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Introduction

Main Goal: find “good"” linear representations of
integer points X in polytopes P ° ° ° ° ° °

Motivation: integer programming formulations
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Introduction

Main Goal: find “good"” linear representations of
integer points X in polytopes P

Motivation: integer programming formulations /

What does “good” mean?
» integer hull: LP =IP, but possibly high
number of constraints

» extended formulations: allow additional
variables for description

source: Extended Formulations for Polygons, Fiorini, RothvoR3,
Tiwary. Discr. & Comp. Geom. 48, 2012
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Introduction

Main Goal: find “good"” linear representations of
integer points X in polytopes P °

Motivation: integer programming formulations

What does “good” mean?

» integer hull: LP =IP, but possibly high °
number of constraints

» extended formulations: allow additional °
variables for description

> relaxation complexity: minimal number of
linear constraints
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Relaxation Complexity—Definition

Let P C R? be a polytope and let
X=pPNZ"

Any such X is called lattice-convex, because

conv(X)NZ% = X.
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Relaxation Complexity—Definition

Let P C R? be a polytope and let
X=pPNZ"

Any such X is called lattice-convex, because

conv(X) N Z% = X.

Definition (Weltge 2015, Kaibel & Weltge 2015)

Any polyhedron Q C R? with X = Q N Z“ is called a relaxation of X.
The relaxation complexity rc(X) is the minimal number of facets of a relaxation of X.
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Relaxation Complexity—Examples

0/1 cube cross-polytope
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Relaxation Complexity—Examples

0/1 cube cross-polytope
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Relaxation Complexity—Examples

0/1 cube cross-polytope
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4, ifd =2,
) =d+ re(X) = {d + 1, otherwise
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Relaxation Complexity—Basic Properties

Let P C RY be a polytope and let X = PN Z¢

Definition (Weltge 2015, Kaibel & Weltge 2015)

Any polyhedron Q C R? with X = Q N Z“ is called a relaxation of X.
The relaxation complexity rc(X) is the minimal number of facets of a relaxation of X.

> rc(X) is the minimal number of inequalities needed to separate X from Z¢ \ X (within aff(X))

» more generally, for Y C Z, the minimal number of inequalities needed to separate X from
Y\ Xisrc(X,Y) = rc(X,Y) < rc(X)

> rcq(X) and rcq(X, Y) mean restricting to rational polyhedra = rc(X) < req(X)
> rc(X) < #facets of conv(X)

5 Relaxation Complexity: Algorithmic Possibilities and Limitations TU/e



Fundamental Questions

Let X C Z7 be lattice-convex.

Are rc(X) and rcq(X), and corresponding minimal relaxations, computable?

Let Ag = {0,€',...,e%).

Question (Kaibel & Weltge 2015)

Does rc(X) = rcq(X) hold? In particular, is rc(Ay) = rcq(Aqg) true?
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Outline

Basic Concepts
Computability in Dimension 2
Computable Bounds

The Role of Rationality
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Main Tool—Observers
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Definition (Observers)

Let X C Z9 be lattice-convex. A pointy € Z% \ X is called an observer of X,
if conv(X U {y}) N Z% = X U {y}, thatis, X U {y} is also lattice-convex.
We write

Obs(X) := {y € Z°\ X : yis an observer ofX} .
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Observers

The observers are certifying the separation of X from Z? \ X !

Let X C Z9 be lattice-convex and let Ax < b be a system of linear
inequalities. The following are equivalent:

o The system Ax < b separates X from Z? \ X.

o The system Ax < b separates X from Obs(X).

= rc(X) = rc(X, Obs(X))
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Observers

The observers are certifying the separation of X from Z? \ X !

Let X C Z9 be lattice-convex and let Ax < b be a system of linear
inequalities. The following are equivalent:

o The system Ax < b separates X from Z? \ X.

o The system Ax < b separates X from Obs(X).

= rc(X) = rc(X, Obs(X))

Observation on Computability (Averkov & Schymura 2021)
If Obs(X) is finite (and computable), then deciding Is rc(X) < k? reduces to solving a MIP

with binary integer variables.

TU/e
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Finitely Many Observers

Theorem (Averkov & Schymura 2021)

Let X C Z9 be lattice convex and full-dimensional. If
1. X is parity-complete, or
2. conv(X) contains an interior lattice point, or

3. the lattice width w(X) of X satisfies w(X) > w*°(d), where w*(d) is the so-called
finiteness threshold width,
then Obs(X) is finite.

