List Colouring Trees in Logspace

Hans Bodlaender, Carla Groenland and Hugo Jacob Utrecht University, Utrecht University and ENS Paris-Saclay

Dutch Optimization Seminar

Complexity of List Colouring

Given. Graph $G=(V, E)$ on n vertices and a list $L(v) \subseteq\{1, \ldots, n\}$ of colours for each $v \in V$.

Output. Is there a proper vertex colouring c
with $c(v) \in L(v)$ for all $v \in V$?

Complexity of List Colouring

Given. Graph $G=(V, E)$ on n vertices and a list $L(v) \subseteq\{1, \ldots, n\}$ of colours for each $v \in V$.

Output. Is there a proper vertex colouring c
with $c(v) \in L(v)$ for all $v \in V$?

Complexity of List Colouring

Given. Graph $G=(V, E)$ on n vertices and a list $L(v) \subseteq\{1, \ldots, n\}$ of colours for each $v \in V$.

Output. Is there a proper vertex colouring c with $c(v) \in L(v)$ for all $v \in V$?

Complexity of List Colouring

Given. Graph $G=(V, E)$ on n vertices and a list $L(v) \subseteq\{1, \ldots, n\}$ of colours for each $v \in V$.

Output. Is there a proper vertex colouring c

$$
\text { with } c(v) \in L(v) \text { for all } v \in V \text { ? }
$$

Solvable in linear time on trees.
NP-c for planar bipartite graphs or cographs.

Logspace model

Main result. List Colouring on trees is in L.

- Deterministic Turing machine.
- Input tape (read-only): contains lists and n-vertex tree.
- Space usage: $O(\log n)$ bits on the work tape.

Logspace model

Main result. List Colouring on trees is in L.

- Deterministic Turing machine.
- Input tape (read-only): contains lists and n-vertex tree.
- Space usage: $O(\log n)$ bits on the work tape.

Reingold (2008): undirected vertex connectivity is in L.
Elberfeld, Jakoby and Tantau (2010): Logspace version of Bodlaender's and Courcelle's theorem.
\Longrightarrow Done if bounded list size.

Talk overview

Main result. List Colouring on trees is in L.
The remainder of the talk:

- Ideas for $O\left(\log ^{2} n\right)$ algorithm.
- Required improvements for $O(\log n)$.
- Relation to larger project in parameterized complexity.

Notation and first ideas

$T=$ input tree.
$L=$ list of colours.
$n=$ number of vertices.
$d(v)=$ degree of v.

- We may set $C \log n$ bits apart.
\Longrightarrow Can recompute relevant logspace computable quantities when needed.
- Only need to try the first $d(v)+1$ colours from $L(v)$
$\Longrightarrow O(\log d(v))$ bits for storing position in list of colour.

Heavy/light decomposition

- Root the tree (arbitrary but deterministic).
- T_{v} subtree rooted in v.
- Child v of p is heavy if child with largest $\left|V\left(T_{v}\right)\right|$.
- Otherwise v is light and $\left|V\left(T_{v}\right)\right| \leqslant \frac{1}{2}\left|V\left(T_{p}\right)\right|$.

Critical versus non-critical

No way to colour $T_{v}-T_{u}$?
\Longrightarrow Return fail.

Critical versus non-critical

Non-critical: v can get two colours in $T_{v}-T_{u}$.
\Longrightarrow Continue to u without constraints.

Critical versus non-critical

Critical: v can only get colour c in $T_{v}-T_{u}$.
\Longrightarrow Continue to u while remembering v needs c.

Critical versus non-critical

$O\left(\log ^{2} n\right)$ algorithm time analysis

For vertex v with heavy child u, we check which colours v can get in $T_{v}-T_{u}$.
\Longrightarrow Recursive calls on light children only.
\Longrightarrow Recursion depth: $O(\log n)$.

$O\left(\log ^{2} n\right)$ algorithm time analysis

For vertex v with heavy child u, we check which colours v can get in $T_{v}-T_{u}$.
\Longrightarrow Recursive calls on light children only.
\Longrightarrow Recursion depth: $O(\log n)$.
May forget parent v^{\prime} of v when move to heavy child u of v.
$\Longrightarrow O(\log n)$ bits per recursion level.
$\Longrightarrow O\left(\log ^{2} n\right)$ total.

How to reach $O(\log n)$?

Suppose we do a 'recursive call' on light child w of v.
Key idea. Space allocated for parent v depends on 'size reduction'.

