is a hiding set if, for any distinct $x, y \in H$, we have $\operatorname{conv}(\{x, y\}) \cap \operatorname{conv}(X) \neq \emptyset$
- For any hiding set $H, \mathrm{rc}(X) \geq|H|$.

Generalization Hiding Graph:

- $G(X)=\left(\mathbb{Z}^{d} \backslash X, E\right)$
- $E=\left\{\{x, y\} \in\binom{V}{2}: x, y\right.$ form hiding set $\}$
- $\mathrm{rc}(X) \geq \chi(G(X))$

Hiding Sets and Hiding Graphs

Kaibel \& Weltge 2015:

- Let $X \subseteq \mathbb{Z}^{d}$ be lattice-convex and $H \subseteq \operatorname{aff}(X) \cap\left(\mathbb{Z}^{d} \backslash X\right)$
- H is a hiding set if, for any distinct $x, y \in H$, we have $\operatorname{conv}(\{x, y\}) \cap \operatorname{conv}(X) \neq \emptyset$
- For any hiding set $H, \mathrm{rc}(X) \geq|H|$.

Generalization Hiding Graph:

- $G(X)=\left(\mathbb{Z}^{d} \backslash X, E\right)$
- $E=\left\{\{x, y\} \in\binom{V}{2}: x, y\right.$ form hiding set $\}$
- $\mathrm{rc}(X) \geq \chi(G(X))$

Another Lower Bound

For any $Y \subseteq \mathbb{Z}^{d}$, we have

$$
\mathrm{rc}(X, Y) \leq \mathrm{rc}(X) \leq \mathrm{rc}_{\mathbb{Q}}(X)
$$

Proposition (Averkov \& Schymura 2020)

If $Y \subseteq \mathbb{Z}^{d} \backslash X$ is finite, $\mathrm{rc}(X, Y)$ can be computed by solving a bounded MIP.
Does there exist $Y \subseteq \mathbb{Z}^{d}$ finite with $\mathrm{rc}(X, Y)=\mathrm{rc}(X)$?

Another Lower Bound

For any $Y \subseteq \mathbb{Z}^{d}$, we have

$$
\operatorname{rc}(X, Y) \leq \operatorname{rc}(X) \leq \operatorname{rc}(X) .
$$

Proposition (Averkov \& Schymura 2020)

If $Y \subseteq \mathbb{Z}^{d} \backslash X$ is finite, $\mathrm{rc}(X, Y)$ can be computed by solving a bounded MIP.
Does there exist $Y \subseteq \mathbb{Z}^{d}$ finite with $\mathrm{rc}(X, Y)=\mathrm{rc}(X)$?

Theorem (Averkov, H., \& Schymura 2021)

Let $\Delta_{d}=\left\{0, e^{1}, \ldots, e^{d}\right\}$ and $Y \subseteq \mathbb{Z}^{d}$ be finite. Then,

$$
\mathrm{rc}\left(\Delta_{d}, Y\right) \leq\left\lceil\frac{d}{2}\right\rceil+2
$$

Consequences for Δ_{d}

Let $Y \subseteq \mathbb{Z}^{d}$ be finite.

- $\mathrm{rc}\left(\Delta_{d}, Y\right) \leq\left\lceil\frac{d}{2}\right\rceil+2$

Consider restriction G^{\prime} of hiding graph to nodes in Y.

- $\chi\left(G^{\prime}\right) \leq\left\lceil\frac{d}{2}\right\rceil+2$

By the de Bruijn-Erdős theorem

- $\chi\left(G\left(\Delta_{d}\right)\right) \leq\left\lceil\frac{d}{2}\right\rceil+2$

Consequences for Δ_{d}

Let $Y \subseteq \mathbb{Z}^{d}$ be finite.
$-\mathrm{rc}\left(\Delta_{d}, Y\right) \leq\left\lceil\frac{d}{2}\right\rceil+2$
Consider restriction G^{\prime} of hiding graph to nodes in Y.

