Interior-point methods on manifolds

Harold Nieuwboer

University of Amsterdam \& Ruhr University Bochum
March 30th, 2023

Dutch Optimization Seminar - PhD talks Joint work with Hiroshi Hirai \& Michael Walter arXiv:2212.10981 \& arXiv:2303.04771 https://han28.github.io/

Convex optimization

$D \subseteq \mathbb{R}^{n}$ convex: $\forall p, q \in D$ and $t \in[0,1],(1-t) p+t q \in D$.
$f: D \rightarrow \mathbb{R}$ convex if

$$
f((1-t) p+t q) \leq(1-t) f(p)+t f(q)
$$

Convex optimization:

$$
\begin{aligned}
& \text { minimize } f(p) \\
& \text { subject to } p \in D .
\end{aligned}
$$

Algorithms for convex optimization

Euclidean setting:

- Specialized: simplex method for linear programming
- First-order: gradient descent, Frank-Wolfe, mirror descent, ...
- Second-order: Newton's method, trust region methods
- Ellipsoid and cutting-plane methods
- Interior-point methods

First- and second-order methods: generalized to manifolds.
Cutting plane methods could exist [Rus19], but no algorithms known.
This work: Interior-point methods!
Previous proposals by Udriste [Udr97] and Jiang-Moore-Ji [JMJ07, Ji07], but unsatisfactory.

Convexity on (Riemannian) manifolds

Manifold: space that locally looks like \mathbb{R}^{n}
Riemannian metric: inner product on each tangent space
Geodesic: $\gamma: \mathbb{R} \rightarrow M$ which is locally length minimizing.
Generalizes straight lines in Euclidean space.
Convexity of a function $f: M \rightarrow \mathbb{R}$:

$$
f\left(\gamma\left((1-t) s_{0}+t s_{1}\right)\right) \leq(1-t) f\left(\gamma\left(s_{0}\right)\right)+t f\left(\gamma\left(s_{1}\right)\right)
$$

for every geodesic $\gamma, t \in[0,1], s_{0}, s_{1} \in \mathbb{R}$.

Hyperboloid $\mathbb{H}^{2}: x^{2}+y^{2}-z^{2}=$
Sphere $S^{2}: x^{2}+y^{2}+z^{2}=1 . \quad-1$.
Hyperboloid: interesting convex functions exist!
In contrast: on sphere, convex implies constant.

Why?

1. Geometry: Given points p_{1}, \ldots, p_{m} on a Riemannian manifold, what is the minimum radius ball that contains all these points? What is their geometric median, i.e., the point that minimizes the sum of distances to each p_{i} ?
2. Quantum marginals: Given density matrices $\rho_{1}, \ldots, \rho_{k}$, each describing the quantum state of one party, does there exist a k-party pure quantum state with marginals equal to the ρ_{k} ?
3. Tensor networks: Given a $(2 d+1)$-leg tensor, does it ever define a non-zero tensor network state of PEPS type? And how can one efficiently compute its canonical form?
4. Brascamp-Lieb inequalities: Given linear $L_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m_{k}}$ and numbers $q_{k}>0$ for $k \in[n]$, what is the optimal $C>0$ (if it exists) s.t. for all integrable $f_{k}: \mathbb{R}^{m_{k}} \rightarrow \mathbb{R}_{\geq 0}$,

$$
\int_{\mathbb{R}^{m}} \prod_{k=1}^{n} f_{k}\left(L_{k} x\right) d x \leq C \prod_{k=1}^{n}\left\|f_{k}\right\|_{1 / q_{k}} ?
$$

Why?

These can all be rephrased as geodesically convex optimization problems over spaces of nonpositive curvature. Important examples:

- Euclidean space \mathbb{R}^{n} : zero curvature
- Hyperbolic space \mathbb{H}^{n} : constant curvature -1
- Positive-definite matrices $\operatorname{PD}(n)$ with affine-invariant (Fisher-Rao) metric
- Determinant-1 matrices $\operatorname{SPD}(n) \subseteq \operatorname{PD}(n)$

Does not include e.g. n-sphere or embedded torus.
Problem 1 on minimum enclosing ball \& geometric median: distance to a point is a convex function (in nonpos. curv.). Problems 2-4 all related to scaling problems.

Why? Scaling problems!

Related to norm minimization problem: for nice group G and representation V of G, given $v \in V$, goal is to minimize norm over the orbit $G \cdot v \subseteq V$.
Tensor scaling: $G=\operatorname{SL}(n, \mathbb{C}) \times \operatorname{SL}(n, \mathbb{C}) \times \operatorname{SL}(n, \mathbb{C})$ acts on $\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ by

$$
\left(g_{1}, g_{2}, g_{3}\right) \cdot v=\left(g_{1} \otimes g_{2} \otimes g_{3}\right) v
$$

for $g_{j} \in \operatorname{SL}(n, \mathbb{C})$ and $v \in V$. Goal: find

$$
\inf _{g_{1}, g_{2}, g_{3} \in \operatorname{SL}(n, \mathbb{C})}\left\|\left(g_{1} \otimes g_{2} \otimes g_{3}\right) v\right\|_{2}^{2}
$$

Change of variables: $P_{j}=g_{j}^{*} g_{j}$, then

$$
\inf _{P_{1}, P_{2}, P_{3} \in \mathrm{SPD}(n)}\langle v| P_{1} \otimes P_{2} \otimes P_{3}|v\rangle
$$

Domain not convex! But with respect to a natural geometry on $\operatorname{SPD}(n)$, objective is geodesically convex. Geodesics on this space: $\sqrt{P} e^{t H} \sqrt{P}$ rather than $P+t H$.

