
List Colouring Trees in Logspace

Hans Bodlaender, Carla Groenland and Hugo Jacob
Utrecht University, Utrecht University and ENS Paris-Saclay

Dutch Optimization Seminar

1 / 20

Complexity of List Colouring

Given. Graph G = (V ,E) on n vertices and

a list L(v) ⊆ {1, . . . , n} of colours for each v ∈ V .

Output. Is there a proper vertex colouring c

with c(v) ∈ L(v) for all v ∈ V ?

Solvable in linear time on trees.

NP-c for planar bipartite graphs or cographs.

2 / 20

Complexity of List Colouring

Given. Graph G = (V ,E) on n vertices and

a list L(v) ⊆ {1, . . . , n} of colours for each v ∈ V .

Output. Is there a proper vertex colouring c

with c(v) ∈ L(v) for all v ∈ V ?

Solvable in linear time on trees.

NP-c for planar bipartite graphs or cographs.

2 / 20

Complexity of List Colouring

Given. Graph G = (V ,E) on n vertices and

a list L(v) ⊆ {1, . . . , n} of colours for each v ∈ V .

Output. Is there a proper vertex colouring c

with c(v) ∈ L(v) for all v ∈ V ?

Solvable in linear time on trees.

NP-c for planar bipartite graphs or cographs.

2 / 20

Complexity of List Colouring

Given. Graph G = (V ,E) on n vertices and

a list L(v) ⊆ {1, . . . , n} of colours for each v ∈ V .

Output. Is there a proper vertex colouring c

with c(v) ∈ L(v) for all v ∈ V ?

Solvable in linear time on trees.

NP-c for planar bipartite graphs or cographs.

2 / 20

Logspace model

Main result. List Colouring on trees is in L.

Deterministic Turing machine.

Input tape (read-only): contains lists and n-vertex tree.

Space usage: O(log n) bits on the work tape.

Reingold (2008): undirected vertex connectivity is in L.

Elberfeld, Jakoby and Tantau (2010): Logspace version of Bodlaender’s
and Courcelle’s theorem.

=⇒ Done if bounded list size.

3 / 20

Logspace model

Main result. List Colouring on trees is in L.

Deterministic Turing machine.

Input tape (read-only): contains lists and n-vertex tree.

Space usage: O(log n) bits on the work tape.

Reingold (2008): undirected vertex connectivity is in L.

Elberfeld, Jakoby and Tantau (2010): Logspace version of Bodlaender’s
and Courcelle’s theorem.

=⇒ Done if bounded list size.

3 / 20

Talk overview

Main result. List Colouring on trees is in L.

The remainder of the talk:

Ideas for O(log2 n) algorithm.

Required improvements for O(log n).

Relation to larger project in parameterized complexity.

4 / 20

Notation and first ideas

T = input tree.

L = list of colours.

n = number of vertices.

d(v) = degree of v .

We may set C log n bits apart.

=⇒ Can recompute relevant logspace computable quantities when
needed.

Only need to try the first d(v) + 1 colours from L(v)

=⇒ O(log d(v)) bits for storing position in list of colour.

5 / 20

Heavy/light decomposition

Root the tree (arbitrary but
deterministic).

Tv subtree rooted in v .

Child v of p is heavy if

child with largest |V (Tv)|.
Otherwise v is light and

|V (Tv)| ¬ 12 |V (Tp)|.

6 / 20

Critical versus non-critical

No way to colour Tv − Tu?

=⇒ Return fail.

7 / 20

Critical versus non-critical

Non-critical: v can get two colours in Tv − Tu.

=⇒ Continue to u without constraints.

7 / 20

Critical versus non-critical

Critical: v can only get colour c in Tv − Tu.

=⇒ Continue to u while remembering v needs c .

7 / 20

Critical versus non-critical

7 / 20

O(log2 n) algorithm time analysis

For vertex v with heavy child u, we check which colours v can get in
Tv − Tu.

=⇒ Recursive calls on light children only.

=⇒ Recursion depth: O(log n).

May forget parent v ′ of v when move to heavy child u of v .

=⇒ O(log n) bits per recursion level.

=⇒ O(log2 n) total.

8 / 20

O(log2 n) algorithm time analysis

For vertex v with heavy child u, we check which colours v can get in
Tv − Tu.

=⇒ Recursive calls on light children only.

=⇒ Recursion depth: O(log n).

May forget parent v ′ of v when move to heavy child u of v .

=⇒ O(log n) bits per recursion level.

=⇒ O(log2 n) total.

8 / 20

How to reach O(log n)?