10  Relaxation Complexity: Algorithmic Possibilities and Limitations TU/e



Finitely Many Observers

Theorem (Averkov & Schymura 2021)

Let X C Z9 be lattice convex and full-dimensional. If
1. X is parity-complete, or

2. conv(X) contains an interior lattice point, or

3. the lattice width w(X) of X satisfies w(X) > w*°(d), where w*(d) is the so-called
finiteness threshold width,
then Obs(X) is finite.

10  Relaxation Complexity: Algorithmic Possibilities and Limitations TU/e



Finitely Many Observers

10

Theorem (Averkov & Schymura 2021)

Let X C Z9 be lattice convex and full-dimensional. If
1. X is parity-complete, or

2. conv(X) contains an interior lattice point, or

3. the lattice width w(X) of X satisfies w(X) > w°(d), where w*(d) is the so-called
finiteness threshold width,
then Obs(X) is finite.

Relaxation Complexity: Algorithmic Possibilities and Limitations TU/e
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Theorem (Averkov & Schymura 2021)

Let X C Z9 be lattice convex and full-dimensional. If
1. X is parity-complete, or

2. conv(X) contains an interior lattice point, or

3. the lattice width w(X) of X satisfies w(X) > w°(d), where w*(d) is the so-called
finiteness threshold width,
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Computability in Dimension 2
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Observers for d =2

o let X C 7Z? be finite and lattice convex with conv(X) = {x € R? : aix; + bix; < ¢, i € [m]}
o for eachi € [m], assume a; and b; are co-prime

Proposition (Weltge 2015) . . o /. \ Y

If X C 7?2 is full-dimensional, finite, and lattice-convex, o Sy,
Obs(X) are the lattice points on the boundary of e e * 5 -
{xeR* : axy +bixa < ¢ +1, i€ [ml}. RN
. 3 \q [} // 3
. . . \Y\/ °
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Finding Relaxation Complexity for d = 2

Theorem (Averkov, H., & Schymura 2021)

Let V C Z2 be finite and 2-dimensional, let X = conv(V) N Z?, and Y = Obs(X). Then,
1. Obs(X) can be computed in O(|V|log|V| + Y| + ~|V|) time;
2. rc(X) can be computed in O(|V|log|V| + [V[|Y]|log|Y| + ~|V|) time,

where ~ is an upper bound on the binary encoding size of any pointin V.

[ ]
[ ]
®
®
®
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Computable Bounds
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Strategy

rc(X) < req(X)
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Strategy

rc(X) < req(X) = rep(X)
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Strategy

repp(X) < re(X) < req(X) = rep(X)
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Computable Upper Bounds

Approach Give up strict separation of X from Z? \ X for the sake of robustness.

o X C 7 full-dimensional and lattice-convex 5
Of0r€>0,|etXEZ:X+B;, . x:x ° °
where B! = {0, +ee;, ..., +teey}
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Computable Upper Bounds

Approach Give up strict separation of X from 7 \ X for the sake of robustness.

o X C 7 full-dimensional and lattice-convex Q@
o fore >0, letX. ==X+ B, . .
where B! = {0, +ee;, ..., +teey}

Definition (c-relaxation complexity)

A polyhedron Q C R is an e-relaxation of X, if X. € Q and X = int(Q) N Z*.
We define rc.(X) as the smallest number of facets of an e-relaxation of X.

> > = rc(X) > rc(X), since conv(X.:) C conv(X.)
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Computable Upper Bounds

Theorem (Averkov, H., & Schymura 2021)

1. For any ¢ > 0, there is a computable finite set ¥* C Z¢ with rc.(X) = rc.(X, Y°).
2. Ife > Qiis rational, then rc.(X) can be computed in finite time.
3. reg(X) = reg(X) = mirg rce(X)

>

Consequences
~ finite algorithm to compute (eventually tight) upper bounds on rcq(X)
~» we just don’t know when to stop
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Computable Upper Bounds

Theorem (Averkov, H., & Schymura 2021)

1. For any € > 0, there is a computable finite set Y* C Z? with rc.(X) = rc.(X, Y°).
2. Ife > Oiis rational, then rc.(X) can be computed in finite time.
3. rcg(X) = reg(X) = mig rce(X)

e>

Key ideas for the proof
2. computing rc.(X, Y¢) for rational £ > 0 is a MILP with rational data
3. arational relaxation of X is bounded and can be perturbed into an e-relaxation
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Computable Upper Bounds

Theorem (Averkov, H., & Schymura 2021)
1. For any ¢ > 0, there is a computable finite set Y* C Z¢ with rc.(X) = rc.(X, Y°).