Optimization in nonpositive curvature

The space $\mathrm{PD}(n)$ has nonpositive curvature, obstructs optimization:

- Volume of balls grows exponentially with the radius (even in constant dimension).
- Black-box lower bounds for convex optimization: \#queries at least linear in distance to approximate minimizer.
- Scaling problems: approximate minimizers far away, and the search space is large! Current best algorithms have linear dependence on distance.
Implies that new structured methods necessary for efficient scaling algorithms.

Self-concordance and Newton's method

Self-concordance of convex $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
\left|D^{3} f(u, u, u)\right| \leq 2\left|D^{2} f(u, u)\right|^{3 / 2}
$$

Strongly self-concordant $=$ self-concordant and closed convex. Examples:

- Linear and convex quadratics
- $x \mapsto-\ln (x)$ on $\mathbb{R}_{>0}$
- $-\ln \operatorname{det}(P)$ for $P \in \mathrm{PD}(n)$ (as Euclidean convex set)
- $(y, z) \mapsto-\ln (\ln (z)-y)-\ln (z)$ on $\left\{(y, z): e^{y}<z\right\}$

Important properties:

- Sum of self-concordant functions is self-concordant
- Rescaling- and translation invariant

Self-concordance and Newton's method

Newton's iteration: update p to $p_{+}=$minimizer of quadratic approximation

$$
f(q) \approx f(p)+d f_{p}(q-p)+\frac{1}{2} D^{2} f_{p}(q-p, q-p)
$$

(squared) Newton decrement $\lambda_{f}(p)^{2}$ is twice the gap in function value.
Theorem
If f is self-concordant and $\lambda_{f}(p)<1$, then $p_{+} \in D$

$$
\lambda_{f}\left(p_{+}\right) \leq\left(\frac{\lambda_{f}(p)}{1-\lambda_{f}(p)}\right)^{2}
$$

Implies quadratic convergence of Newton's method.

Self-concordance and Newton's method

M complete Riemannian manifold, $f: D \subseteq M \rightarrow \mathbb{R}$ smooth convex function on convex $D \subseteq M$.

Definition: Self-concordance on manifolds

Self-concordant if for all $p \in D$ and $u, v, w \in T_{p} M$,

$$
\left|\nabla^{3} f_{p}(u, v, w)\right| \leq 2 \sqrt{\nabla^{2} f_{p}(u, u)} \sqrt{\nabla^{2} f_{p}(v, v)} \sqrt{\nabla^{2} f_{p}(w, w)}
$$

where ∇ Levi-Civita connection.
Note: stronger than self-concordance along every geodesic (only bounds $u=v=w$)! Key reason is that non-zero curvature implies $\nabla^{3} f$ is an asymmetric 3-tensor, unlike in the Euclidean case.

Self-concordance and Newton's method

Result: Newton's method quadratic convergence
If f strongly self-concordant and $\lambda_{f}(p)<1$, then $p_{+} \in D$ and

$$
\lambda_{f}\left(p_{+}\right) \leq\left(\frac{\lambda_{f}(p)}{1-\lambda_{f}(p)}\right)^{2} .
$$

Other familiar results can also be obtained, e.g., Dikin ellipsoid of radius 1 contained in domain, existence of minimizers, damped Newton method guarantees, etc.

Path-following method

Goal: minimize $f: D \rightarrow M$ with D bounded. Idea: F self-concordant barrier for domain D, with F diverging at the boundary. Instead of minimizing f directly, follow central path $z(t)$ of minimizers of $F_{t}=t f+F$ by iterating:

- Increase t slightly.
- Take a Newton step with respect to F_{t} to move closer to $z(t)$.
Time-increase governed by barrier parameter:

$$
\theta=\sup _{p \in D} \lambda_{F}(p)^{2} .
$$

Path-following method

Result: Path-following method

Starting from approximate minimizer of θ-barrier F and compatible f, in

$$
\widetilde{O}\left(1+\sqrt{\theta} \log \left(\left\|d f_{p}\right\|_{F, p}^{*} / \varepsilon\right)\right)
$$

Newton iterations, can find $p_{\varepsilon} \in D$ such that

$$
f\left(p_{\varepsilon}\right)-\inf _{p \in D} f(p) \leq \varepsilon .
$$

Compatibility: encompasses linear- and convex quadratic objectives, but more generally is an estimate on third derivatives of f which implies $F_{t}=t f+F$ is self-concordant for all $t \geq 0$.

