

A Faster Exponential Time Algorithm for Bin Packing with Constant Number of Bins

UU

Jakub Pawlewicz

Warsaw

Céline Swennenhuis

TU/e

Karol Węgrzycki

Saarbrucken

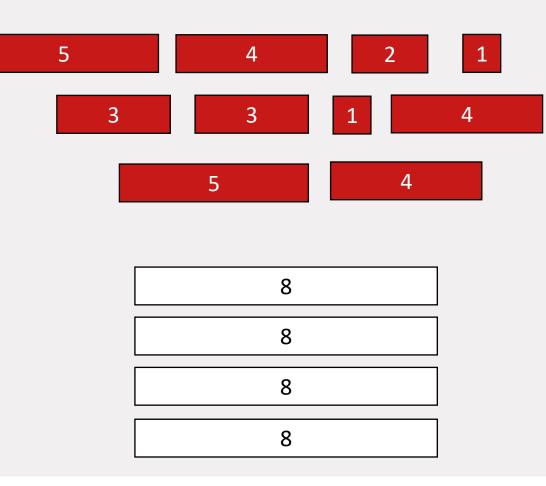
Department of Mathematics and Computer Science, Eindhoven University of Technology

Bin Packing

Given:

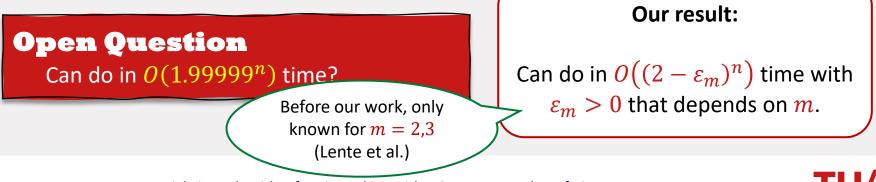
- *n* items
- w(j) weight of item j
 - $\succ w(X) = \sum_{j \in X} w(j)$
- *m* bins with capacity *c*

Goal: distribute items over bins



Bin Packing

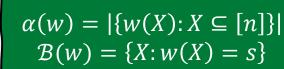
- o Algorithm A
 - Dynamic Programming
 - $O(c^m \cdot n)$
- o Algorithm B
 - Björklund, Husfeldt and Koivisto (SICOMP 2009)
 - $O(2^n \cdot n)$

