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2 Relaxation Complexity: Algorithmic Possibilities and Limitations

Introduction
Main Goal: find “good” linear representations of
integer points X in polytopes P

Motivation: integer programming formulations

What does “good” mean?

I integer hull: LP = IP, but possibly high
number of constraints

I extended formulations: allow additional
variables for description

I relaxation complexity: minimal number of
linear constraints
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Relaxation Complexity—Definition

Let P ⊆ Rd be a polytope and let
X = P ∩Zd.

Any such X is called lattice-convex, because

conv(X) ∩Zd = X.

Definition (Weltge 2015, Kaibel & Weltge 2015)

Any polyhedron Q ⊆ Rd with X = Q ∩Zd is called a relaxation of X .
The relaxation complexity rc(X) is the minimal number of facets of a relaxation of X .
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Relaxation Complexity—Examples

0/1 cube

rc(X) = d + 1

cross-polytope

rc(X) =

{
4, if d = 2,
d + 1, otherwise
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Relaxation Complexity—Basic Properties

Let P ⊆ Rd be a polytope and let X = P ∩Zd

Definition (Weltge 2015, Kaibel & Weltge 2015)

Any polyhedron Q ⊆ Rd with X = Q ∩Zd is called a relaxation of X .
The relaxation complexity rc(X) is the minimal number of facets of a relaxation of X .

I rc(X) is the minimal number of inequalities needed to separate X from Zd \ X (within aff(X))
I more generally, for Y ⊆ Zd, the minimal number of inequalities needed to separate X from

Y \ X is rc(X, Y) ⇒ rc(X, Y) ≤ rc(X)

I rcQ(X) and rcQ(X, Y) mean restricting to rational polyhedra ⇒ rc(X) ≤ rcQ(X)

I rc(X) ≤ #facets of conv(X)
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Fundamental Questions

Let X ⊆ Zd be lattice-convex.

Question
Are rc(X) and rcQ(X), and corresponding minimal relaxations, computable?

Let ∆d = {0, e1, . . . , ed}.

Question (Kaibel & Weltge 2015)
Does rc(X) = rcQ(X) hold? In particular, is rc(∆d) = rcQ(∆d) true?
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Outline

Basic Concepts

Computability in Dimension 2

Computable Bounds

The Role of Rationality
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Main Tool—Observers

X

y

X

z

Definition (Observers)
Let X ⊆ Zd be lattice-convex. A point y ∈ Zd \ X is called an observer of X ,
if conv(X ∪ {y}) ∩Zd = X ∪ {y}, that is, X ∪ {y} is also lattice-convex.
We write

Obs(X) :=
{
y ∈ Zd \ X : y is an observer of X

}
.
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Observers
The observers are certifying the separation of X from Zd \ X !

Let X ⊆ Zd be lattice-convex and let Ax ≤ b be a system of linear
inequalities. The following are equivalent:
◦ The system Ax ≤ b separates X from Zd \ X .
◦ The system Ax ≤ b separates X from Obs(X).

=⇒ rc(X) = rc(X,Obs(X))
X

z

y

Observation on Computability (Averkov & Schymura 2021)
If Obs(X) is finite (and computable), then deciding Is rc(X) ≤ k? reduces to solving a MIP
with binary integer variables.
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Finitely Many Observers
Theorem (Averkov & Schymura 2021)

Let X ⊆ Zd be lattice convex and full-dimensional. If
1. X is parity-complete, or
2. conv(X) contains an interior lattice point, or
3. the lattice width w(X) of X satisfies w(X) > w∞(d), where w∞(d) is the so-called

finiteness threshold width,
then Obs(X) is finite.
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Computability in Dimension 2
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Observers for d = 2
◦ let X ⊆ Z2 be finite and lattice convex with conv(X) = {x ∈ R2 : aix1 + bix2 ≤ ci, i ∈ [m]}
◦ for each i ∈ [m], assume ai and bi are co-prime

Proposition (Weltge 2015)
If X ⊆ Z2 is full-dimensional, finite, and lattice-convex,
Obs(X) are the lattice points on the boundary of{

x ∈ R2 : aix1 + bix2 ≤ ci + 1, i ∈ [m]
}
.

X
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Finding Relaxation Complexity for d = 2
Theorem (Averkov, H., & Schymura 2021)
Let V ⊆ Z2 be finite and 2-dimensional, let X = conv(V) ∩Z2, and Y = Obs(X). Then,

1. Obs(X) can be computed in O(|V | log|V |+ |Y |+ γ|V |) time;
2. rc(X) can be computed in O(|V | log|V |+ |V ||Y | log|Y |+ γ|V |) time,

where γ is an upper bound on the binary encoding size of any point in V .
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Computable Bounds
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Strategy

rc�(X) ≤

rc(X) ≤ rcQ(X)

= rc0(X)
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Computable Upper Bounds
Approach Give up strict separation of X from Zd \ X for the sake of robustness.