- $O(1)$ bits if $\left|V\left(T_{w}\right)\right|=\left|V\left(T_{v}\right)\right| / 2$.
- $O(\log n)$ bits if $\left|V\left(T_{w}\right)\right|=\sqrt{\left|V\left(T_{v}\right)\right| .}$

Algorithm processes small subtrees first.

How to reach $O(\log n)$?

Suppose we do a 'recursive call' on light child w of v.
Key idea. Space allocated for parent v depends on 'size reduction'.

- $O(1)$ bits if $\left|V\left(T_{w}\right)\right|=\left|V\left(T_{v}\right)\right| / 2$.
- $O(\log n)$ bits if $\left|V\left(T_{w}\right)\right|=\sqrt{\left|V\left(T_{v}\right)\right| .}$

Algorithm processes small subtrees first.
Large subtree \Longrightarrow few children left \Longrightarrow small 'effective degree’
\Longrightarrow cheaper description of colour available.

Imaginary lists

G_{j} induced on v and subtrees of children w with $\left|V\left(T_{w}\right)\right| \leqslant n / 2^{2^{j}}$.

Imaginary lists

G_{j} induced on v and subtrees of children w with $\left|V\left(T_{w}\right)\right| \leqslant n / 2^{2^{j}}$.

$$
L_{j}(v)=\left\{c \in L(v): G_{j} \text { admits list colouring } \alpha \text { with } \alpha(v)=c\right\} .
$$

Imaginary lists

G_{j} induced on v and subtrees of children w with $\left|V\left(T_{w}\right)\right| \leqslant n / 2^{2^{j}}$.

$$
L_{j}(v)=\left\{c \in L(v): G_{j} \text { admits list colouring } \alpha \text { with } \alpha(v)=c\right\}
$$

Store colour via position in $L_{j}(v)$: takes $O\left(\log \left|L_{j}(v)\right|\right)$ bits.

Imaginary lists

G_{j} induced on v and subtrees of children w with $\left|V\left(T_{w}\right)\right| \leqslant n / 2^{2^{j}}$.

$$
L_{j}(v)=\left\{c \in L(v): G_{j} \text { admits list colouring } \alpha \text { with } \alpha(v)=c\right\}
$$

Store colour via position in $L_{j}(v)$: takes $O\left(\log \left|L_{j}(v)\right|\right)$ bits.
At most $2^{2^{j}}$ children w of v are not in G_{j} (volume argument).
\Longrightarrow either v non-critical or $\left|L_{j}(v)\right| \leqslant 2^{2^{j}}+2$.
\Longrightarrow use $O\left(2^{j}\right)$ bits for position.

Overview of algorithm

Main result. List Colouring on trees is in L.

- Recurse only on light children, starting with small subtrees.
- Store positions instead of colour; recompute colour only when needed.
- Technical detail: need to group children into brackets based on subtree size, for $M=\Theta(\log \log n)$:

$$
\left[1, n / 2^{2^{M-1}}\right), \ldots,\left[n / 2^{2^{j+1}}, n / 2^{2^{j}}\right), \ldots,[n / 4, n / 2)
$$

List Colouring on tree-like graphs?

Algorithm gives $O(f(k) \log n)$ space for n-vertex graphs of tree-partition-width k.

Primer on parameterized complexity

Independent Set.
Given n-vertex graph, does it have independent set of size k ?
Usual complexity: running time in terms of n.
Parameterized complexity: separate out influence of parameter (e.g. k).

Primer on parameterized complexity

Independent Set.
Given n-vertex graph, does it have independent set of size k ?
Usual complexity: running time in terms of n.
Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.

Primer on parameterized complexity

Independent Set.
Given n-vertex graph, does it have independent set of size k ?
Usual complexity: running time in terms of n.
Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.
XP: $n^{f(k)}$
Try all subsets: $\binom{n}{k}=O\left(n^{k}\right)$.

Primer on parameterized complexity

Independent Set.
Given n-vertex graph, does it have independent set of size k ?
Usual complexity: running time in terms of n.
Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.
$X P: n^{f(k)}$
Try all subsets: $\binom{n}{k}=O\left(n^{k}\right)$.
FPT: $f(k) n^{O(1)} \quad$ Not possible?

Proving hardness interesting?

"I can't find an efficient algorithm, I guess I'm just too dumb."

finmicillll

"I can't find an efficient algorithm, but neither can all these famous people."

