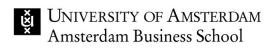
Counterfactual Explanations Using Optimization with Constraint Learning

Ilker Birbil

UvA

Donato Maragno, Tabea Röber, Dick den Hertog, Rob Goedhart

Motivation



nature		The New York Times
Explore content Y About the journal Y Publish with us Y Subscribe	How A.I. C	an Help Handle
<u>nature</u> > <u>news</u> > article		.1
NEWS 30 November 2020 'It will change everything's	Forbes	
DeepMind's AI makes giga T	he Amazing Opportun	
Google's deep-learning program for determining the 3D shapes	f AI In The Future Of T	l'ne
The World Economic Forum	ducational Metaverse	
Why artificial intelligence is vital in t	Rem Darbinyan Forbes Councils Member	
Why artif an ethica	Forbes Technology Council COUNCIL POST Membership (Fee-Based)	gist-level
¹ week ge Waste less, sell more - how one of	27, 2022, 08:00am EDT	tion of skin cancer
transform food retail	Il intelligence powers detection n cancer from images PAGES 36 & 115	
		An artificial intelligence trained to classify images of skin lesions as benign lesions or malignant skin cancers achieves the accuracy of board-certified dermatologists.
		In this work, we pretrain a deep neural network at general object recognition, then fine- tune it on a dataset of ~130,000 skin lesion images comprised of over 2000 diseases.

(i)

Motivation

The @AppleCard is such a fucking sexist program. My wife and I filed joint tax returns, live in a communityproperty state, and have been married for a long time. Yet Apple's black box algorithm thinks I deserve 20x the credit limit she does. No appeals work.

Traduci il Tweet

9:34 PM · 7 nov 2019 · Twitter for iPhone

Steve Wozniak 🥝 @stevewoz

I'm a current Apple employee and founder of the company and the same thing happened to us (10x) despite not having any separate assets or accounts. Some say the blame is on Goldman Sachs but the way Apple is attached, they should share responsibility.

8:06 AM · Nov 10, 2019

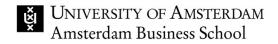
BUSINESS

Apple co-founder Steve Wozniak says Apple Card discriminated against his wife

...

By Clare Duffy, CNN Business Jpdated 1615 GMT (0015 HKT) November 11, 2019

Motivation



Did the model learn the true pattern? Is the model discriminating?

Test accuracy In-lab vs. Real-life deployment

Dermatologist-level classification of skin cancer

An artificial intelligence trained to classify images of skin lesions as benign lesions or malignant skin cancers achieves the accuracy of board-certified

In this work, we pretrain a deep neural network at general object recognition, then finetune it on a dataset of ~130,000 skin lesion images comprised of over 2000 diseases

Motivation

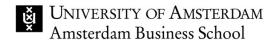
"An AI system is **explainable** if the task model is intrinsically interpretable (here the AI system is the task model) or if the non-interpretable task model is complemented with an interpretable and faithful explanation (here the AI system also contains a post-hoc explanation)."

<u>Markus et al. (2020</u>)

Explainable Artificial Intelligence (XAI) Methods

- <u>Model-based explanations</u>: linear/logistic regression, decision trees, k-nearest neighbours.
- <u>Post-hoc explanations</u>: instance level vs global level
 - **Model-based explanations**: other interpretable models are used to explain the uninterpretable model.
 - Attribution-based explanations: features importance methods.
 - **Example-based explanations** → Counterfactual Explanations (CE)

Counterfactual Explanations



COUNTERFACTUAL EXPLANATIONS WITHOUT OPENING THE BLACK BOX: AUTOMATED DECISIONS AND THE GDPR

Sandra Wachter,* Brent Mittelstadt,** & Chris Russell***

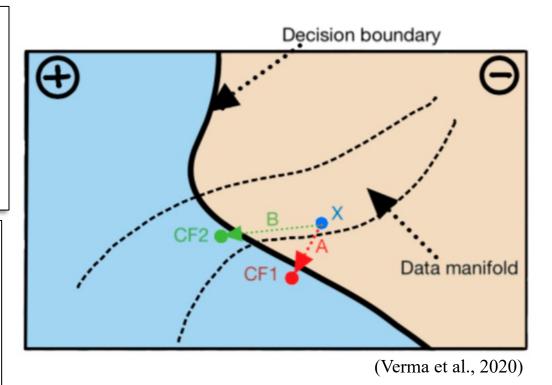
Harvard Journal of Law & Technology, 2018

