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Convex optimization

D C R" convex: Vp,q € D and t € [0,1], (1 — t)p+ tg € D.
f: D — R convex if

F(L=t)p+1tq) < (1 —1t)f(p) + tf(q)
Convex optimization:

minimize f(p)
subject to p € D.
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Algorithms for convex optimization

Euclidean setting:
» Specialized: simplex method for linear programming

» First-order: gradient descent, Frank—Wolfe, mirror
descent, ...

» Second-order: Newton's method, trust region methods
» Ellipsoid and cutting-plane methods
» Interior-point methods

First- and second-order methods: generalized to manifolds.
Cutting plane methods could exist [Rus19], but no algorithms
known.

This work: Interior-point methods!

Previous proposals by Udriste [Udr97] and
Jiang—Moore-Ji [JMJ07, Ji07], but unsatisfactory.

3/21



Convexity on (Riemannian) manifolds

Manifold: space that locally looks like R”
Riemannian metric: inner product on each tangent space
Geodesic: v: R — M which is locally length minimizing.
Generalizes straight lines in Euclidean space.
Convexity of a function f: M — R:

F( (1 = t)so + ts1)) < (1 = t) F(7(%0)) + tF(7(s1))

for every geodesic v, t € [0, 1], sp, 51 € R.

!! Hyperboloid H?: x% + y? — 2% =

Sphere S%: x> +y?2 + 22 =1. —1.

Hyperboloid: interesting convex functions exist!
In contrast: on sphere, convex implies constant. 4/21



Why?

1. Geometry: Given points p1,...,pm on a Riemannian
manifold, what is the minimum radius ball that contains all
these points? What is their geometric median, i.e., the point
that minimizes the sum of distances to each p;?

2. Quantum marginals: Given density matrices p1, ..., pk, €ach
describing the quantum state of one party, does there exist a
k-party pure quantum state with marginals equal to the p,?

3. Tensor networks: Given a (2d + 1)-leg tensor, does it ever
define a non-zero tensor network state of PEPS type? And
how can one efficiently compute its canonical form?

4. Brascamp—Lieb inequalities: Given linear Ly : R™ — R™k and
numbers g, > 0 for k € [n], what is the optimal C > 0 (if it
exists) s.t. for all integrable fi: R™ — R>o,

/ H fk LkX dX < CHkaHl/qk
RrRm
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Why?

These can all be rephrased as geodesically convex
optimization problems over spaces of nonpositive curvature.
Important examples:

» Euclidean space R": zero curvature

» Hyperbolic space H": constant curvature —1

» Positive-definite matrices PD(n) with affine-invariant

(Fisher—Rao) metric

» Determinant-1 matrices SPD(n) C PD(n)
Does not include e.g. n-sphere or embedded torus.
Problem 1 on minimum enclosing ball & geometric median:

distance to a point is a convex function (in nonpos. curv.).
Problems 2—4 all related to scaling problems.
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Why? Scaling problems!

Related to norm minimization problem: for nice group G and
representation V of G, given v € V, goal is to minimize norm
over the orbit G- v C V.

Tensor scaling: G = SL(n,C) x SL(n,C) x SL(n,C) acts

on C"® C"® C" by

(81,82, 83) v = (&1 © 8 @ g)v
for gi € SL(n,C) and v € V. Goal: find

inf X ® v 2'
gl,gg,ggeSL(n,c)H(gl 8 ® g3)v||

Change of variables: P; = g g;, then

inf <V’P1®P2®P3’V>
Pl,Pg,P3€SPD(n)

Domain not convex! But with respect to a natural geometry
on SPD(n), objective is geodesically convex. Geodesics on this
space: v/ Pet"\/P rather than P + tH. 7/21



Optimization in nonpositive curvature

The space PD(n) has nonpositive curvature, obstructs
optimization:
» Volume of balls grows exponentially with the radius (even
in constant dimension).

» Black-box lower bounds for convex optimization:
#queries at least linear in distance to approximate
minimizer.

» Scaling problems: approximate minimizers far away, and
the search space is large! Current best algorithms have
linear dependence on distance.

Implies that new structured methods necessary for efficient
scaling algorithms.
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Self-concordance and Newton's method

Self-concordance of convex f: D C R" — R:
\D3f(u, u,u)| < 2|D2f(u, u)|3/2.

Strongly self-concordant = self-concordant and closed convex.
Examples:

» Linear and convex quadratics

» x +— —In(x) on R

» —Indet(P) for P € PD(n) (as Euclidean convex set)

» (v,z) = —In(In(z) —y) —In(z) on {(y,z) : & < z}
Important properties:

» Sum of self-concordant functions is self-concordant

» Rescaling- and translation invariant
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Self-concordance and Newton's method
Newton's iteration: update p to p, = minimizer of quadratic

approximation

1
f(q) = f(p) + df,(q — p) + §szp(q —p,q—p)

(squared) Newton decrement \¢(p)? is twice the gap in
function value.