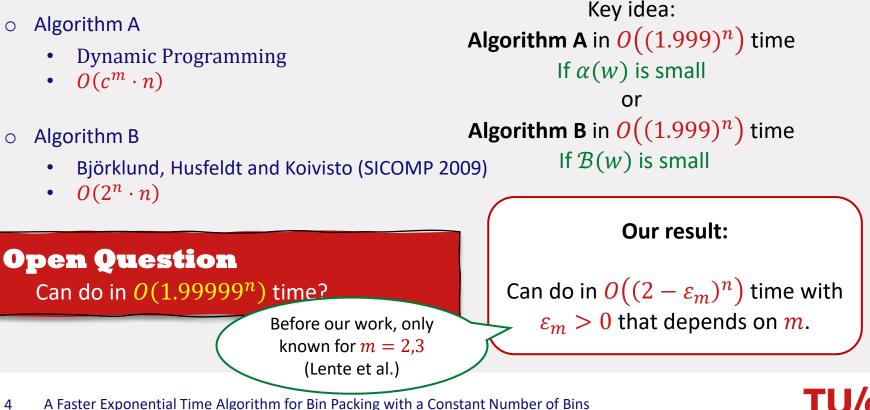


Bin Packing

Algorithm A 0

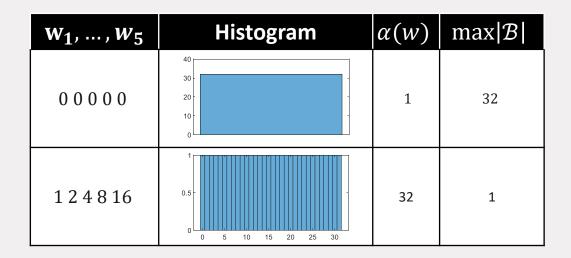
4

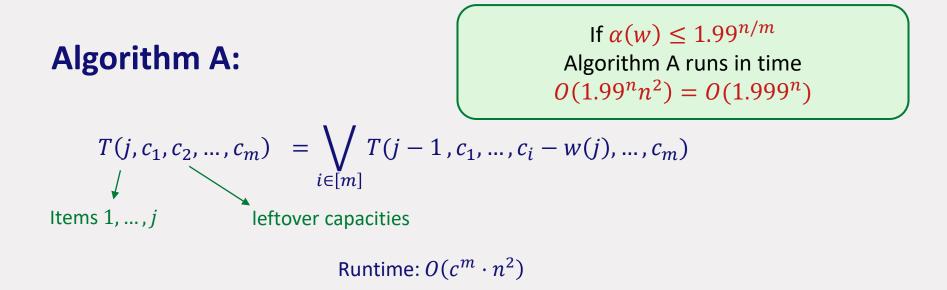




$\alpha(w) = |\{w(X): X \subseteq [n]\}|$ $\mathcal{B}(w) = \{X: w(X) = s\}$

Parameters $\alpha(w)$ and $|\mathcal{B}|$

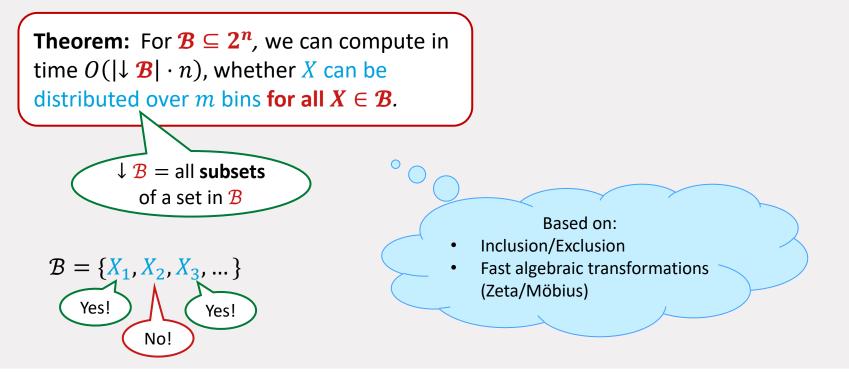




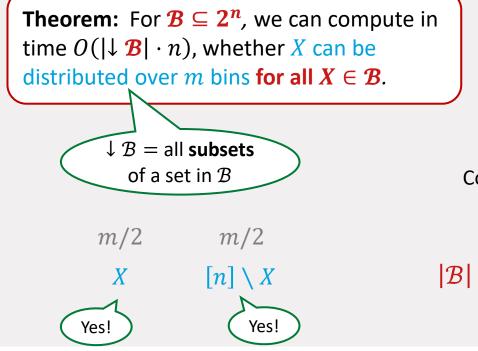
 $\alpha(w) = |\{w(X): X \subseteq [n]\}|$

New runtime: $O(\alpha(w)^m \cdot n^2)$

Algorithm B:



Algorithm B:



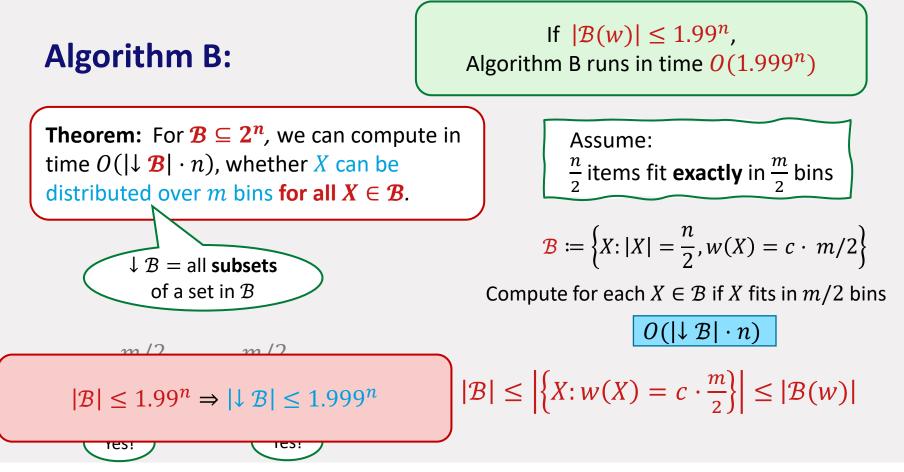
Assume:
$$\frac{n}{2}$$
 items fit **exactly** in $\frac{m}{2}$ bins

$$\mathcal{B} \coloneqq \left\{ X \colon |X| = \frac{n}{2}, w(X) = c \cdot m/2 \right\}$$