Explanation in artificial intelligence: Insights from the social sciences

Tim Miller

School of Computing and Information Systems, University of Melbourne, Melbourne, Australia

Artificial Intelligence, 2019

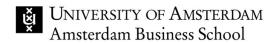


Counterfactual Explanations for Machine Learning: A Review

Sahil Verma University of Washington Arthur AI vsahil@cs.washington.edu John Dickerson Arthur AI University of Maryland john@arthur.ai Keegan Hines Arthur AI keegan@arthur.ai

arXiv, 2020

Counterfactual Explanations



Factual Instance

Beatrice is 27yo Full-time job: 45K \$/y Account balance: 50K \$

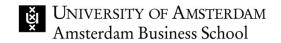
Counterfactual

Beatrice is 27yo Full-time job: **50K** \$/y Account balance: **60K** \$



Counterfactual: set of features that should be changed in order to flip a model's prediction

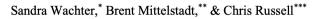
Mathematical Model



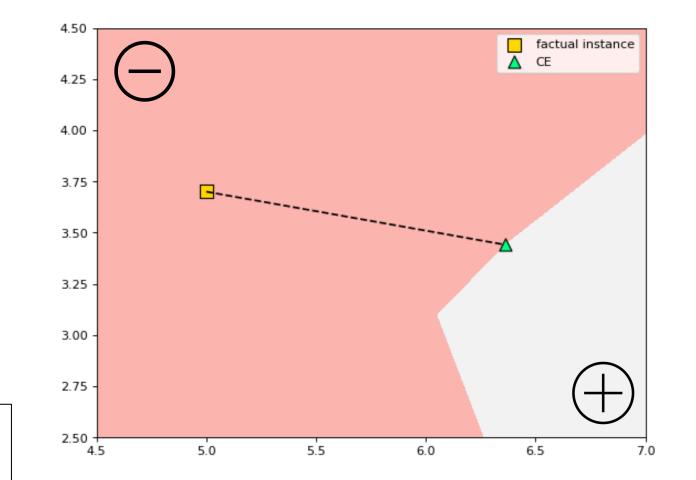
 $\widetilde{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathbb{R}^n} d(\mathbf{x}, \widehat{\mathbf{x}})$ s.t. $h(\mathbf{x}) = \widetilde{y}$

d(.,.): distance function h(.,.): trained model \hat{x} : factual instance \tilde{x} : counterfactual explanation \tilde{y} : desired outcome

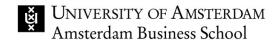
COUNTERFACTUAL EXPLANATIONS WITHOUT OPENING THE BLACK BOX: AUTOMATED DECISIONS AND THE GDPR



Harvard Journal of Law & Technology, 2018



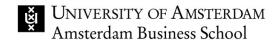
"Good" Counterfactual Explanations (CEs)