Theorem
If f is self-concordant and A\¢(p) < 1, then p, € D

M(p) < (%)

Implies quadratic convergence of Newton's method.
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Self-concordance and Newton's method

M complete Riemannian manifold, f: D C M — R smooth
convex function on convex D C M.

Definition: Self-concordance on manifolds

Self-concordant if for all p € D and u,v,w € T,M,

|V3fp(u, v,w)| < 2\/V2fp(u, u)\/szp(v, v)\/szp(w, w).
where V Levi—Civita connection.

Note: stronger than self-concordance along every geodesic
(only bounds u = v = w)!

Key reason is that non-zero curvature implies V3f is an
asymmetric 3-tensor, unlike in the Euclidean case.
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Self-concordance and Newton's method

Result: Newton's method quadratic convergence

If f strongly self-concordant and A¢(p) < 1, then p; € D and

Ae(py) < <%)2-

Other familiar results can also be obtained, e.g., Dikin ellipsoid
of radius 1 contained in domain, existence of minimizers,
damped Newton method guarantees, etc.
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Path-following method

Goal: minimize f: D — M with D bounded.
Idea: F self-concordant barrier for domain D, with F
diverging at the boundary.
Instead of minimizing f directly, follow central path z(t) of
minimizers of F, = t f + F by iterating:

» Increase t slightly.

» Take a Newton step with respect to F; to move closer

to z(t).

Time-increase governed by barrier parameter:

6 = sup Ar(p)”.
peD
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Path-following method

Result: Path-following method

Starting from approximate minimizer of #-barrier F and
compatible f, in

O(1+ Volog(ldhllr,/2))
Newton iterations, can find p. € D such that

(p.) — inf £(p) <.

peD

Compatibility: encompasses linear- and convex quadratic
objectives, but more generally is an estimate on third
derivatives of f which implies F; = tf + F is self-concordant

for all t > 0.
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Examples of self-concordant functions & barriers

Result: squared distance on PD(n) self-concordant
For Py € PD(n), half the squared distance

1 1 _ _
5d(P, Po)* = = [llog(Py 2Py ) [

is self-concordant.

Implies similar statement for Hadamard symmetric spaces!
Warning: this result is highly non-trivial: the third derivative
of the squared distance is not zero, unlike on Euclidean space!
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Examples of self-concordant functions & barriers

Barrier for a ball on PD(n)
D = {(P,S) € PD(n) x R : 1d(P, Py)? < S}. Then

F(P,S) = —log(S — d(P, Py)?) + %d(P, Py)?

is strongly self-concordant and A\r(P,S) < 1+ d(P, Py)>.

Yields a self-concordant barrier for ball of radius R with barrier
parameter O(R?).
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Applications: geometry problems

Corollary: algorithm for minimum enclosing ball

Given points Py, ..., P, € PD(n), Ry = max;; d(P;, P;),
e > 0, can find P. such that

max d(P-, P;) < m,in max d(P, P;) + ¢
in 5<mR§ + /mR2 Iog(l/e)) Newton steps.

Best previous result (only on H"): multiplicative error §
in O(1/62) iterations [NH15].

Get similar result for approximate geometric median on H":
requires a non-trivial strengthening of self-concordance
estimate to construct a barrier for the “second order cone” .
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Applications: norm minimization

Theorem: algorithm for norm minimization

Let G € GL(N) complex reductive, 7: G — GL(V') algebraic
representation, v € V, and set

¢u(g) = log|lg - vf3.
Then for Ry > 0 and € > 0, can find g. € G such that

¢v(gs) inf ¢v(g) <e

" log(e*8)llns<Ry
within O(RoN(7) log(1/¢)) Newton steps.

N(7) = ||| weight norm of 7, I = d;.

This essentially matches the state-of-the-art for
non-commutative optimization- and scaling algorithms.
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Summary

| 4

>

>

Extend self-concordance to Riemannian manifolds, and
analyze Newton's method.

Implement a path-following method with same guarantees
as in Euclidean setting.

Examples: squared distance on H", PD(n) and general
Hadamard symmetric spaces.

First algorithms for efficiently finding high-precision
solutions for minimum enclosing ball & geometric median.

State-of-the-art complexity guarantees for
non-commutative scaling problems.
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Outlook

Open questions:
» Better barriers and/or lower bounds?
» Universal /entropic barrier?
» Preliminary stage?
» Primal-dual algorithms?

Thank you!
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