List Colouring Trees in Logspace

Hans Bodlaender, <u>Carla Groenland</u> and Hugo Jacob Utrecht University, Utrecht University and ENS Paris-Saclay

Dutch Optimization Seminar

Output. Is there a proper vertex colouring c with $c(v) \in L(v)$ for all $v \in V$?

Output. Is there a proper vertex colouring cwith $c(v) \in L(v)$ for all $v \in V$?

Output. Is there a proper vertex colouring cwith $c(v) \in L(v)$ for all $v \in V$?

Output. Is there a proper vertex colouring cwith $c(v) \in L(v)$ for all $v \in V$?

Solvable in linear time on trees. NP-c for planar bipartite graphs or cographs.

- Deterministic Turing machine.
- Input tape (read-only): contains lists and *n*-vertex tree.
- Space usage: $O(\log n)$ bits on the work tape.

- Deterministic Turing machine.
- Input tape (read-only): contains lists and *n*-vertex tree.
- Space usage: $O(\log n)$ bits on the work tape.

Reingold (2008): undirected vertex connectivity is in L.

Elberfeld, Jakoby and Tantau (2010): Logspace version of Bodlaender's and Courcelle's theorem.

 \implies Done if bounded list size.

The remainder of the talk:

- Ideas for $O(\log^2 n)$ algorithm.
- Required improvements for $O(\log n)$.
- Relation to larger project in parameterized complexity.

- T = input tree.
- L = list of colours.
- n = number of vertices.
- d(v) = degree of v.

• We may set $C \log n$ bits apart.

 \implies Can recompute relevant logspace computable quantities when needed.

Only need to try the first d(v) + 1 colours from L(v)
⇒ O(log d(v)) bits for storing **position in list** of colour.

- Root the tree (arbitrary but deterministic).
- T_v subtree rooted in v.
- Child v of p is heavy if child with largest |V(T_v)|.
- Otherwise v is **light** and $|V(T_v)| \leq \frac{1}{2}|V(T_p)|.$

No way to colour $T_v - T_u$?

 \implies Return fail.

Non-critical: v can get two colours in $T_v - T_u$.

 \implies Continue to *u* without constraints.

Critical: v can only get colour c in $T_v - T_u$.

 \implies Continue to *u* while remembering *v* needs *c*.

- For vertex v with heavy child u, we check which colours v can get in $T_v T_u$.
- \implies Recursive calls on light children only.
- \implies Recursion depth: $O(\log n)$.

- For vertex v with heavy child u, we check which colours v can get in $T_v T_u$.
- \implies Recursive calls on light children only.
- \implies Recursion depth: $O(\log n)$.

May forget parent v' of v when move to heavy child u of v.

- $\implies O(\log n)$ bits per recursion level.
- $\implies O(\log^2 n)$ total.

Suppose we do a 'recursive call' on light child w of v.

Key idea. Space allocated for parent v depends on 'size reduction'.

•
$$O(1)$$
 bits if $|V(T_w)| = |V(T_v)|/2$.

•
$$O(\log n)$$
 bits if $|V(T_w)| = \sqrt{|V(T_v)|}$.

Algorithm processes small subtrees first.

Suppose we do a 'recursive call' on light child w of v.

Key idea. Space allocated for parent v depends on 'size reduction'.

•
$$O(1)$$
 bits if $|V(T_w)| = |V(T_v)|/2$.

•
$$O(\log n)$$
 bits if $|V(T_w)| = \sqrt{|V(T_v)|}$.

Algorithm processes small subtrees first.

Large subtree \implies few children left \implies small 'effective degree'

 \implies cheaper description of colour available.

 $L_j(v) = \{c \in L(v) : G_j \text{ admits list colouring } \alpha \text{ with } \alpha(v) = c\}.$

 $L_j(v) = \{c \in L(v) : G_j \text{ admits list colouring } \alpha \text{ with } \alpha(v) = c\}.$

Store colour via position in $L_j(v)$: takes $O(\log |L_j(v)|)$ bits.

 $L_j(v) = \{ c \in L(v) : G_j \text{ admits list colouring } \alpha \text{ with } \alpha(v) = c \}.$

Store colour via position in $L_j(v)$: takes $O(\log |L_j(v)|)$ bits.

At most $2^{2^{j}}$ children w of v are not in G_{j} (volume argument).

- \implies either v non-critical or $|L_j(v)| \leq 2^{2^j} + 2$.
- \implies use $O(2^j)$ bits for position.