- $\chi\left(G^{\prime}\right) \leq\left\lceil\frac{d}{2}\right\rceil+2$

By the de Bruijn-Erdős theorem

- $\chi\left(G\left(\Delta_{d}\right)\right) \leq\left\lceil\frac{d}{2}\right\rceil+2$

In particular,

- For Δ_{4}, all lower bounds are at most 4, whereas $\mathrm{rc}\left(\Delta_{4}\right)=5$.

The Role of Rationality

The Simplex is Rebellious

For any finite $Y \subseteq \mathbb{Z}^{d}$,

$$
\mathrm{rc}\left(\Delta_{5}, Y\right) \leq \mathrm{rc}\left(\Delta_{5}\right) \leq \mathrm{rc}_{Q}\left(\Delta_{5}\right)=6
$$

and

$$
\mathrm{rc}\left(\Delta_{5}, Y\right) \leq 5
$$

The Simplex is Rebellious

For any finite $Y \subseteq \mathbb{Z}^{d}$,

$$
\mathrm{rc}\left(\Delta_{5}, Y\right) \leq \mathrm{rc}\left(\Delta_{5}\right) \leq \mathrm{rc}_{Q}\left(\Delta_{5}\right)=6,
$$

and

$$
\mathrm{rc}\left(\Delta_{5}, Y\right) \leq 5
$$

Question

Is it really true that

$$
\operatorname{rc}\left(\Delta_{5}\right)<\operatorname{rc}_{Q}\left(\Delta_{5}\right) ?
$$

Our results

Theorem (Aprile, Averkov, Di Summa, H. 2022+)

1. $5=\mathrm{rc}\left(\Delta_{5}\right)<\mathrm{rc}_{\mathrm{Q}}\left(\Delta_{5}\right)=6$.

Our results

Theorem (Aprile, Averkov, Di Summa, H. 2022+)

1. $5=\mathrm{rc}\left(\Delta_{5}\right)<\mathrm{rc}_{\mathrm{Q}}\left(\Delta_{5}\right)=6$.
2. We have $r c\left(\Delta_{d}\right) \in O\left(\frac{d}{\sqrt{\log d}}\right)$.

Crucial Tool—Mixed Relaxation Complexity

- let $X \subseteq Y \subseteq \mathbb{R}^{k}$
- polyhedron $P \subseteq \mathbb{R}^{k}$ is relaxation of X within Y if $X=P \cap Y$
- $\mathrm{rc}(X, Y)$: minimum number of facets of relaxation
- $Y=\mathbb{Z}^{d} \times \mathbb{R}^{1} \rightsquigarrow$ mixed relaxation complexity

Crucial Tool—Mixed Relaxation Complexity

- let $X \subseteq Y \subseteq \mathbb{R}^{k}$
- polyhedron $P \subseteq \mathbb{R}^{k}$ is relaxation of X within Y if $X=P \cap Y$
- $\mathrm{rc}(X, Y)$: minimum number of facets of relaxation
- $Y=\mathbb{Z}^{d} \times \mathbb{R}^{1} \rightsquigarrow$ mixed relaxation complexity

Interpretation: the continuous coordinate as height of a lifting

- $h: X \rightarrow \mathbb{R}$, where $X \subseteq \mathbb{Z}^{d}$
- $\operatorname{lift}_{h}(X)=\{(x, h(x)): x \in X\}$
$-\operatorname{clift}_{h}(X)=\operatorname{conv}\left(\operatorname{lift}_{h}(X)\right)$

Bounding the Mixed Relaxation Complexity

Proposition

Let $P \subseteq \mathbb{R}^{k+1}$ be a full-dimensional polytope, let $T \subseteq \mathbb{Z}^{k}$ be finite and non-empty, and let $h: T \rightarrow \mathbb{R}$. Then, P is a relaxation of $\operatorname{lift}_{h}(T)$ within $\mathbb{Z}^{k} \times \mathbb{R}$ iff

- every $p \in \operatorname{lift}_{h}(T)$ is contained in an upper and lower facet of P, and
- the projection of P onto the first k components is a relaxation of T within \mathbb{Z}^{k}.