Key ideas for the proof
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Computable Upper Bounds

Theorem (Averkov, H., & Schymura 2021)

1. For any ¢ > 0, there is a computable finite set Y* C Z¢ with rc.(X) = rc.(X, Y°).

Key ideas for the proof

» variant of Minkowski's first theorem (van
der Corput 1936):
if g is too far away from C, the red region
contains more than |X| lattice points o

> every e-relaxation of X is contained in
conv(X) + Cq.c x - B3, for some computable
Cd,s,X >0

18  Relaxation Complexity: Algorithmic Possibilities and Limitations TU/e



Lower Bounds
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Strategy for Answering “rc(Ay) =d + 17"

» derive a strong lower bound ¢(X) on rc(X)
> If {(Ag) = d + 1, we are done.
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Hiding Sets and Hiding Graphs

Kaibel & Weltge 2015:
> Let X C Z9 be lattice-convex . . . .
and H C aff(X) N (Z9\ X)
» His a hiding set if, for any distinct x,y € H,
we have conv({x,y}) N conv(X) # 0 ° ° ° °
» For any hiding set H, rc(X) > |H|.
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> Let X C Z9 be lattice-convex . .
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» His a hiding set if, for any distinct x,y € H,
we have conv({x,y}) N conv(X) # 0 ° °
» For any hiding set H, rc(X) > |H|.
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Hiding Sets and Hiding Graphs

Kaibel & Weltge 2015:
> Let X C Z9 be lattice-convex . . . .
and H C aff(X) N (Z9\ X)
» His a hiding set if, for any distinct x,y € H,
we have conv({x,y}) N conv(X) # 0 ° ° ° °
» For any hiding set H, rc(X) > |H|.

Generalization Hiding Graph:

> G(X) = (2% \ X, E) ° ¢ ° °
> E={{x,y} € (3) : x,y form hiding set}
> rc(X) > x(G(X)) o o o o
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Hiding Sets and Hiding Graphs

Kaibel & Weltge 2015:
> Let X C Z9 be lattice-convex

and H C aff(X) N (Z9\ X) S

> His a hiding set if, for any distinct x,y € H, ,‘,‘""
we have conv({x,y}) N conv(X) % @ %?{6}%‘

» For any hiding set H, rc(X) > |H|. /5"/\ LN
T<K )

2

D ‘
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Generalization Hiding Graph:
> G(X) = (Z°\ X,E)
> E={{x,y} € (3) : x,y form hiding set}
> re(X) = x(G(X))
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Another Lower Bound

Forany Y C Z“, we have
re(X,Y) < re(X) < req(X).

Proposition (Averkov & Schymura 2020)

If Y C 7%\ X is finite, rc(X, Y) can be computed by solving a bounded MIP.

Does there exist Y C 7 finite with rc(X, Y) = rc(X)?
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Another Lower Bound

Forany Y C Z“, we have
re(X,Y) < re(X) < req(X).

Proposition (Averkov & Schymura 2020)

If Y C 7%\ X is finite, rc(X, Y) can be computed by solving a bounded MIP.

Does there exist Y C 7 finite with rc(X, Y) = rc(X)?

Theorem (Averkov, H., & Schymura 2021)

Let Ay = {0,e',...,e} and Y C 77 be finite. Then,

re(Ag,Y) < M +2.
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Consequences for A,

Let Y C Z9 be finite.
> rc(Ag,Y) < [%1 +2

Consider restriction G’ of hiding graph to nodes in Y.
> X(G)<[§1+2

By the de Bruijn-Erd6s theorem
> X(G(Aqg)) < [91+2
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Consequences for A,

Let Y C Z9 be finite.
> rc(Ag,Y) < [%1 +2

Consider restriction G’ of hiding graph to nodes in Y.
> X(G)<[§1+2

By the de Bruijn-Erd6s theorem
> X(G(Aqg)) < [91+2

In particular,
» For A4, all lower bounds are at most 4, whereas rc(A4) = 5.

23 Relaxation Complexity: Algorithmic Possibilities and Limitations TU/e



The Role of Rationality
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The Simplex is Rebellious

For any finite Y C z¢,
rc(As, Y) < rc(As) < reg(As) = 6,

and
rc(As,Y) < 5.
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The Simplex is Rebellious

For any finite Y C z¢,
rc(As, Y) < re(As) < reg(As) =6,

and
rc(As,Y) < 5.

Is it really true that
rc(As) < req(As)?
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Our results

Theorem (Aprile, Averkov, Di Summa, H. 2022+)

1. 5=rc(As) < rcg(As) = 6.
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Our results

Theorem (Aprile, Averkov, Di Summa, H. 2022+)

1. 5=rc(As) < rcg(As) = 6.