Proving hardness interesting?

"I can't find an efficient algorithm, I guess l'm just too dumb."

"I can't find an efficient algorithm, but neither can all these famous people."

C-hard: 'at least as hard' as all problems in C.
All C-complete problems are 'similarly hard'.

Primer on parameterized complexity

Downey \& Fellows (1999):

- $\mathrm{W}[1] \subseteq \mathrm{W}[2] \subseteq \mathrm{W}[3] \subseteq \ldots$.
- W[1]: class for INDEPENDENT SET.
- W[2]: class for DOMinating set.

Primer on parameterized complexity

Downey \& Fellows (1999):

- $\mathrm{W}[1] \subseteq \mathrm{W}[2] \subseteq \mathrm{W}[3] \subseteq \ldots$.
- W[1]: class for Independent set.
- W[2]: class for DOMINATING SET.

Recent joint work in team headed by Hans Bodlaender:

- XNLP: class for List Colouring parameterized by pathwidth.
- XALP: class for List Colouring parameterized by treewidth.

Primer on parameterized complexity

Downey \& Fellows (1999):

- $\mathrm{W}[1] \subseteq \mathrm{W}[2] \subseteq \mathrm{W}[3] \subseteq \ldots$.
- W[1]: class for Independent set.
- W[2]: class for dominating set.

Recent joint work in team headed by Hans Bodlaender:

- XNLP: class for List Colouring parameterized by pathwidth.
- XALP: class for List Colouring parameterized by treewidth.

XALP-hard \Longrightarrow XNLP-hard $\Longrightarrow \mathrm{W}[t]$-hard for all t.
Natural 'home' for path/tree-structured problems.

Nondeterminism versus co-nondeterminism

Alternating Turing machine admits both nondeterminism and co-nondeterminism.

Machine models and a conjecture

- $X=$ slice-wise, parameterized problem (n, k)
- $\mathrm{N}=$ nondeterministic Turing machine
- $\mathrm{A}=$ alternating Turing machine*
- $\mathrm{L}=$ logspace $f(k) \log n$
- $\mathrm{P}=\mathrm{fpt}$ time $f(k) n^{O(1)}$

Machine models and a conjecture

- $X=$ slice-wise, parameterized problem (n, k)
- $\mathrm{N}=$ nondeterministic Turing machine
- $\mathrm{A}=$ alternating Turing machine*
- $\mathrm{L}=$ logspace $f(k) \log n$
- $\mathrm{P}=\mathrm{fpt}$ time $f(k) n^{O(1)}$

Conjecture (Pilipczuk, Wrochna). XNLP-hard problems admit no deterministic $n^{f(k)}$ time $f(k) n^{O(1)}$ space algorithm.
\Longrightarrow For some constant k_{0}, there is no $O(\log n)$ space algorithm for list colouring graphs of pathwidth at most k_{0}.

XNLP/XALP-completeness recipe

Membership:

- Use machine model definition.
- Deterministic dynamic programming \rightarrow nondeterministic 'guess' table entries, conondeterminism to handle 'branching' in tree.

XNLP/XALP-completeness recipe

Membership:

- Use machine model definition.
- Deterministic dynamic programming \rightarrow nondeterministic 'guess' table entries, conondeterminism to handle 'branching' in tree.
Completeness:
- Reduce from known complete problems.
- pl-reduction: $O(\log n)+f(k)$ space, do not blow up parameter.

First complete problem (Cook-style): Binary CSP (think: List
Colouring with arbitrary constraints).

Credits

First XNLP-completeness result:

- M. Elberfeld, C. Stockhusen, and T. Tantau. On the space and circuit complexity of parameterized problems: Classes and completeness, 2015.

XALP paper builds on classical analogues (SAC, NAuxPDA, ASPSZ):

- E. Allender, S. Chen, T. Lou, P. A. Papakonstantinou, and B. Tang. Width-parametrized SAT: time-space tradeoffs, 2015.
- W. L. Ruzzo. Tree-size bounded alternation, 1980.