◦ X ⊆ Zd full-dimensional and lattice-convex
◦ for ε > 0, let Xε := X + B1

ε,
where B1

ε = {0,±εe1, . . . ,±εed}

Definition (ε-relaxation complexity)

A polyhedron Q ⊆ Rd is an ε-relaxation of X , if Xε ⊆ Q and X = int(Q) ∩Zd.
We define rcε(X) as the smallest number of facets of an ε-relaxation of X .

I ε ≥ ε′ =⇒ rcε(X) ≥ rcε′(X), since conv(Xε′) ⊆ conv(Xε)
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Computable Upper Bounds

Theorem (Averkov, H., & Schymura 2021)

1. For any ε > 0, there is a computable finite set Yε ⊆ Zd with rcε(X) = rcε(X, Yε).
2. If ε > 0 is rational, then rcε(X) can be computed in finite time.
3. rcQ(X) = rc0(X) := min

ε>0
rcε(X)

Consequences
 finite algorithm to compute (eventually tight) upper bounds on rcQ(X)

 we just don’t know when to stop
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Computable Upper Bounds

Theorem (Averkov, H., & Schymura 2021)

1. For any ε > 0, there is a computable finite set Yε ⊆ Zd with rcε(X) = rcε(X, Yε).
2. If ε > 0 is rational, then rcε(X) can be computed in finite time.
3. rcQ(X) = rc0(X) := min

ε>0
rcε(X)

Key ideas for the proof
2. computing rcε(X, Yε) for rational ε > 0 is a MILP with rational data
3. a rational relaxation of X is bounded and can be perturbed into an ε-relaxation
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Computable Upper Bounds

Theorem (Averkov, H., & Schymura 2021)

1. For any ε > 0, there is a computable finite set Yε ⊆ Zd with rcε(X) = rcε(X, Yε).

Key ideas for the proof

I variant of Minkowski’s first theorem (van
der Corput 1936):
if q is too far away from C, the red region
contains more than |X| lattice points

I every ε-relaxation of X is contained in
conv(X) + cd,ε,X · B2

d, for some computable
cd,ε,X > 0

x
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Lower Bounds
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Strategy for Answering “rc(∆d) = d + 1?”
I derive a strong lower bound `(X) on rc(X)

I If `(∆d) = d + 1, we are done.
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Hiding Sets and Hiding Graphs
Kaibel & Weltge 2015:
I Let X ⊆ Zd be lattice-convex

and H ⊆ aff(X) ∩ (Zd \ X)

I H is a hiding set if, for any distinct x, y ∈ H,
we have conv({x, y}) ∩ conv(X) 6= ∅

I For any hiding set H, rc(X) ≥ |H|.

Generalization Hiding Graph:
I G(X) = (Zd \ X, E)

I E =
{
{x, y} ∈

(V
2
)

: x, y form hiding set
}

I rc(X) ≥ χ(G(X))
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Another Lower Bound
For any Y ⊆ Zd, we have

rc(X, Y) ≤ rc(X) ≤ rcQ(X).

Proposition (Averkov & Schymura 2020)

If Y ⊆ Zd \ X is finite, rc(X, Y) can be computed by solving a bounded MIP.

Does there exist Y ⊆ Zd finite with rc(X, Y) = rc(X)?
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Proposition (Averkov & Schymura 2020)

If Y ⊆ Zd \ X is finite, rc(X, Y) can be computed by solving a bounded MIP.

Does there exist Y ⊆ Zd finite with rc(X, Y) = rc(X)?

Theorem (Averkov, H., & Schymura 2021)

Let ∆d = {0, e1, . . . , ed} and Y ⊆ Zd be finite. Then,

rc(∆d, Y) ≤
⌈
d
2

⌉
+ 2.
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Consequences for ∆d

Let Y ⊆ Zd be finite.
I rc(∆d, Y) ≤ d d2 e+ 2

Consider restriction G′ of hiding graph to nodes in Y .
I χ(G′) ≤ d d2 e+ 2

By the de Bruijn-Erdős theorem
I χ(G(∆d)) ≤ d d2 e+ 2

In particular,
I For ∆4, all lower bounds are at most 4, whereas rc(∆4) = 5.
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The Role of Rationality
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The Simplex is Rebellious
For any finite Y ⊆ Zd,

rc(∆5, Y) ≤ rc(∆5) ≤ rcQ(∆5) = 6,
and

rc(∆5, Y) ≤ 5.

Question
Is it really true that

rc(∆5) < rcQ(∆5)?
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Our results

Theorem (Aprile, Averkov, Di Summa, H. 2022+)
1. 5 = rc(∆5) < rcQ(∆5) = 6.