Suppose we do a ‘recursive call’ on light child w of v .

Key idea. Space allocated for parent v depends on ‘size reduction’.

O(1) bits if |V (Tw)| = |V (Tv)|/2.

O(log n) bits if |V (Tw)| =
√
|V (Tv)|.

Algorithm processes small subtrees first.

Large subtree =⇒ few children left =⇒ small ‘effective degree’

=⇒ cheaper description of colour available.

9 / 20

How to reach O(log n)?

Suppose we do a ‘recursive call’ on light child w of v .

Key idea. Space allocated for parent v depends on ‘size reduction’.

O(1) bits if |V (Tw)| = |V (Tv)|/2.

O(log n) bits if |V (Tw)| =
√
|V (Tv)|.

Algorithm processes small subtrees first.

Large subtree =⇒ few children left =⇒ small ‘effective degree’

=⇒ cheaper description of colour available.

9 / 20

Imaginary lists

Gj induced on v and subtrees of children w with |V (Tw)| ¬ n/22
j
.

Lj(v) = {c ∈ L(v) : Gj admits list colouring α with α(v) = c}.

Store colour via position in Lj(v): takes O(log |Lj(v)|) bits.

At most 22
j

children w of v are not in Gj (volume argument).

=⇒ either v non-critical or |Lj(v)| ¬ 22
j

+ 2.

=⇒ use O(2j) bits for position.

10 / 20

Imaginary lists

Gj induced on v and subtrees of children w with |V (Tw)| ¬ n/22
j
.

Lj(v) = {c ∈ L(v) : Gj admits list colouring α with α(v) = c}.

Store colour via position in Lj(v): takes O(log |Lj(v)|) bits.

At most 22
j

children w of v are not in Gj (volume argument).

=⇒ either v non-critical or |Lj(v)| ¬ 22
j

+ 2.

=⇒ use O(2j) bits for position.

10 / 20

Imaginary lists

Gj induced on v and subtrees of children w with |V (Tw)| ¬ n/22
j
.

Lj(v) = {c ∈ L(v) : Gj admits list colouring α with α(v) = c}.

Store colour via position in Lj(v): takes O(log |Lj(v)|) bits.

At most 22
j

children w of v are not in Gj (volume argument).

=⇒ either v non-critical or |Lj(v)| ¬ 22
j

+ 2.

=⇒ use O(2j) bits for position.

10 / 20

Imaginary lists

Gj induced on v and subtrees of children w with |V (Tw)| ¬ n/22
j
.

Lj(v) = {c ∈ L(v) : Gj admits list colouring α with α(v) = c}.

Store colour via position in Lj(v): takes O(log |Lj(v)|) bits.

At most 22
j

children w of v are not in Gj (volume argument).

=⇒ either v non-critical or |Lj(v)| ¬ 22
j

+ 2.

=⇒ use O(2j) bits for position.

10 / 20

Overview of algorithm

Main result. List Colouring on trees is in L.

Recurse only on light children, starting with small subtrees.

Store positions instead of colour; recompute colour only when needed.

Technical detail: need to group children into brackets based on
subtree size, for M = Θ(log log n):

[1, n/22
M−1

), . . . , [n/22
j+1
, n/22

j
), . . . , [n/4, n/2).

11 / 20

List Colouring on tree-like graphs?

Algorithm gives O(f (k) log n) space for n-vertex graphs of
tree-partition-width k.

12 / 20

Primer on parameterized complexity

Independent Set.
Given n-vertex graph, does it have independent set of size k?

Usual complexity: running time in terms of n.

Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.

XP: nf (k) Try all subsets:
(n
k

)
= O(nk).

FPT: f (k)nO(1) Not possible?

13 / 20

Primer on parameterized complexity

Independent Set.
Given n-vertex graph, does it have independent set of size k?

Usual complexity: running time in terms of n.

Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.

XP: nf (k) Try all subsets:
(n
k

)
= O(nk).

FPT: f (k)nO(1) Not possible?

13 / 20

Primer on parameterized complexity

Independent Set.
Given n-vertex graph, does it have independent set of size k?

Usual complexity: running time in terms of n.

Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.

XP: nf (k) Try all subsets:
(n
k

)
= O(nk).

FPT: f (k)nO(1) Not possible?

13 / 20

Primer on parameterized complexity

Independent Set.
Given n-vertex graph, does it have independent set of size k?

Usual complexity: running time in terms of n.

Parameterized complexity: separate out influence of parameter (e.g. k).

Para NP-hard: NP-hard for constant value of parameter.