Compute for each $X \in \mathcal{B}$ if X fits in m/2 bins

$$O(|\downarrow \mathcal{B}| \cdot n)$$

$$\mathcal{B}| \le \left| \left\{ X : w(X) = c \cdot \frac{m}{2} \right\} \right| \le |\mathcal{B}(w)|$$



TU/e

 $\alpha(w) = |\{w(X): X \subseteq [n]\}|$ $\mathcal{B}(w) = \{X: w(X) = s\}$

If $\alpha(w) \le 1.99^{n/m}$ Algorithm A runs in time $O(1.999^n)$ If $|\mathcal{B}(w)| \leq 1.99^n$, Algorithm B runs in time $O(1.999^n)$

 $\alpha(w) = |\{w(X): X \subseteq [n]\}|$ $\mathcal{B}(w) = \{X: w(X) = s\}$

How to prove this?

(or both)

If $\alpha(w) \le 1.99^{n/m}$ Algorithm A runs in time $O(1.999^n)$

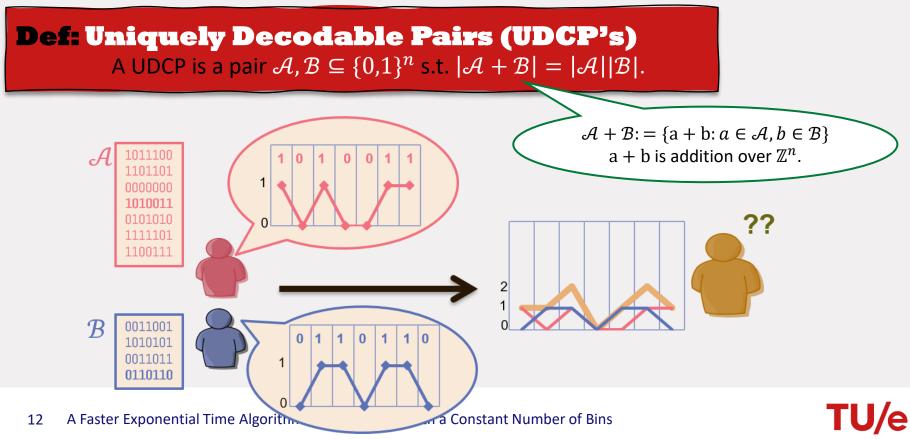
If $|\mathcal{B}(w)| \leq 1.99^n$, Algorithm B runs in time $O(1.999^n)$

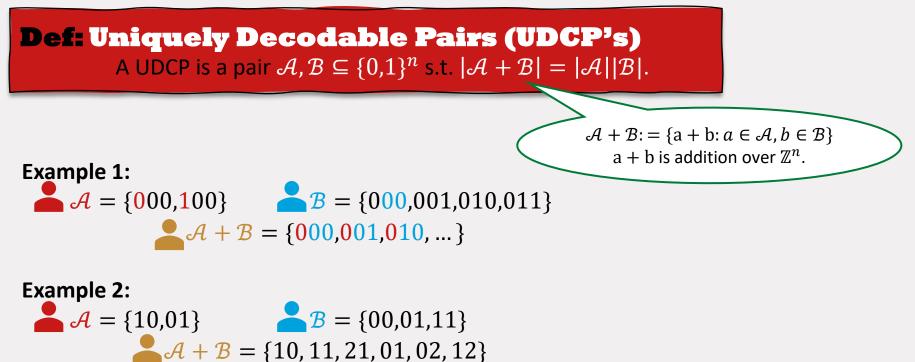
Theorem: For all $\delta > 0$ there exists $\varepsilon > 0$ s.t.

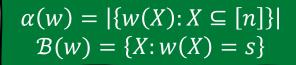
if $\alpha(w) \ge 2^{\delta n}$, then $|\mathcal{B}(w)| \le 2^{(1-\varepsilon)n}$.