Bounding the Mixed Relaxation Complexity

Proposition

Let $P \subseteq \mathbb{R}^{k+1}$ be a full-dimensional polytope, let $T \subseteq \mathbb{Z}^{k}$ be finite and non-empty, and let
$h: T \rightarrow \mathbb{R}$. Then, P is a relaxation of $\operatorname{lift}_{h}(T)$ within $\mathbb{Z}^{k} \times \mathbb{R}$ iff

- every $p \in \operatorname{lift}_{h}(T)$ is contained in an upper and lower facet of P, and
- the projection of P onto the first k components is a relaxation of T within \mathbb{Z}^{k}.

- upper/lower covering: selection of upper/lower facets covering all $(x, h(x))$ for $x \in X$

Bounding the Mixed Relaxation Complexity

Proposition

Let $P \subseteq \mathbb{R}^{k+1}$ be a full-dimensional polytope, let $T \subseteq \mathbb{Z}^{k}$ be finite and non-empty, and let $h: T \rightarrow \mathbb{R}$. Then, P is a relaxation of $\operatorname{lift}_{h}(T)$ within $\mathbb{Z}^{k} \times \mathbb{R}$ iff

- every $p \in \operatorname{lift}_{h}(T)$ is contained in an upper and lower facet of P, and
- the projection of P onto the first k components is a relaxation of T within \mathbb{Z}^{k}.

- upper/lower covering: selection of upper/lower facets covering all $(x, h(x))$ for $x \in X$
- ucn and lcn: minimum size of up./low. covering

Bounding the Mixed Relaxation Complexity

Proposition

Let $P \subseteq \mathbb{R}^{k+1}$ be a full-dimensional polytope, let $T \subseteq \mathbb{Z}^{k}$ be finite and non-empty, and let $h: T \rightarrow \mathbb{R}$. Then, P is a relaxation of $\operatorname{lift}_{h}(T)$ within $\mathbb{Z}^{k} \times \mathbb{R}$ iff

- every $p \in \operatorname{lift}_{h}(T)$ is contained in an upper and lower facet of P, and
- the projection of P onto the first k components is a relaxation of T within \mathbb{Z}^{k}.

- upper/lower covering: selection of upper/lower facets covering all $(x, h(x))$ for $x \in X$
- ucn and lcn: minimum size of up./low. covering
- $\mathrm{rc}\left(\left(\operatorname{lift}_{h}(T), \mathbb{Z}^{k} \times \mathbb{R}\right) \leq \mathrm{rc}(T)+\operatorname{ucn}_{h}(T)+\operatorname{lcn}_{h}(T)\right.$

The idea in dimension 5

- consider

$$
\Delta=\left\{0, e^{1}, e^{2}, e^{3},(1,0,1,1,0),(0,1,1,0,1)\right\} \subset \mathbb{Z}^{5}
$$

which is unimodularly equivalent to Δ_{5}

- let $\ell \subset \mathbb{R}^{5}$ be line spanned by $(0,0,0,1, \sqrt{2})$
- Kaibel \& Weltge 2015: $\operatorname{conv}(\Delta)+\ell$ is unbounded relaxation of Δ (\#facets ≥ 6)

The idea in dimension 5

- consider

$$
\Delta=\left\{0, e^{1}, e^{2}, e^{3},(1,0,1,1,0),(0,1,1,0,1)\right\} \subset \mathbb{Z}^{5}
$$

which is unimodularly equivalent to Δ_{5}

- let $\ell \subset \mathbb{R}^{5}$ be line spanned by $(0,0,0,1, \sqrt{2})$
- Kaibel \& Weltge 2015: $\operatorname{conv}(\Delta)+\ell$ is unbounded relaxation of $\Delta(\#$ facets $\geq 6)$

Observation

Let $\pi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ be the projection

$$
\pi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}-\frac{1}{\sqrt{2}} x_{5}\right)
$$

and $P \subseteq \mathbb{R}^{4}$ be a polyhedron with $P \cap\left(\mathbb{Z}^{3} \times \mathbb{R}\right)=\pi(\Delta)$. Then, $Q:=(P \times\{0\})+\ell$ is a relaxation of Δ.