2. We have rc(∆d) ∈ O
(

d√
log d

)
.
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Crucial Tool—Mixed Relaxation Complexity
I let X ⊆ Y ⊆ Rk

I polyhedron P ⊆ Rk is relaxation of X within Y if X = P ∩ Y
I rc(X, Y): minimum number of facets of relaxation
I Y = Zd ×R1  mixed relaxation complexity

Interpretation: the continuous coordinate as height of a lifting
I h : X → R, where X ⊆ Zd

I lifth(X) = {(x,h(x)) : x ∈ X}
I clifth(X) = conv(lifth(X))
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Bounding the Mixed Relaxation Complexity
Proposition

Let P ⊆ Rk+1 be a full-dimensional polytope, let T ⊆ Zk be finite and non-empty, and let
h : T → R. Then, P is a relaxation of lifth(T) within Zk ×R iff
I every p ∈ lifth(T) is contained in an upper and lower facet of P, and
I the projection of P onto the first k components is a relaxation of T within Zk.

I upper/lower covering: selection of upper/lower facets covering
all (x,h(x)) for x ∈ X

I ucn and lcn: minimum size of up./low. covering
I rc((lifth(T),Zk ×R) ≤ rc(T) + ucnh(T) + lcnh(T)
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The idea in dimension 5
I consider

∆ = {0, e1, e2, e3, (1,0,1,1,0), (0,1,1,0,1)} ⊂ Z5,

which is unimodularly equivalent to ∆5

I let ` ⊂ R5 be line spanned by (0,0,0,1,
√

2)

I Kaibel & Weltge 2015: conv(∆) + ` is unbounded relaxation of ∆ (#facets ≥ 6)

Observation
Let π : R5 → R4 be the projection

π(x1, x2, x3, x4, x5) = (x1, x2, x3, x4 − 1√
2x5)

and P ⊆ R4 be a polyhedron with P∩(Z3×R) = π(∆). Then, Q := (P×{0})+` is a relaxation
of ∆.

⇒ rc(∆,Z5) ≤ rc(π(∆),Z3 ×R)
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A (3,1)-mixed relaxation
rc(∆,Z5) ≤ rc(π(∆),Z3 ×R) it is sufficient to find mixed relaxation with 5 facets

A (3,1)-mixed relaxation of π(∆) is given by the following inequalities with ε = 1
8 :

x1 ≥ x4

x3 ≥ x4

εx1 + x2 +
1− ε

1 +
√

2
x3 +

(1− ε)
√

2
1 +
√

2
x4 ≤ 1,

x3 +
√

2x4 ≥ 0,
x1 − (1 + ε)x2 + x3 − x4 ≤ 1.
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Putting all pieces together
Proof of rc(∆5) = 5:

5 = rc(∆4) ≤

rc(∆5) = rc(∆) ≤ rc(π(∆),Z3 ×R)

≤ 5
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Sublinear bound on relaxation complexity



33 Relaxation Complexity: Algorithmic Possibilities and Limitations

Summary of proof in dimension 5
I project (unimodular transformation of) ∆5 onto R4

I find (3,1)-mixed relaxation of π(∆5)

We can interpret the continuous coordinate as a lifting from a 3-dimensional space!
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The proof idea
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Make calculations easier
I assume d = 2k − 1.

Aim: find relaxation complexity of

unimodularly equivalent

∆d =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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Make calculations easier
I assume d = 2k − 1.

Aim: find relaxation complexity of unimodularly equivalent
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0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
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0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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Step 1: projection
I project ∆′k+(d−k) on the first k coordinates via π:

0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


7→

0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1



I the projection yields {0,1}k
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Step 2: lift and estimate
Lemma
Let Y ⊆ Zk \∆k with |Y | = `. Let h : ∆k ∪ Y → R be a “suitable lifting function”. Then,

rc(∆k+`) ≤ rc(lifth(∆k ∪ Y),Zk ×R).

Consequently,

rc(∆′d) ≤ rc(lifth({0,1}k),Zk ×R)

≤ rc({0,1}k) + ucnh({0,1}k) + lcnh({0,1}k)
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Putting the pieces together
For a “suitable lifting” h:

rc(∆d) = rc(∆k+`) ≤ rc({0,1}k) + ucnh({0,1}k) + lcnh({0,1}k)

= (k + 1) + O
( 2k
√
k

)
= O

( d√
log(d)

)
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Summary

Question
Are rc(X) and rcQ(X), and corresponding minimal relaxations, computable?

I yes, if d = 2
I yes, if there exists a finite Y ⊆ Zd such that rc(X, Y) = rcQ(X)

Question (Kaibel & Weltge 2015)
Does rc(X) = rcQ(X) hold? In particular, is rc(∆d) = rcQ(∆d) true?

I no, for every d ≥ 5



40 Relaxation Complexity: Algorithmic Possibilities and Limitations

Open questions
Computability Is rc(X) computable?
◦ Averkov & Schymura 2020: yes, if d ≤ 3 or X has special structure

Complexity How difficult is it to compute rc(X) if d = 3?

Finite Certificate Which X admit a finite Y ⊆ Zd \ X with rc(X, Y) = rc(X)?

Thank you for your attention!
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