Parameter	Problem
Pathwidth	List Colouring*, All-or-Nothing Flow*, Capacitated Dominating Set
Linear clique-width	Chromatic Number, Maximum Regular Induced Subgraph*, Max Cut*
Pathwidth / log n	q-Coloring, Dominating Set*, Independent Set*, Odd Cycle Transversal
Linear mim-width	Independent Set, Dominating Set, Feedback Vertex Set Bandwidth*
Bandwidth	
Number of sequences	Longest Common Subsequence
Table: Overview of XNLP-completeness results	

*: XALP-complete when replacing

$$
\begin{gathered}
\text { pathwidth } \rightarrow \text { treewidth } \\
\text { linear cliquewidth } \rightarrow \text { cliquewidth } \\
\text { bandwidth } \rightarrow \text { tree-partition width. }
\end{gathered}
$$

Future directions

Space complexity of List Colouring:
$O(\log n)$ deterministic for treewidth 1.
Q: treewidth 2?

Future directions

Space complexity of List Colouring:
$O(\log n)$ deterministic for treewidth 1.
Q: treewidth 2?
$O(\log n)$ nondeterministic for constant pathwidth.
$O\left(\log ^{2} n\right)$ nondeterministic for constant treewidth. $\quad Q: o\left(\log ^{2} n\right)$?

Future directions

Space complexity of List Colouring:
$O(\log n)$ deterministic for treewidth 1.
Q: treewidth 2?
$O(\log n)$ nondeterministic for constant pathwidth.
$O\left(\log ^{2} n\right)$ nondeterministic for constant treewidth. $\quad Q: o\left(\log ^{2} n\right)$?
Q: Space efficiency of other problems?

Future directions

Space complexity of List Colouring:
$O(\log n)$ deterministic for treewidth 1.
Q: treewidth 2?
$O(\log n)$ nondeterministic for constant pathwidth.
$O\left(\log ^{2} n\right)$ nondeterministic for constant treewidth. $\quad Q: o\left(\log ^{2} n\right)$?
$Q:$ Space efficiency of other problems?
Q: Problem with tree/path-like structure? \rightarrow XNLP/XALP-complete?

Future directions

Space complexity of List Colouring:
$O(\log n)$ deterministic for treewidth 1.
Q: treewidth 2?
$O(\log n)$ nondeterministic for constant pathwidth.
$O\left(\log ^{2} n\right)$ nondeterministic for constant treewidth. $\quad Q: o\left(\log ^{2} n\right)$?
Q: Space efficiency of other problems?
Q: Problem with tree/path-like structure? \rightarrow XNLP/XALP-complete?

Thank you for your attention!

XNLP/XALP definitions

XNLP $=$ parameterized problems (n, k) solvable in nondeterministic $f(k) n^{O(1)}$ time and $f(k) \log n$ space.
XALP $=$ XNLP with auxiliary stack
$=$ parameterized problems (n, k) solvable by Alternating Turing Machine in $f(k) n^{O(1)}$ time and $f(k) \log n$ space plus one of following:
$O(\log n)$ co-nondeterministic steps per branch.
Computation tree has size $f(k) n^{O(1)}$.)
Conjecture (Pilipczuk, Wrochna). XNLP-hard problems admit no deterministic $n^{f(k)}$ time $f(k) n^{O(1)}$ space algorithm.

'Folklore algorithm'

$n=$ number of vertices.
$d(v)=$ degree of v.
$\Delta=$ maximum degree.

- Can 'construct' nice path decomposition of width $w=O(\log n)$. Recompute relevant parts whenever needed.
- Only need to try the first $d(v)+1$ colours for v
$\Longrightarrow O(\log \Delta)$ bits for storing position in list of colour.
- Nondeterministic 'guess' colours for vertices in current bag, check compatible with previous bag. At most two bags in memory.
$\Longrightarrow O(w \log \Delta)=O\left(\log ^{2} n\right)$ bits.

Recursion

$C \log (n / 2)=C \log n-2 C$ $C \log (\sqrt{n})=C \log n-C \log n / 2 \quad \Longrightarrow O(\log n)$ bits if $\left|V\left(T_{w}\right)\right|=\sqrt{n}$.

Brackets

For $M=\Theta(\log \log n)$, we consider brackets:

$$
\left[1, n / 2^{2^{M-1}}\right), \ldots,\left[n / 2^{2^{j+1}}, n / 2^{2^{j}}\right), \ldots,[n / 4, n / 2)
$$

These are used to group together children by the size of their subtrees.
When computing position in $L_{j}(v)$, may need to store information about positions in $L_{i}(v)$ for $i \leqslant j$, but this sums nicely:

$$
\sum_{i=1}^{j} 2^{i} \leqslant 2 \cdot 2^{j}
$$