The idea in dimension 5

- consider

$$
\Delta=\left\{0, e^{1}, e^{2}, e^{3},(1,0,1,1,0),(0,1,1,0,1)\right\} \subset \mathbb{Z}^{5}
$$

which is unimodularly equivalent to Δ_{5}

- let $\ell \subset \mathbb{R}^{5}$ be line spanned by $(0,0,0,1, \sqrt{2})$
- Kaibel \& Weltge 2015: $\operatorname{conv}(\Delta)+\ell$ is unbounded relaxation of Δ (\#facets ≥ 6)

Observation

Let $\pi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ be the projection

$$
\pi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}-\frac{1}{\sqrt{2}} x_{5}\right)
$$

and $P \subseteq \mathbb{R}^{4}$ be a polyhedron with $P \cap\left(\mathbb{Z}^{3} \times \mathbb{R}\right)=\pi(\Delta)$. Then, $Q:=(P \times\{0\})+\ell$ is a relaxation of Δ.

$$
\Rightarrow \mathrm{rc}\left(\Delta, \mathbb{Z}^{5}\right) \leq \mathrm{rc}\left(\pi(\Delta), \mathbb{Z}^{3} \times \mathbb{R}\right)
$$

A (3,1)-mixed relaxation

$\operatorname{rc}\left(\Delta, \mathbb{Z}^{5}\right) \leq \operatorname{rc}\left(\pi(\Delta), \mathbb{Z}^{3} \times \mathbb{R}\right) \rightsquigarrow$ it is sufficient to find mixed relaxation with 5 facets

A (3,1)-mixed relaxation

$\operatorname{rc}\left(\Delta, \mathbb{Z}^{5}\right) \leq \operatorname{rc}\left(\pi(\Delta), \mathbb{Z}^{3} \times \mathbb{R}\right) \rightsquigarrow$ it is sufficient to find mixed relaxation with 5 facets A $(3,1)$-mixed relaxation of $\pi(\Delta)$ is given by the following inequalities with $\varepsilon=\frac{1}{8}$:

$$
\begin{aligned}
x_{1} & \geq x_{4} \\
x_{3} & \geq x_{4} \\
\varepsilon x_{1}+x_{2}+\frac{1-\varepsilon}{1+\sqrt{2}} x_{3}+\frac{(1-\varepsilon) \sqrt{2}}{1+\sqrt{2}} x_{4} & \leq 1 \\
x_{3}+\sqrt{2} x_{4} & \geq 0 \\
x_{1}-(1+\varepsilon) x_{2}+x_{3}-x_{4} & \leq 1
\end{aligned}
$$

Putting all pieces together

Proof of $\mathrm{rc}\left(\Delta_{5}\right)=5$:

$$
\operatorname{rc}\left(\Delta_{5}\right)=\operatorname{rc}(\Delta) \leq \operatorname{rc}\left(\pi(\Delta), \mathbb{Z}^{3} \times \mathbb{R}\right)
$$

Putting all pieces together

Proof of $\mathrm{rc}\left(\Delta_{5}\right)=5$:

$$
\mathrm{rc}\left(\Delta_{5}\right)=\mathrm{rc}(\Delta) \leq \mathrm{rc}\left(\pi(\Delta), \mathbb{Z}^{3} \times \mathbb{R}\right) \leq 5
$$

