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Convex optimization

D ⊆ Rn convex: ∀p, q ∈ D and t ∈ [0, 1], (1− t)p + tq ∈ D.
f : D → R convex if

f ((1− t)p + tq) ≤ (1− t)f (p) + tf (q)

Convex optimization:

minimize f (p)

subject to p ∈ D.
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Algorithms for convex optimization

Euclidean setting:

▶ Specialized: simplex method for linear programming

▶ First-order: gradient descent, Frank–Wolfe, mirror
descent, . . .

▶ Second-order: Newton’s method, trust region methods

▶ Ellipsoid and cutting-plane methods

▶ Interior-point methods

First- and second-order methods: generalized to manifolds.
Cutting plane methods could exist [Rus19], but no algorithms
known.
This work: Interior-point methods!

Previous proposals by Udriste [Udr97] and
Jiang–Moore–Ji [JMJ07, Ji07], but unsatisfactory.
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Convexity on (Riemannian) manifolds

Manifold: space that locally looks like Rn

Riemannian metric: inner product on each tangent space
Geodesic: γ : R → M which is locally length minimizing.
Generalizes straight lines in Euclidean space.
Convexity of a function f : M → R:

f (γ((1− t)s0 + ts1)) ≤ (1− t) f (γ(s0)) + t f (γ(s1))

for every geodesic γ, t ∈ [0, 1], s0, s1 ∈ R.

Sphere S2: x2 + y2 + z2 = 1.
Hyperboloid H2: x2 + y2 − z2 =
−1.

Hyperboloid: interesting convex functions exist!
In contrast: on sphere, convex implies constant.
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Why?

1. Geometry: Given points p1, . . . , pm on a Riemannian
manifold, what is the minimum radius ball that contains all
these points? What is their geometric median, i.e., the point
that minimizes the sum of distances to each pi?

2. Quantum marginals: Given density matrices ρ1, . . . , ρk , each
describing the quantum state of one party, does there exist a
k-party pure quantum state with marginals equal to the ρk?

3. Tensor networks: Given a (2d + 1)-leg tensor, does it ever
define a non-zero tensor network state of PEPS type? And
how can one efficiently compute its canonical form?

4. Brascamp–Lieb inequalities: Given linear Lk : Rm → Rmk and
numbers qk > 0 for k ∈ [n], what is the optimal C > 0 (if it
exists) s.t. for all integrable fk : Rmk → R≥0,∫

Rm

n∏
k=1

fk(Lkx) dx ≤ C
n∏

k=1

∥fk∥1/qk?

Many classical integral inequalities fall into this setting, such
as the Hölder and Young inequalities and the Loomis–Whitney
inequality, as well as certain hypercontractivity inequalities.
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Why?

These can all be rephrased as geodesically convex
optimization problems over spaces of nonpositive curvature.
Important examples:

▶ Euclidean space Rn: zero curvature

▶ Hyperbolic space Hn: constant curvature −1

▶ Positive-definite matrices PD(n) with affine-invariant
(Fisher–Rao) metric

▶ Determinant-1 matrices SPD(n) ⊆ PD(n)

Does not include e.g. n-sphere or embedded torus.
Problem 1 on minimum enclosing ball & geometric median:
distance to a point is a convex function (in nonpos. curv.).
Problems 2–4 all related to scaling problems.
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Why? Scaling problems!

Related to norm minimization problem: for nice group G and
representation V of G , given v ∈ V , goal is to minimize norm
over the orbit G · v ⊆ V .
Tensor scaling: G = SL(n,C)× SL(n,C)× SL(n,C) acts
on Cn ⊗ Cn ⊗ Cn by

(g1, g2, g3) · v = (g1 ⊗ g2 ⊗ g3)v

for gj ∈ SL(n,C) and v ∈ V . Goal: find

inf
g1,g2,g3∈SL(n,C)

∥(g1 ⊗ g2 ⊗ g3)v∥22.

Change of variables: Pj = g ∗
j gj , then

inf
P1,P2,P3∈SPD(n)

⟨v |P1 ⊗ P2 ⊗ P3|v⟩

Domain not convex! But with respect to a natural geometry
on SPD(n), objective is geodesically convex. Geodesics on this
space:

√
PetH

√
P rather than P + tH .
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Optimization in nonpositive curvature

The space PD(n) has nonpositive curvature, obstructs
optimization:

▶ Volume of balls grows exponentially with the radius (even
in constant dimension).

▶ Black-box lower bounds for convex optimization:
#queries at least linear in distance to approximate
minimizer.

▶ Scaling problems: approximate minimizers far away, and
the search space is large! Current best algorithms have
linear dependence on distance.

Implies that new structured methods necessary for efficient
scaling algorithms.
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Self-concordance and Newton’s method

Self-concordance of convex f : D ⊆ Rn → R:

|D3f (u, u, u)| ≤ 2|D2f (u, u)|3/2.

Strongly self-concordant = self-concordant and closed convex.
Examples:

▶ Linear and convex quadratics

▶ x 7→ − ln(x) on R>0

▶ − ln det(P) for P ∈ PD(n) (as Euclidean convex set)

▶ (y , z) 7→ − ln(ln(z)− y)− ln(z) on {(y , z) : ey < z}
Important properties:

▶ Sum of self-concordant functions is self-concordant

▶ Rescaling- and translation invariant
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Self-concordance and Newton’s method

Newton’s iteration: update p to p+ = minimizer of quadratic
approximation

f (q) ≈ f (p) + dfp(q − p) +
1

2
D2fp(q − p, q − p)

(squared) Newton decrement λf (p)
2 is twice the gap in

function value.