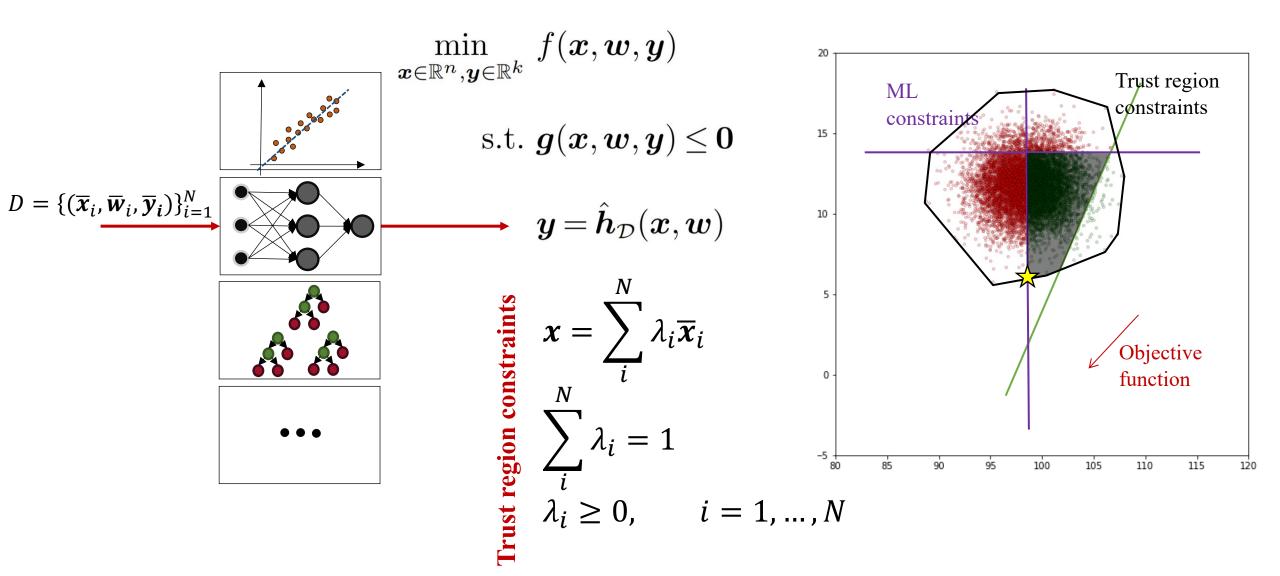
	Proximity	Sparsity	Coherence	Actionability	Data Manifold Closeness	Causality	Diversity
Russell [2019]	•	0	•	-	-	-	٠
Ustun et al. [2019]	•	•	•	•	-	-	_
Kanamori et al. [2020]	•	-	•	-	•	-	-
Mahajan et al. [2019]	•	-	•	•	•	•	-
Karimi et al. [2021]	•	_	•	-	-	•	-
Kanamori et al. [2021]	•	•	•	•	-	•	•
Mothilal et al. [2020]	•	0	•	•	5	0	•
Karimi et al. [2020]	•	•	•	•	-	-	•
CE-OCL	•	٠	•	•	•	•	•

•: addressed; •: partially addressed; -: absent

Optimization with Constraint Learning (OCL)



Maragno et al. (2021)



$$\min_{oldsymbol{x}\in\mathbb{R}^n,oldsymbol{y}\in\mathbb{R}^k} f(oldsymbol{x},oldsymbol{w},oldsymbol{y})$$

s.t.
$$\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}) \leq \boldsymbol{0}$$

$$y = \hat{h}_{\mathcal{D}}(x, w)$$

$$x = \sum_{i}^{N} \lambda_{i} \overline{x}_{i}$$

$$\sum_{i}^{N} \lambda_{i} = 1$$

$$\lambda_{i} \ge 0, \quad i = 1, ..., N$$

Proximity
$$\min_{x \in \mathbb{R}^n} d(x, \hat{x}) \rightarrow l_1, l_2, l_{\infty} - norms$$

Validity

Coherence

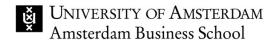
Sparsity

Actionability

Causality

Data manifold closeness

Diversity



 $\min_{\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{y} \in \mathbb{R}^k} f(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y})$

s.t.
$$g(x, w, y) \leq 0$$

 $y = \hat{h}_{\mathcal{D}}(x, w)$
 $x = \sum_{i}^{N} \lambda_{i} \overline{x}_{i}$
 $\sum_{i}^{N} \lambda_{i} = 1$
 $\lambda_{i} \geq 0, \quad i = 1, ..., N$