Putting all pieces together

Proof of $\mathrm{rc}\left(\Delta_{5}\right)=5$:

$$
\mathrm{rc}\left(\Delta_{4}\right) \leq \operatorname{rc}\left(\Delta_{5}\right)=\mathrm{rc}(\Delta) \leq \mathrm{rc}\left(\pi(\Delta), \mathbb{Z}^{3} \times \mathbb{R}\right) \leq 5
$$

Putting all pieces together

Proof of $\mathrm{rc}\left(\Delta_{5}\right)=5$:

$$
5=\mathrm{rc}\left(\Delta_{4}\right) \leq \mathrm{rc}\left(\Delta_{5}\right)=\mathrm{rc}(\Delta) \leq \mathrm{rc}\left(\pi(\Delta), \mathbb{Z}^{3} \times \mathbb{R}\right) \leq 5
$$

Sublinear bound on relaxation complexity

Summary of proof in dimension 5

- project (unimodular transformation of) Δ_{5} onto \mathbb{R}^{4}
- find $(3,1)$-mixed relaxation of $\pi\left(\Delta_{5}\right)$

Summary of proof in dimension 5

- project (unimodular transformation of) Δ_{5} onto \mathbb{R}^{4}
- find $(3,1)$-mixed relaxation of $\pi\left(\Delta_{5}\right)$

We can interpret the continuous coordinate as a lifting from a 3-dimensional space!

Summary of proof in dimension 5

- project (unimodular transformation of) Δ_{5} onto \mathbb{R}^{4}
- find $(3,1)$-mixed relaxation of $\pi\left(\Delta_{5}\right)$

We can interpret the continuous coordinate as a lifting from a 3-dimensional space!
$\Delta_{5}:\left(\begin{array}{llll|ll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Summary of proof in dimension 5

- project (unimodular transformation of) Δ_{5} onto \mathbb{R}^{4}
- find $(3,1)$-mixed relaxation of $\pi\left(\Delta_{5}\right)$

We can interpret the continuous coordinate as a lifting from a 3-dimensional space!
$\Delta:\left(\begin{array}{llll|ll}0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Summary of proof in dimension 5

- project (unimodular transformation of) Δ_{5} onto \mathbb{R}^{4}
- find $(3,1)$-mixed relaxation of $\pi\left(\Delta_{5}\right)$

We can interpret the continuous coordinate as a lifting from a 3-dimensional space!
$\Delta:\left(\begin{array}{llll|ll}0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$\rightsquigarrow\left(\begin{array}{cccc|cc}0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & -\frac{1}{\sqrt{2}}\end{array}\right)$

The proof idea

Make calculations easier

- assume $d=2^{k}-1$.

Aim: find relaxation complexity of

$$
\Delta_{d}=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Make calculations easier

- assume $d=2^{k}-1$.

Aim: find relaxation complexity of unimodularly equivalent

$$
\Delta_{d}^{\prime}=\left(\begin{array}{llll|llll}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Step 1: projection

- project $\Delta_{k+(d-k)}^{\prime}$ on the first k coordinates via π :

$$
\left(\begin{array}{llll|llll}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \mapsto\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

- the projection yields $\{0,1\}^{k}$

Step 2: lift and estimate

Lemma

Let $Y \subseteq \mathbb{Z}^{k} \backslash \Delta_{k}$ with $|Y|=\ell$. Let $h: \Delta_{k} \cup Y \rightarrow \mathbb{R}$ be a "suitable lifting function". Then,

$$
\mathrm{rc}\left(\Delta_{k+\ell}\right) \leq \operatorname{rc}\left(\operatorname{lift}_{h}\left(\Delta_{k} \cup Y\right), \mathbb{Z}^{k} \times \mathbb{R}\right) .
$$

Step 2: lift and estimate

Lemma

Let $Y \subseteq \mathbb{Z}^{k} \backslash \Delta_{k}$ with $|Y|=\ell$. Let $h: \Delta_{k} \cup Y \rightarrow \mathbb{R}$ be a "suitable lifting function". Then,

$$
\mathrm{rc}\left(\Delta_{k+\ell}\right) \leq \mathrm{rc}\left(\operatorname{lift}_{h}\left(\Delta_{k} \cup Y\right), \mathbb{Z}^{k} \times \mathbb{R}\right) .
$$