Theorem

If f is self-concordant and λf (p) < 1, then p+ ∈ D

λf (p+) ≤
(

λf (p)

1− λf (p)

)2

Implies quadratic convergence of Newton’s method.
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Self-concordance and Newton’s method

M complete Riemannian manifold, f : D ⊆ M → R smooth
convex function on convex D ⊆ M .

Definition: Self-concordance on manifolds

Self-concordant if for all p ∈ D and u, v ,w ∈ TpM ,

|∇3fp(u, v ,w)| ≤ 2
√
∇2fp(u, u)

√
∇2fp(v , v)

√
∇2fp(w ,w).

where ∇ Levi–Civita connection.

Note: stronger than self-concordance along every geodesic
(only bounds u = v = w)!
Key reason is that non-zero curvature implies ∇3f is an
asymmetric 3-tensor, unlike in the Euclidean case.
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Self-concordance and Newton’s method

Result: Newton’s method quadratic convergence

If f strongly self-concordant and λf (p) < 1, then p+ ∈ D and

λf (p+) ≤
(

λf (p)

1− λf (p)

)2

.

Other familiar results can also be obtained, e.g., Dikin ellipsoid
of radius 1 contained in domain, existence of minimizers,
damped Newton method guarantees, etc.



13/21

Path-following method

Goal: minimize f : D → M with D bounded.
Idea: F self-concordant barrier for domain D, with F
diverging at the boundary.
Instead of minimizing f directly, follow central path z(t) of
minimizers of Ft = t f + F by iterating:

▶ Increase t slightly.

▶ Take a Newton step with respect to Ft to move closer
to z(t).

Time-increase governed by barrier parameter:

θ = sup
p∈D

λF (p)
2.



14/21

Path-following method

Result: Path-following method

Starting from approximate minimizer of θ-barrier F and
compatible f , in

Õ
(
1 +

√
θ log(∥dfp∥∗F ,p/ε)

)
Newton iterations, can find pε ∈ D such that

f (pε)− inf
p∈D

f (p) ≤ ε.

Compatibility: encompasses linear- and convex quadratic
objectives, but more generally is an estimate on third
derivatives of f which implies Ft = tf + F is self-concordant
for all t ≥ 0.
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Examples of self-concordant functions & barriers

Result: squared distance on PD(n) self-concordant

For P0 ∈ PD(n), half the squared distance

1

2
d(P ,P0)

2 =
1

2
∥log(P−1/2

0 PP
−1/2
0 )∥2HS

is self-concordant.

Implies similar statement for Hadamard symmetric spaces!
Warning: this result is highly non-trivial: the third derivative
of the squared distance is not zero, unlike on Euclidean space!
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Examples of self-concordant functions & barriers

Barrier for a ball on PD(n)

D = {(P , S) ∈ PD(n)× R : 1
2
d(P ,P0)

2 < S}. Then

F (P , S) = − log(S − d(P ,P0)
2) +

1

2
d(P ,P0)

2

is strongly self-concordant and λF (P , S) ≤ 1 + d(P ,P0)
2.

Yields a self-concordant barrier for ball of radius R with barrier
parameter O(R2).
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Applications: geometry problems

Corollary: algorithm for minimum enclosing ball

Given points P1, . . . ,Pm ∈ PD(n), R0 = maxi ,j d(Pi ,Pj),
ε > 0, can find Pε such that

max
i

d(Pε,Pi) ≤ min
P

max
i

d(P ,Pi) + ε

in Õ
(
mR2

0 +
√

mR2
0 log(1/ε)

)
Newton steps.

Best previous result (only on Hn): multiplicative error δ
in O(1/δ2) iterations [NH15].

Get similar result for approximate geometric median on Hn:
requires a non-trivial strengthening of self-concordance
estimate to construct a barrier for the “second order cone”.
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Applications: norm minimization

Theorem: algorithm for norm minimization

Let G ⊆ GL(N) complex reductive, π : G → GL(V ) algebraic
representation, v ∈ V , and set

ϕv (g) = log∥g · v∥22.

Then for R0 > 0 and ε > 0, can find gε ∈ G such that

ϕv (gε)− inf
∥log(g∗g)∥HS<R0

ϕv (g) ≤ ε

within Õ(R0N(π) log(1/ε)) Newton steps.

N(π) = ∥Π∥ weight norm of π, Π = dπI .

This essentially matches the state-of-the-art for
non-commutative optimization- and scaling algorithms.
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Summary

▶ Extend self-concordance to Riemannian manifolds, and
analyze Newton’s method.

▶ Implement a path-following method with same guarantees
as in Euclidean setting.

▶ Examples: squared distance on Hn, PD(n) and general
Hadamard symmetric spaces.

▶ First algorithms for efficiently finding high-precision
solutions for minimum enclosing ball & geometric median.

▶ State-of-the-art complexity guarantees for
non-commutative scaling problems.
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Outlook

Open questions:

▶ Better barriers and/or lower bounds?

▶ Universal/entropic barrier?

▶ Preliminary stage?

▶ Primal-dual algorithms?

Thank you!
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