Validity $h_{\mathcal{D}}(\mathbf{x}) = \tilde{y}$

Sparsity

Actionability

Causality

Data manifold closeness

Diversity

$$\min_{oldsymbol{x}\in\mathbb{R}^n,oldsymbol{y}\in\mathbb{R}^k} f(oldsymbol{x},oldsymbol{w},oldsymbol{y})$$

s.t.
$$\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}) \leq \boldsymbol{0}$$

$$y = \hat{h}_{\mathcal{D}}(x, w)$$

$$x = \sum_{i}^{N} \lambda_{i} \overline{x}_{i}$$

$$\sum_{i}^{N} \lambda_{i} = 1$$

$$\lambda_{i} \ge 0, \quad i = 1, ..., N$$

UNIVERSITY OF AMSTERDAM Amsterdam Business School

Validity

Coherence
$$\sum_{i \in C_j} x_i = 1, \quad j = 1, \dots, k$$
Sparsity $||x - \widehat{x}||_0 \leq K$ Actionability $x_i = \widehat{x}_i, \quad \forall i \in \mathcal{I}_{im}$

Data manifold closeness

Diversity

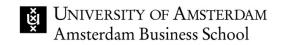
Causality

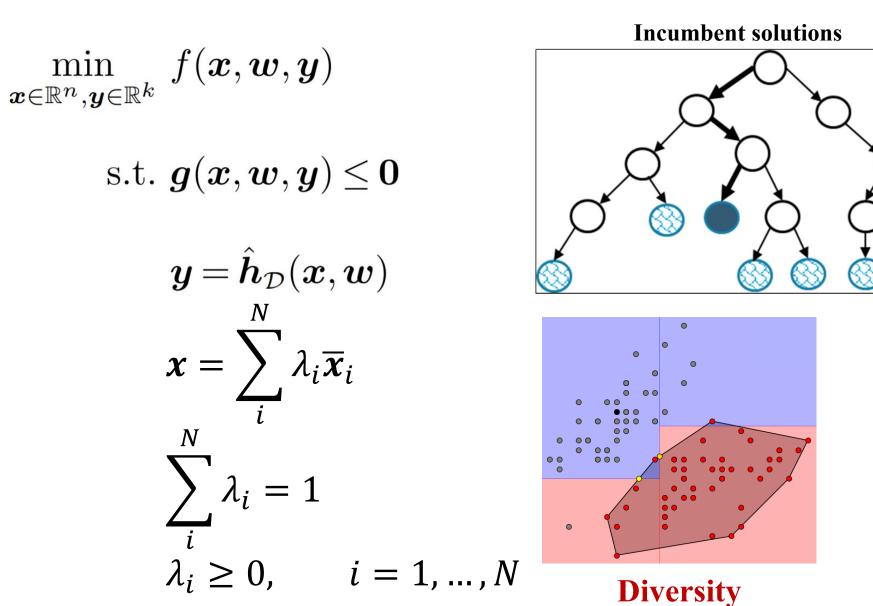
Proximity $\min_{oldsymbol{x}\in\mathbb{R}^n,oldsymbol{y}\in\mathbb{R}^k} f(oldsymbol{x},oldsymbol{w},oldsymbol{y})$ Validity s.t. $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}) \leq \boldsymbol{0}$ X_1 Coherence $oldsymbol{y}=\hat{oldsymbol{h}}_{\mathcal{D}}(oldsymbol{x},oldsymbol{w})$ Ŷ Sparsity X_2 U_2 $x = \sum \lambda_i \overline{x}_i$ Actionability $x_i = \hat{x}_i + c_i(\boldsymbol{p}_i) - c_i(\hat{\boldsymbol{p}}_i),$ Causality $\forall i \in \mathcal{E}$ N $\lambda_i = 1$ Karimi et al. (2020) Data manifold closeness $\frac{1}{\lambda_i} \ge 0,$ i = 1, ..., N

Diversity

UNIVERSITY OF AMSTERDAM Amsterdam Business School

Proximity $\min_{\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{y} \in \mathbb{R}^k} f(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y})$ **CE With Trust Region** factual instance Validity counterfactual Δ 4.5 0 s.t. $\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{y}) \leq \boldsymbol{0}$ 4.0 Coherence 00 3.5 $oldsymbol{y}=\hat{oldsymbol{h}}_{\mathcal{D}}(oldsymbol{x},oldsymbol{w})$ 0 Sparsity 00 3.0 2.5 $\lambda_i \overline{x}_i$ x =0 tionability 0 2.0 1.5 Causality Ν 5 6 7 8 **Data manifold closeness** $\overline{\lambda_i^i} \ge 0,$ i = 1, ..., NDiversity





Proximity

Validity

Coherence

Sparsity

Actionability

Causality

Data manifold closeness

source

Case Study

y: good or bad credit risk?