- Recurse only on light children, starting with small subtrees.
- Store positions instead of colour; recompute colour only when needed.
- Technical detail: need to group children into brackets based on subtree size, for M = Θ(log log n):

$$[1, n/2^{2^{M-1}}), \ldots, [n/2^{2^{j+1}}, n/2^{2^j}), \ldots, [n/4, n/2).$$

LIST COLOURING on tree-like graphs?

Algorithm gives $O(f(k) \log n)$ space for *n*-vertex graphs of tree-partition-width *k*.

Given *n*-vertex graph, does it have independent set of size k?

Usual complexity: running time in terms of n.

Parameterized complexity: separate out influence of parameter (e.g. k).

Given *n*-vertex graph, does it have independent set of size k?

Usual complexity: running time in terms of n.

Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.

Given *n*-vertex graph, does it have independent set of size k?

Usual complexity: running time in terms of n.

Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.

XP: $n^{f(k)}$ Try all subsets: $\binom{n}{k} = O(n^k)$.

Given *n*-vertex graph, does it have independent set of size k?

Usual complexity: running time in terms of n.

Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.

XP: $n^{f(k)}$ Try all subsets: $\binom{n}{k} = O(n^k)$.

FPT: $f(k)n^{O(1)}$ Not possible?

Proving hardness interesting?

"I can't find an efficient algorithm, but neither can all these famous people."

Proving hardness interesting?

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, but neither can all these famous people."

C-hard: 'at least as hard' as all problems in C.

All C-complete problems are 'similarly hard'.

Downey & Fellows (1999):

- $\bullet \ \mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \mathsf{W}[3] \subseteq \ldots \ .$
- W[1]: class for INDEPENDENT SET.
- W[2]: class for DOMINATING SET.

Downey & Fellows (1999):

- $\bullet \ \mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \mathsf{W}[3] \subseteq \ldots \ .$
- W[1]: class for independent set.
- W[2]: class for DOMINATING SET.

Recent joint work in team headed by Hans Bodlaender:

- XNLP: class for LIST COLOURING parameterized by pathwidth.
- XALP: class for LIST COLOURING parameterized by treewidth.

Downey & Fellows (1999):

- $\bullet \ \mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \mathsf{W}[3] \subseteq \ldots \ .$
- W[1]: class for independent set.
- W[2]: class for DOMINATING SET.

Recent joint work in team headed by Hans Bodlaender:

- XNLP: class for LIST COLOURING parameterized by pathwidth.
- XALP: class for LIST COLOURING parameterized by treewidth.

XALP-hard \implies XNLP-hard \implies W[t]-hard for all t.

Natural 'home' for path/tree-structured problems.

Nondeterminism versus co-nondeterminism

Alternating Turing machine admits both nondeterminism and co-nondeterminism.

- X = slice-wise, parameterized problem (n, k)
- N = nondeterministic Turing machine
- $A = alternating Turing machine^*$
- L = logspace f(k) log n
- $P = \text{fpt time } f(k)n^{O(1)}$

- X = slice-wise, parameterized problem (n, k)
- N = nondeterministic Turing machine
- A = alternating Turing machine*
- $L = \text{logspace } f(k) \log n$
- $P = \text{fpt time } f(k)n^{O(1)}$

Conjecture (Pilipczuk, Wrochna). XNLP-hard problems admit no deterministic $n^{f(k)}$ time $f(k)n^{O(1)}$ space algorithm.

 \implies For some constant k_0 , there is no $O(\log n)$ space algorithm for list colouring graphs of pathwidth at most k_0 .
Membership:

- Use machine model definition.
- Deterministic dynamic programming \rightarrow nondeterministic 'guess' table entries, conondeterminism to handle 'branching' in tree.

Membership:

- Use machine model definition.
- Deterministic dynamic programming \rightarrow nondeterministic 'guess' table entries, conondeterminism to handle 'branching' in tree.

Completeness:

- Reduce from known complete problems.
- pl-reduction: $O(\log n) + f(k)$ space, do not blow up parameter.

First complete problem (Cook-style): BINARY CSP (think: LIST COLOURING with arbitrary constraints).

First XNLP-completeness result:

- M. Elberfeld, C. Stockhusen, and T. Tantau. *On the space and circuit complexity of parameterized problems: Classes and completeness*, 2015.
- XALP paper builds on classical analogues (SAC, NAuxPDA, ASPSZ):
 - E. Allender, S. Chen, T. Lou, P. A. Papakonstantinou, and B. Tang. Width-parametrized SAT: time-space tradeoffs, 2015.
 - W. L. Ruzzo. *Tree-size bounded alternation*, 1980.