2. We have rc(Ag) € O(\/ﬁﬁ)'
og
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Crucial Tool—Mixed Relaxation Complexity

> letX C Y CRF

» polyhedron P C R¥ is relaxation of X within Y if X = PN Y
> rc(X,Y): minimum number of facets of relaxation

» ¥ =77 x R' ~» mixed relaxation complexity
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Crucial Tool—Mixed Relaxation Complexity

> letX C Y CRF

» polyhedron P C R¥ is relaxation of X within Y if X = PN Y
> rc(X,Y): minimum number of facets of relaxation

» ¥ =77 x R' ~» mixed relaxation complexity

Interpretation: the continuous coordinate as height of a lifting
> h: X — R, where X C 77
> lifty(X) = {(x, h(x)) : x € X}
> clifty(X) = conv(lift, (X))
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Bounding the Mixed Relaxation Complexity

Proposition

Let P C R*" be a full-dimensional polytope, let T C Z* be finite and non-empty, and let
h: T — R. Then, P is a relaxation of lift,(T) within Z* x R, iff
> every p € lift,(T) is contained in an upper and lower facet of P, and

> the projection of P onto the first k components is a relaxation of T within Z*.
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s » upper/lower covering: selection of upper/lower facets covering
\ all (x, h(x)) for x € X
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Bounding the Mixed Relaxation Complexity

Proposition

Let P C R*" be a full-dimensional polytope, let T C Z* be finite and non-empty, and let
h: T — R. Then, P is a relaxation of lift,(T) within Z* x R, iff
> every p € lift,(T) is contained in an upper and lower facet of P, and

> the projection of P onto the first k components is a relaxation of T within Z*.

s » upper/lower covering: selection of upper/lower facets covering
\ all (x, h(x)) for x € X

/» » ucn and len: minimum size of up./low. covering
| |

— = =
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Bounding the Mixed Relaxation Complexity

Proposition

Let P C R*" be a full-dimensional polytope, let T C Z* be finite and non-empty, and let
h: T — R. Then, P is a relaxation of lift,(T) within Z* x R, iff
> every p € lift,(T) is contained in an upper and lower facet of P, and

> the projection of P onto the first k components is a relaxation of T within Z*.

» upper/lower covering: selection of upper/lower facets covering

\ all (x, h(x)) for x € X
» ucn and len: minimum size of up./low. covering
‘ > rc((liftp(T), Z* x R) < rc(T) 4 ucnp(T) + leny(T)
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The idea in dimension 5
» consider
A ={0,e' e’ € (1,0,1,1,0),(0,1,1,0,1)} c Z°,
which is unimodularly equivalent to As
> let ¢ C R® be line spanned by (0,0,0,1,v2)
> Kaibel & Weltge 2015: conv(A) + ¢ is unbounded relaxation of A (#facets > 6)
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The idea in dimension 5
» consider
A ={0,e' e’ € (1,0,1,1,0),(0,1,1,0,1)} c Z°,
which is unimodularly equivalent to As
> let/ C R® be line spanned by (0,0,0, 1, v2)
> Kaibel & Weltge 2015: conv(A) + ¢ is unbounded relaxation of A (#facets > 6)

Let 7: R> — R* be the projection

(X1, X2, X3, X4, X5) = (X1,X2,X3,Xa — 5X5)

and P C R* be a polyhedron with PN (Z> x R) = 7(A). Then, Q := (P x {0}) -+ is a relaxation
of A.
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The idea in dimension 5
» consider
A ={0,e' e’ € (1,0,1,1,0),(0,1,1,0,1)} c Z°,
which is unimodularly equivalent to As
> let/ C R® be line spanned by (0,0,0, 1, v2)
> Kaibel & Weltge 2015: conv(A) + ¢ is unbounded relaxation of A (#facets > 6)

Let 7: R> — R* be the projection

(X1, X2, X3, X4, X5) = (X1,X2,X3,Xa — 5X5)

and P C R* be a polyhedron with PN (Z> x R) = 7(A). Then, Q := (P x {0}) -+ is a relaxation
of A.
= rc(A, Z°) < re(n(A), Z3 x R)
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A (3,1)-mixed relaxation

re(A, Z°) < re(m(A), Z2 x R) ~ it is sufficient to find mixed relaxation with 5 facets
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A (3,1)-mixed relaxation

re(A, Z°) < re(m(A), Z2 x R) ~ it is sufficient to find mixed relaxation with 5 facets

A (3,1)-mixed relaxation of 7(A) is given by the following inequalities with ¢ = 3

30

1.