XP: nf (k) Try all subsets:
(n
k

)
= O(nk).

FPT: f (k)nO(1) Not possible?

13 / 20

Proving hardness interesting?

C -hard: ‘at least as hard’ as all problems in C .

All C -complete problems are ‘similarly hard’.

14 / 20

Proving hardness interesting?

C -hard: ‘at least as hard’ as all problems in C .

All C -complete problems are ‘similarly hard’.

14 / 20

Primer on parameterized complexity

Downey & Fellows (1999):

W[1] ⊆ W[2] ⊆ W[3] ⊆

W[1]: class for independent set.

W[2]: class for dominating set.

Recent joint work in team headed by Hans Bodlaender:

XNLP: class for List Colouring parameterized by pathwidth.

XALP: class for List Colouring parameterized by treewidth.

XALP-hard =⇒ XNLP-hard =⇒ W[t]-hard for all t.

Natural ‘home’ for path/tree-structured problems.

14 / 20

Primer on parameterized complexity

Downey & Fellows (1999):

W[1] ⊆ W[2] ⊆ W[3] ⊆

W[1]: class for independent set.

W[2]: class for dominating set.

Recent joint work in team headed by Hans Bodlaender:

XNLP: class for List Colouring parameterized by pathwidth.

XALP: class for List Colouring parameterized by treewidth.

XALP-hard =⇒ XNLP-hard =⇒ W[t]-hard for all t.

Natural ‘home’ for path/tree-structured problems.

14 / 20

Primer on parameterized complexity

Downey & Fellows (1999):

W[1] ⊆ W[2] ⊆ W[3] ⊆

W[1]: class for independent set.

W[2]: class for dominating set.

Recent joint work in team headed by Hans Bodlaender:

XNLP: class for List Colouring parameterized by pathwidth.

XALP: class for List Colouring parameterized by treewidth.

XALP-hard =⇒ XNLP-hard =⇒ W[t]-hard for all t.

Natural ‘home’ for path/tree-structured problems.

14 / 20

Nondeterminism versus co-nondeterminism

?

No No

?

Yes No

?

Yes Yes

Nondeterministic Co-nondeterministic

Alternating Turing machine admits both nondeterminism and
co-nondeterminism.

15 / 20

Machine models and a conjecture

X = slice-wise, parameterized problem (n, k)

N = nondeterministic Turing machine

A = alternating Turing machine∗

L = logspace f (k) log n

P = fpt time f (k)nO(1)

Conjecture (Pilipczuk, Wrochna). XNLP-hard problems admit no
deterministic nf (k) time f (k)nO(1) space algorithm.

=⇒ For some constant k0, there is no O(log n) space algorithm for list
colouring graphs of pathwidth at most k0.

16 / 20

Machine models and a conjecture

X = slice-wise, parameterized problem (n, k)

N = nondeterministic Turing machine

A = alternating Turing machine∗

L = logspace f (k) log n

P = fpt time f (k)nO(1)

Conjecture (Pilipczuk, Wrochna). XNLP-hard problems admit no
deterministic nf (k) time f (k)nO(1) space algorithm.

=⇒ For some constant k0, there is no O(log n) space algorithm for list
colouring graphs of pathwidth at most k0.

16 / 20

XNLP/XALP-completeness recipe

Membership:

Use machine model definition.

Deterministic dynamic programming → nondeterministic ‘guess’ table
entries, conondeterminism to handle ‘branching’ in tree.

Completeness:

Reduce from known complete problems.

pl-reduction: O(log n) + f (k) space, do not blow up parameter.

First complete problem (Cook-style): Binary CSP (think: List
Colouring with arbitrary constraints).

17 / 20

XNLP/XALP-completeness recipe

Membership:

Use machine model definition.

Deterministic dynamic programming → nondeterministic ‘guess’ table
entries, conondeterminism to handle ‘branching’ in tree.

Completeness:

Reduce from known complete problems.

pl-reduction: O(log n) + f (k) space, do not blow up parameter.

First complete problem (Cook-style): Binary CSP (think: List
Colouring with arbitrary constraints).

17 / 20

Credits

First XNLP-completeness result:

M. Elberfeld, C. Stockhusen, and T. Tantau. On the space and circuit
complexity of parameterized problems: Classes and completeness,
2015.