Examples of self-concordant functions \& barriers

Result: squared distance on $\operatorname{PD}(n)$ self-concordant

For $P_{0} \in \mathrm{PD}(n)$, half the squared distance

$$
\frac{1}{2} d\left(P, P_{0}\right)^{2}=\frac{1}{2}\left\|\log \left(P_{0}^{-1 / 2} P P_{0}^{-1 / 2}\right)\right\|_{\mathrm{HS}}^{2}
$$

is self-concordant.
Implies similar statement for Hadamard symmetric spaces! Warning: this result is highly non-trivial: the third derivative of the squared distance is not zero, unlike on Euclidean space!

Examples of self-concordant functions \& barriers

Barrier for a ball on $\operatorname{PD}(n)$

$$
\begin{aligned}
& D=\left\{(P, S) \in \operatorname{PD}(n) \times \mathbb{R}: \frac{1}{2} d\left(P, P_{0}\right)^{2}<S\right\} . \text { Then } \\
& \quad F(P, S)=-\log \left(S-d\left(P, P_{0}\right)^{2}\right)+\frac{1}{2} d\left(P, P_{0}\right)^{2}
\end{aligned}
$$

is strongly self-concordant and $\lambda_{F}(P, S) \leq 1+d\left(P, P_{0}\right)^{2}$.
Yields a self-concordant barrier for ball of radius R with barrier parameter $O\left(R^{2}\right)$.

Applications: geometry problems

Corollary: algorithm for minimum enclosing ball

Given points $P_{1}, \ldots, P_{m} \in \operatorname{PD}(n), R_{0}=\max _{i, j} d\left(P_{i}, P_{j}\right)$, $\varepsilon>0$, can find P_{ε} such that

$$
\max _{i} d\left(P_{\varepsilon}, P_{i}\right) \leq \min _{P} \max _{i} d\left(P, P_{i}\right)+\varepsilon
$$

in $\widetilde{O}\left(m R_{0}^{2}+\sqrt{m R_{0}^{2}} \log (1 / \varepsilon)\right)$ Newton steps.
Best previous result (only on \mathbb{H}^{n}): multiplicative error δ in $O\left(1 / \delta^{2}\right)$ iterations [NH 15].
Get similar result for approximate geometric median on \mathbb{H}^{n} : requires a non-trivial strengthening of self-concordance estimate to construct a barrier for the "second order cone".

Applications: norm minimization

Theorem: algorithm for norm minimization

Let $G \subseteq \mathrm{GL}(N)$ complex reductive, $\pi: G \rightarrow \mathrm{GL}(V)$ algebraic representation, $v \in V$, and set

$$
\phi_{v}(g)=\log \|g \cdot v\|_{2}^{2} .
$$

Then for $R_{0}>0$ and $\varepsilon>0$, can find $g_{\varepsilon} \in G$ such that

$$
\phi_{V}\left(g_{\varepsilon}\right)-\inf _{\left\|\log \left(g^{*} g\right)\right\|_{H S}<R_{0}} \phi_{V}(g) \leq \varepsilon
$$

within $\widetilde{O}\left(R_{0} N(\pi) \log (1 / \varepsilon)\right)$ Newton steps.
$N(\pi)=\|\Pi\|$ weight norm of $\pi, \Pi=d \pi_{1}$.
This essentially matches the state-of-the-art for non-commutative optimization- and scaling algorithms.

Summary

- Extend self-concordance to Riemannian manifolds, and analyze Newton's method.
- Implement a path-following method with same guarantees as in Euclidean setting.
- Examples: squared distance on $\mathbb{H}^{n}, \operatorname{PD}(n)$ and general Hadamard symmetric spaces.
- First algorithms for efficiently finding high-precision solutions for minimum enclosing ball \& geometric median.
- State-of-the-art complexity guarantees for non-commutative scaling problems.

Outlook

Open questions:

- Better barriers and/or lower bounds?
- Universal/entropic barrier?
- Preliminary stage?
- Primal-dual algorithms?

Thank you!

References

Huibo Ji.
Optimization approaches on smooth manifolds.
PhD thesis, Australian National University, 2007.
Danchi Jiang, John B Moore, and Huibo Ji.
Self-concordant functions for optimization on smooth manifolds.
Journal of Global Optimization, 38(3):437-457, 2007.
doi:10.1007/s10898-006-9095-z.
Frank Nielsen and Gaëtan Hadjeres.
Approximating Covering and Minimum Enclosing Balls in Hyperbolic Geometry.
In Geometric Science of Information, Lecture Notes in Computer Science, pages 586-594, Cham, 2015.
Springer International Publishing.
doi:10.1007/978-3-319-25040-3_63.
Alexander Rusciano.
A Riemannian Corollary of Helly's Theorem, 2019.
arXiv:1804.10738.
Constantin Udriṣte.
Optimization Methods on Riemannian Manifolds.
Algebras, Groups and Geometries, 14:339-359, 1997.