Label Variable name F1 F2 F4 F5 F6 F7 F8* F9* F3 F duration \hat{x} 24.0 1371.26 4.0 25.0 4.0 1.0 1.0 A A credit_amount Part A: validity, proximity, coherence instalment_commitment -57.75 26.71 (a) 16.48 3.88 Part B: validity, proximity, coherence, sparsity residence since (a) 7.12 evicting credite Part C: validity, proximity, coherence, sparsity, diversity 7.12 (a) -3346.67 (b) (c) Part D: validity, proximity, coherence, sparsity, diversity, actionability 7.12 (a) _ 1.96 26.63 (b) 75.52 (c) Part E: validity, proximity, coherence, sparsity, diversity, actionability, data manifold closeness 22.0 1283.52 (a) B 4. 1965.12 (b) 42.0 2.0 C B -12.0 1893.04 29.0 (c) ____ Part F: validity, proximity, coherence, sparsity, diversity, actionability, data manifold closeness, causality (a) 22.0 990.51 (b) 26.83 1910.28 (c)

OptiCL:

E6 A Python Package for **Optimization** with **Constraint** Learning

F1

F2

F3

F4

F5

age

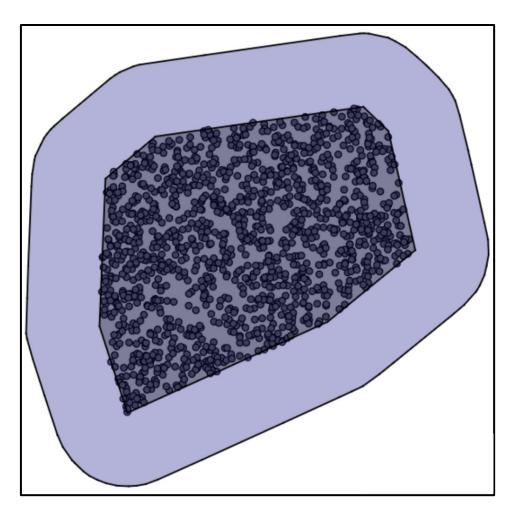
Codes and Examples

https://github.com/hwiberg/OptiCL

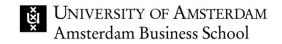
Next Steps: Enlarged Trust Region

$$x = \sum_{i}^{N} \lambda_{i} \overline{x}_{i}$$
$$\sum_{i}^{N} \lambda_{i} = 1$$
$$\lambda_{i} \ge 0, \qquad i = 1, \dots, N$$

$$\begin{aligned} \mathbf{x} + \mathbf{s} &= \sum_{i}^{N} \lambda_{i} \overline{\mathbf{x}}_{i} \\ \sum_{i}^{N} \lambda_{i} &= 1 \\ \lambda_{i} &\ge 0, \qquad i = 1, \dots, N \\ \|\mathbf{s}\|_{p} &\le \epsilon \end{aligned}$$