XALP paper builds on classical analogues (SAC, NAuxPDA, ASPSZ):

E. Allender, S. Chen, T. Lou, P. A. Papakonstantinou, and B. Tang.
Width-parametrized SAT: time-space tradeoffs, 2015.

W. L. Ruzzo. Tree-size bounded alternation, 1980.

18 / 20

Parameter Problem
Pathwidth List Colouring∗, All-or-Nothing Flow∗, Capacitated

Dominating Set
Linear clique-width Chromatic Number, Maximum Regular Induced

Subgraph∗, Max Cut∗

Pathwidth / log n q-Coloring, Dominating Set∗, Independent Set∗, Odd
Cycle Transversal

Linear mim-width Independent Set, Dominating Set, Feedback Vertex Set
Bandwidth Bandwidth∗

Number of sequences Longest Common Subsequence

Table: Overview of XNLP-completeness results

∗: XALP-complete when replacing

pathwidth → treewidth
linear cliquewidth → cliquewidth

bandwidth → tree-partition width.

19 / 20

Future directions

Space complexity of List Colouring:

O(log n) deterministic for treewidth 1. Q: treewidth 2?

O(log n) nondeterministic for constant pathwidth.

O(log2 n) nondeterministic for constant treewidth. Q: o(log2 n)?

Q: Space efficiency of other problems?

Q: Problem with tree/path-like structure? → XNLP/XALP-complete?

Thank you for your attention!

20 / 20

Future directions

Space complexity of List Colouring:

O(log n) deterministic for treewidth 1. Q: treewidth 2?

O(log n) nondeterministic for constant pathwidth.

O(log2 n) nondeterministic for constant treewidth. Q: o(log2 n)?

Q: Space efficiency of other problems?

Q: Problem with tree/path-like structure? → XNLP/XALP-complete?

Thank you for your attention!

20 / 20

Future directions

Space complexity of List Colouring:

O(log n) deterministic for treewidth 1. Q: treewidth 2?

O(log n) nondeterministic for constant pathwidth.

O(log2 n) nondeterministic for constant treewidth. Q: o(log2 n)?

Q: Space efficiency of other problems?

Q: Problem with tree/path-like structure? → XNLP/XALP-complete?

Thank you for your attention!

20 / 20

Future directions

Space complexity of List Colouring:

O(log n) deterministic for treewidth 1. Q: treewidth 2?

O(log n) nondeterministic for constant pathwidth.

O(log2 n) nondeterministic for constant treewidth. Q: o(log2 n)?

Q: Space efficiency of other problems?

Q: Problem with tree/path-like structure? → XNLP/XALP-complete?

Thank you for your attention!

20 / 20

Future directions

Space complexity of List Colouring:

O(log n) deterministic for treewidth 1. Q: treewidth 2?

O(log n) nondeterministic for constant pathwidth.

O(log2 n) nondeterministic for constant treewidth. Q: o(log2 n)?

Q: Space efficiency of other problems?

Q: Problem with tree/path-like structure? → XNLP/XALP-complete?

Thank you for your attention!

20 / 20

XNLP/XALP definitions

XNLP = parameterized problems (n, k) solvable in nondeterministic
f (k)nO(1) time and f (k) log n space.

XALP = XNLP with auxiliary stack
= parameterized problems (n, k) solvable by Alternating Turing Machine
in f (k)nO(1) time and f (k) log n space plus one of following:
O(log n) co-nondeterministic steps per branch.
Computation tree has size f (k)nO(1).)

Conjecture (Pilipczuk, Wrochna). XNLP-hard problems admit no
deterministic nf (k) time f (k)nO(1) space algorithm.

21 / 20

‘Folklore algorithm’

n = number of vertices.

d(v) = degree of v .

∆ = maximum degree.

Can ‘construct’ nice path decomposition of width w = O(log n).

Recompute relevant parts whenever needed.

Only need to try the first d(v) + 1 colours for v

=⇒ O(log ∆) bits for storing position in list of colour.

Nondeterministic ‘guess’ colours for vertices in current bag, check
compatible with previous bag. At most two bags in memory.

=⇒ O(w log ∆) = O(log2 n) bits.

22 / 20

Recursion

C log(n/2) = C log n − 2C =⇒ O(1) bits if |V (Tw)| = n/2.

C log(
√
n) = C log n − C log n/2 =⇒ O(log n) bits if |V (Tw)| =

√
n.

23 / 20

Brackets

For M = Θ(log log n), we consider brackets:

[1, n/22
M−1

), . . . , [n/22
j+1
, n/22

j
), . . . , [n/4, n/2).

These are used to group together children by the size of their subtrees.

When computing position in Lj(v), may need to store information about
positions in Li (v) for i ¬ j , but this sums nicely:

j∑
i=1

2i ¬ 2 · 2j .

24 / 20