Consequently,

$$
\operatorname{rc}\left(\Delta_{d}^{\prime}\right) \leq \operatorname{rc}\left(\operatorname{lift}_{h}\left(\{0,1\}^{k}\right), \mathbb{Z}^{k} \times \mathbb{R}\right)
$$

Step 2: lift and estimate

Lemma

Let $Y \subseteq \mathbb{Z}^{k} \backslash \Delta_{k}$ with $|Y|=\ell$. Let $h: \Delta_{k} \cup Y \rightarrow \mathbb{R}$ be a "suitable lifting function". Then,

$$
\mathrm{rc}\left(\Delta_{k+\ell}\right) \leq \operatorname{rc}\left(\operatorname{lift}_{h}\left(\Delta_{k} \cup Y\right), \mathbb{Z}^{k} \times \mathbb{R}\right) .
$$

Consequently,

$$
\operatorname{rc}\left(\Delta_{d}^{\prime}\right) \leq \operatorname{rc}\left(\operatorname{lift}_{h}\left(\{0,1\}^{k}\right), \mathbb{Z}^{k} \times \mathbb{R}\right) \leq \operatorname{rc}\left(\{0,1\}^{k}\right)+\operatorname{ucn}_{h}\left(\{0,1\}^{k}\right)+\operatorname{lcn}_{h}\left(\{0,1\}^{k}\right)
$$

Putting the pieces together

For a "suitable lifting" h :

$$
\begin{aligned}
\operatorname{rc}\left(\Delta_{d}\right)=\operatorname{rc}\left(\Delta_{k+\ell}\right) & \leq \operatorname{rc}\left(\{0,1\}^{k}\right)+\operatorname{ucn}_{h}\left(\{0,1\}^{k}\right)+\operatorname{lcn}_{h}\left(\{0,1\}^{k}\right) \\
& =(k+1)+O\left(\frac{2^{k}}{\sqrt{k}}\right) \\
& =O\left(\frac{d}{\sqrt{\log (d)}}\right)
\end{aligned}
$$

Summary

Question

Are $\mathrm{rc}(X)$ and $\mathrm{rc}_{Q}(X)$, and corresponding minimal relaxations, computable?

- yes, if $d=2$
- yes, if there exists a finite $Y \subseteq \mathbb{Z}^{d}$ such that $\mathrm{rc}(X, Y)=\operatorname{rc}_{Q}(X)$

Question (Kaibel \& Weltge 2015)

Does $\mathrm{rc}(X)=\mathrm{rc}_{\mathrm{Q}}(X)$ hold? In particular, is $\mathrm{rc}\left(\Delta_{d}\right)=\mathrm{rc}_{\mathrm{Q}}\left(\Delta_{d}\right)$ true?

- no, for every $d \geq 5$

Open questions

Computability Is $\mathrm{rc}(X)$ computable?

- Averkov \& Schymura 2020: yes, if $d \leq 3$ or X has special structure

Complexity How difficult is it to compute $\mathrm{rc}(X)$ if $d=3$?

Finite Certificate Which X admit a finite $Y \subseteq \mathbb{Z}^{d} \backslash X$ with $\mathrm{rc}(X, Y)=\operatorname{rc}(X)$?

Open questions

Computability Is rc(X) computable?

- Averkov \& Schymura 2020: yes, if $d \leq 3$ or X has special structure

Complexity How difficult is it to compute $\mathrm{rc}(X)$ if $d=3$?

Finite Certificate Which X admit a finite $Y \subseteq \mathbb{Z}^{d} \backslash X$ with $\mathrm{rc}(X, Y)=\operatorname{rc}(X)$?

Thank you for your attention!