Next Steps: Intervals of CEs



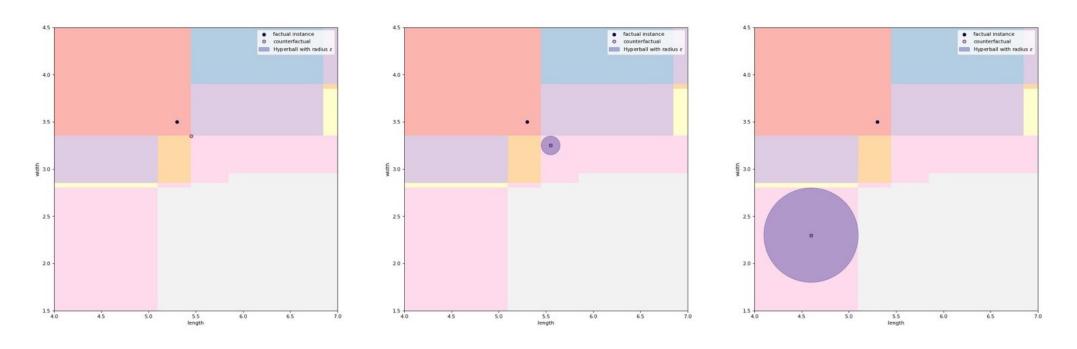
$$\widetilde{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathbb{R}^n} d(\mathbf{x}, \widehat{\mathbf{x}})$$

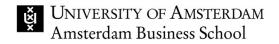
s.t. $h(\mathbf{x}) = \widetilde{y}$

$$\widetilde{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathbb{R}^n} d(\mathbf{x}, \widehat{\mathbf{x}})$$

s.t. $h(\mathbf{x} + \mathbf{s}) = \widetilde{\mathbf{y}}, \ \mathbf{s} \in \mathbf{S}$ "Uncertainty Set"

Example:
$$S = \{s \in \mathbb{R}^n : \|s\|_p \le \epsilon\}$$

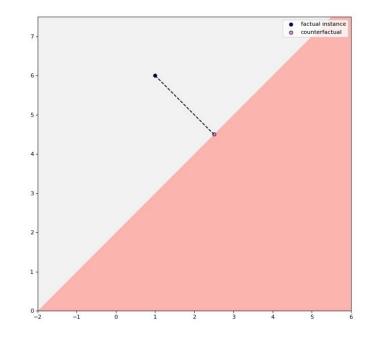


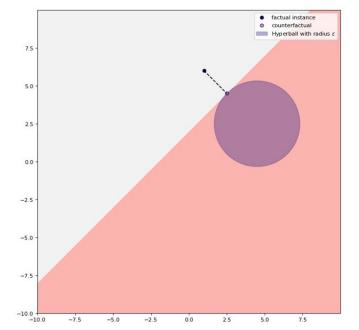


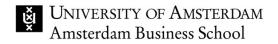
$$h(\mathbf{x}) = \tilde{y}$$
$$h(\tilde{\mathbf{x}} + \mathbf{w}) = \tilde{y}, \ \mathbf{w} \in \mathbf{W}$$

$$\max_{\boldsymbol{W}} g(\boldsymbol{W})$$

s.t. $h(\widetilde{\boldsymbol{x}} + \boldsymbol{w}) = \widetilde{\boldsymbol{y}}, \ \boldsymbol{w} \in \boldsymbol{W},$
 $\widetilde{\boldsymbol{x}} \in \boldsymbol{W}$







...

The @AppleCard is such a fucking sexist program. My wife and I filed joint tax returns, live in a communityproperty state, and have been married for a long time. Yet Apple's black box algorithm thinks I deserve 20x the credit limit she does. No appeals work.

Traduci il Tweet

9:34 PM · 7 nov 2019 · Twitter for iPhone

@AppleCard

Well, if your wife would have had a 20+ years relationship with our bank, and would have been regarded as Premium customer at some point in time, she would also receive a 20x credit limit.

UNIVERSITY OF AMSTERDAM Amsterdam Business School

Conclusion

- A general framework for CEs
- ϵ -convex hull for data manifold closeness
- Intervals for infinitely-many CEs

- Additional case studies
- Comparison against other methods
- User study via dedicated webpage
- Food for thought: Adversarial attacks

Diabetes Decision tree		Model	* *
Pregnancies Off	Glucose Off	BloodPressure	SkinThickness Off
1	85	66	29
Insulin Off	BMI Off	DiabatesPedigreeFunction Off	Age Off
0	26.6	0.351	31
Model prediction Sparsity On		Data manifold Off	Robustness 0.6
Pregnancies 13.70002	Glucose	BloodPressure 273.9002 66	SkinThickness