X1 2> Xa
X3 > Xq4
1 —g (1 —e)V2
X1+ X2 + X3 + X4 <1,
TRV eV Y
X3-'!‘\/§X4207

X1 —(1 +8)X2+X3—X4§1.
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Putting all pieces together

Proof of rc(As) = 5:

re(As) = re(A) < re(n(A), Z* x R)
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Proof of rc(As) = 5:

re(As) = re(A) < re(n(A),Z> x R) < 5
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Putting all pieces together

Proof of rc(As) = 5:

re(As) < re(As) = re(A) < re(n(A), Z° x R) < 5
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Putting all pieces together

Proof of rc(As) = 5:

5 = rc(As) < re(As) = re(A) < re(n(A), Z° x R) < 5
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Sublinear bound on relaxation complexity
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Summary of proof in dimension 5

» project (unimodular transformation of) As onto R*
» find (3,1)-mixed relaxation of w(As)
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Summary of proof in dimension 5

» project (unimodular transformation of) As onto R*
» find (3,1)-mixed relaxation of w(As)
We can interpret the continuous coordinate as a lifting from a 3-dimensional space!
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Summary of proof in dimension 5

» project (unimodular transformation of) As onto R*
» find (3,1)-mixed relaxation of w(As)
We can interpret the continuous coordinate as a lifting from a 3-dimensional space!
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Summary of proof in dimension 5

» project (unimodular transformation of) As onto R*
» find (3,1)-mixed relaxation of w(As)
We can interpret the continuous coordinate as a lifting from a 3-dimensional space!
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The proof idea
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Make calculations easier

> assumed =2k —1.
Aim: find relaxation complexity of

Ay

Il
[ecNeoNoNeNoNeNe]
[cNeoNoNeNoNel
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OO —=000O0
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Make calculations easier

> assumed =2k —1.
Aim: find relaxation complexity of unimodularly equivalent

>

K=

Il
cocooooo
cocoooocoo -
cocoooo-—o0
co-—-0o—~0-=-
o—o00o—==—0

[eoNeNoNelE el
OO0 =o ==
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Step 1: projection

> project Aj 4 On the first k coordinates via 7

oo o
oo -
o-—-0
oo
o_\é
Ao_\

d

cocoooooo
cocooooo -
cocoooo-—o0o
cocooo—mo0o
coco—=o- -
co-—-0o—-0-
o—~00o—-—o0
—~ 00O ==

> the projection yields {0, 1}
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Step 2: lift and estimate

Let Y C Z¥\ A with |Y| = £. Let h: A, UY — R be a “suitable lifting function”. Then,

re(Drye) < re(lifty(Ag U Y), ZK x R).
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Step 2: lift and estimate

Let Y C Z¥\ A with |Y| = £. Let h: A, UY — R be a “suitable lifting function”. Then,

re(Drye) < re(lifty(Ag U Y), ZK x R).

Consequently,

re(Ay) < re(lifty ({0, 1}%), Z* x R)

37  Relaxation Complexity: Algorithmic Possibilities and Limitations TU/e



Step 2: lift and estimate

Let Y C Z¥\ A with |Y| = £. Let h: A, UY — R be a “suitable lifting function”. Then,

re(Drye) < re(lifty(Ag U Y), ZK x R).

Consequently,

re(Ay) < re(lifty ({0, 11%), Z* x R) < re({0, 11%) + ueny ({0, 11%) + leny ({0, 131)
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Putting the pieces together

For a “suitable lifting” h:

re(Ag) = re(Dgse) < re({0, 1) + uenp ({0, 134) + leny ({0, 135)
2k
=(k+1)+ O(ﬁ)

d
= Zee@)
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Summary

Are rc(X) and rcq(X), and corresponding minimal relaxations, computable?

> yes, ifd=2
> yes, if there exists a finite Y C Z? such that rc(X, Y) = rcq(X)

Question (Kaibel & Weltge 2015)

Does rc(X) = rcq(X) hold? In particular, is rc(Ay) = rcg(Ag) true?

» no, foreveryd > 5
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Open questions

Computability Is rc(X) computable?
o Averkov & Schymura 2020: yes, if d < 3 or X has special structure

Complexity How difficult is it to compute rc(X) if d = 3?

Finite Certificate Which X admit a finite Y C Z% \ X with rc(X, Y) = rc(X)?
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Open questions

Computability Is rc(X) computable?
o Averkov & Schymura 2020: yes, if d < 3 or X has special structure

Complexity How difficult is it to compute rc(X) if d = 3?

Finite Certificate Which X admit a finite Y C Z% \ X with rc(X, Y) = rc(X)?

Thank you for your attention!
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