Take $\delta < \frac{1}{m}$, then either

 $\alpha(w) \le 2^{\delta n} \le 1.99^{n/m}$ or $|\mathcal{B}(w)| \le 2^{(1-\varepsilon)n} \le 1.99^n$



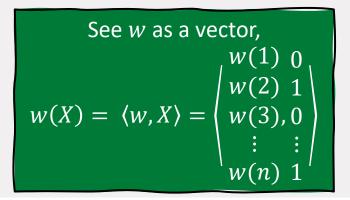




Def: Uniquely Decodable Pairs (UDCP's) A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

 $\mathcal{A} \subseteq \{0,1\}^n$ s.t.all $a \in \mathcal{A}$ have different weight $\mathcal{B} \subseteq \{0,1\}^n$ s.t.all $b \in \mathcal{B}$ have weight s \mathcal{A} and \mathcal{B} is UDCP:Let c be received.

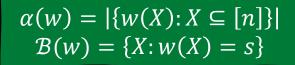
 $c = a + b, \text{ so } \langle w, c \rangle = \langle w, a \rangle + \langle w, b \rangle.$ $\Rightarrow a \text{ was used!}$ b = c - a. $\begin{aligned} |\mathcal{A}| &= \alpha(w) \\ |\mathcal{B}| &= |\mathcal{B}(w)| \end{aligned}$



Def: Uniquely Decodable Pairs (UDCP's) A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

Best known bounds: If \mathcal{A}, \mathcal{B} is UDCP: $|\mathcal{A}| \cdot |\mathcal{B}| \le 2^{1.5 n}$,[Tilborg, 1978]If $|\mathcal{A}| \ge 2^{(1-\varepsilon)n}$ then $|\mathcal{B}| \le 2^{(0.4228 + \sqrt{\varepsilon})n}$.[Austrin et al. 2018]

We need: If $|\mathcal{A}| \geq 2^{\delta n}$, then $|\mathcal{B}| \leq 2^{(1-\varepsilon)n}$.



 $\delta_k \to 0$ as $k \to \infty$

 $|\mathcal{A}| \le \frac{|\mathcal{A} + k \cdot \mathcal{B}|}{|k \cdot \mathcal{B}|} \le \frac{(k+2)^n}{(k+1)^n} = \left(1 + \frac{1}{k+1}\right)^n = 2^{\delta_k n}$

 $\approx \{0, \dots, k\}^n$

Def: Uniquely Decodable Pairs (UDCP's) A UDCP is a pair $\mathcal{A}, \mathcal{B} \subseteq \{0,1\}^n$ s.t. $|\mathcal{A} + \mathcal{B}| = |\mathcal{A}||\mathcal{B}|$.

 $\begin{array}{c} \mathbf{\mathcal{A}} \subseteq \{0,1\}^n \text{ s.t.} & \text{all } \mathbf{a} \in \mathbf{\mathcal{A}} \text{ have different weight} & |\mathbf{\mathcal{A}}| = \alpha(w) \\ \mathbf{\mathcal{B}} \subseteq \{0,1\}^n \text{ s.t.} & \text{all } \mathbf{b} \in \mathbf{\mathcal{B}} \text{ have weight } \mathbf{s} \\ \mathbf{\mathcal{A}} \text{ and } \mathbf{\mathcal{B}} \text{ is UDCP.} & \subseteq \{0,\dots,k+1\}^n \\ \end{array}$

 $k \cdot \mathcal{B} = \{b_1 + \dots + b_k : b_i \in \mathcal{B}\}$ $\langle w, b \rangle = k \cdot s \quad \text{for all } b \in k \cdot \mathcal{B}.$ $\mathcal{A} \text{ and } k \cdot \mathcal{B} \text{ is `UDCP'}!$

16

Assume $\mathcal{B} \approx \{0,1\}^n$

Conclusion

Main result:

Bin Packing in $O((2 - \varepsilon_m)^n)$ time with $\varepsilon_m > 0$ that depends on m.

Key idea:

Tradeoff between $\alpha(w)$ and $\mathcal{B}(w)$.

Future Research:

Bin Packing in $O(1.9999^n)$, m not a constant!