Parameter	Problem
Pathwidth	List Colouring*, All-or-Nothing Flow*, Capacitated
	Dominating Set
Linear clique-width	Chromatic Number, Maximum Regular Induced
	Subgraph*, Max Cut*
Pathwidth / log n	q-Coloring, Dominating Set*, Independent Set*, Odd
	Cycle Transversal
Linear mim-width	Independent Set, Dominating Set, Feedback Vertex Set
Bandwidth	Bandwidth*
Number of sequences	Longest Common Subsequence

Table: Overview of XNLP-completeness results

*: XALP-complete when replacing

 $\label{eq:pathwidth} \begin{array}{l} \to \mbox{treewidth} \\ \mbox{linear cliquewidth} \to \mbox{cliquewidth} \\ \mbox{bandwidth} \to \mbox{tree-partition width}. \end{array}$

 $O(\log n)$ deterministic for treewidth 1.

Q: treewidth 2?

 $O(\log n)$ deterministic for treewidth 1. Q: treewidth 2?

 $O(\log n)$ nondeterministic for constant pathwidth.

 $O(\log^2 n)$ nondeterministic for constant treewidth. Q: $o(\log^2 n)$?

 $O(\log n)$ deterministic for treewidth 1. Q: treewidth 2?

 $O(\log n)$ nondeterministic for constant pathwidth.

 $O(\log^2 n)$ nondeterministic for constant treewidth. Q: $o(\log^2 n)$?

Q: Space efficiency of other problems?

 $O(\log n)$ deterministic for treewidth 1. Q: treewidth 2?

 $O(\log n)$ nondeterministic for constant pathwidth.

 $O(\log^2 n)$ nondeterministic for constant treewidth. Q: $o(\log^2 n)$?

Q: Space efficiency of other problems?

Q: Problem with tree/path-like structure? \rightarrow XNLP/XALP-complete?

 $O(\log n)$ deterministic for treewidth 1. Q: treewidth 2?

 $O(\log n)$ nondeterministic for constant pathwidth.

 $O(\log^2 n)$ nondeterministic for constant treewidth. Q: $o(\log^2 n)$?

Q: Space efficiency of other problems?

Q: Problem with tree/path-like structure? \rightarrow XNLP/XALP-complete?

Thank you for your attention!

XNLP = parameterized problems (n, k) solvable in nondeterministic $f(k)n^{O(1)}$ time and $f(k) \log n$ space.

XALP = XNLP with auxiliary stack

= parameterized problems (n, k) solvable by Alternating Turing Machine in $f(k)n^{O(1)}$ time and $f(k) \log n$ space plus one of following: $O(\log n)$ co-nondeterministic steps per branch. Computation tree has size $f(k)n^{O(1)}$.)

Conjecture (Pilipczuk, Wrochna). XNLP-hard problems admit no deterministic $n^{f(k)}$ time $f(k)n^{O(1)}$ space algorithm.

- n = number of vertices.
- d(v) = degree of v.
 - $\Delta = \text{maximum degree}.$
 - Can 'construct' nice path decomposition of width w = O(log n).
 Recompute relevant parts whenever needed.
 - Only need to try the first d(v) + 1 colours for v
 - $\implies O(\log \Delta)$ bits for storing **position in list** of colour.
 - Nondeterministic 'guess' colours for vertices in current bag, check compatible with previous bag. At most two bags in memory.
 - $\implies O(w \log \Delta) = O(\log^2 n)$ bits.

$$C \log(n/2) = C \log n - 2C \implies O(1) \text{ bits if } |V(T_w)| = n/2.$$

$$C \log(\sqrt{n}) = C \log n - C \log n/2 \implies O(\log n) \text{ bits if } |V(T_w)| = \sqrt{n}.$$

For $M = \Theta(\log \log n)$, we consider brackets:

$$[1, n/2^{2^{M-1}}), \ldots, [n/2^{2^{j+1}}, n/2^{2^j}), \ldots, [n/4, n/2).$$

These are used to group together children by the size of their subtrees. When computing position in $L_i(x)$ may need to store information about

When computing position in $L_j(v)$, may need to store information about positions in $L_i(v)$ for $i \leq j$, but this sums nicely:

$$\sum_{i=1}^{j} 2^{i} \leqslant 2 \cdot 2^{j}.$$