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An artificial intelligence trained to classify images of skin lesions as benign
lesions or malignant skin cancers achieves the accuracy of board-certified

dermatologists.

In this work, we pretrain a deep neural network at general object recognition, then fine-
tune it on a dataset of ~130,000 skin lesion images comprised of over 2000 diseases.
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The @AppleCard is such a fucking sexist program. My
wife and | filed joint tax returns, live in a community-
property state, and have been married for a long time.
Yet Apple’s black box algorithm thinks | deserve 20x
the credit limit she does. No appeals work.

Traduci il Tweet

9:34 PM - 7 nov 2019 - Twitter for iPhone
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She spoke to two Apple reps. Both very nice, courteous people
representing an utterly broken and reprehensible system. The first person
was like “I don’t know why, but | swear we’re not discriminating, IT’S JUST
THE ALGORITHM?”. | shit you not. “IT’S JUST THE ALGORITHM!”.
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Steve Wozniak &
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I'm a current Apple employee and founder of the
company and the same thing happened to us (10x)
despite not having any separate assets or accounts. Some
say the blame is on Goldman Sachs but the way Apple is
attached, they should share responsibility.

8:06 AM - Nov 10, 2019 @)
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Apple co-founder Steve Wozniak says Apple Card discriminated
against his wife

Yy @ A By Clare Duffy, CNN Business
) Updated 1615 GMT (0015 HKT) November 11, 2019
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Motivation

Did the model learn the true pattern?

Is th | discriminating? .
s the model discriminating Dermatologist-level

[[S|[]NS [[AHN] classification of skin cancer

Test accuracy
. F Artificial intelligenc p;\uxlu tion
In-lab vs. Real-life deployment -’ ofskin cancer rom images

An artificial intelligence trained to classify images of skin lesions as benign
lesions or malignant skin cancers achieves the accuracy of board-certified

dermatologists.

In this work, we pretrain a deep neural network at general object recognition, then fine-
tune it on a dataset of ~130,000 skin lesion images comprised of over 2000 diseases.
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https://towardsdatascience.com/is-the-medias-reluctance-to-admit-ai-s-weaknesses-putting-us-at-risk-c355728e9028
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“An Al system is explainable if the task model is intrinsically interpretable (here the Al system is the task model) or if
the non-interpretable task model is complemented with an interpretable and faithful explanation (here the Al system also
contains a post-hoc explanation).”

Markus et al. (2020)

Explainable Artificial Intelligence (XAI) Methods

= Model-based explanations: linear/logistic regression, decision trees, k-nearest neighbours.
= Post-hoc explanations: instance level vs global level
* Model-based explanations: other interpretable models are used to explain the
uninterpretable model.
* Attribution-based explanations: features importance methods.
« Example-based explanations = Counterfactual Explanations (CE)



https://www.sciencedirect.com/science/article/pii/S1532046420302835?via%3Dihub

Counterfactual Explanations

COUNTERFACTUAL EXPLANATIONS WITHOUT
OPENING THE BLACK BOX: AUTOMATED DECISIONS
AND THE GDPR

Sandra Wachter,” Brent Mittelstadt,”” & Chris Russell™
Harvard Journal of Law & Technology, 2018
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Decision boundary

Explanation in artificial intelligence: Insights from the social
sciences

Tim Miller

School of Computing and Information Systems, University of Melbourne, Melbourne, Australia

Artificial Intelligence, 2019
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Daté manifold

(Verma et al., 2020)

Sahil Verma John Dickerson
University of Washington Arthur Al
Arthur Al University of Maryland
vsahil@cs.washington.edu john@arthur.ai

Counterfactual Explanations for Machine Learning: A Review

Keegan Hines
Arthur Al
keegan@arthur.ai

arX1v, 2020
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Factual Instance Counterfactual
Beatrice is 27yo Beatrice is 27yo
Full-time job: 45K $/y Full-time job: 50K $/y
Account balance: 50K § Account balance: 60K $
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Counterfactual: set of features that should be changed in order to flip a model’s prediction
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AND THE GDPR

Sandra Wachter,” Brent Mittelstadt,” & Chris Russell™*

Harvard Journal of Law & Technology, 2018




“Good” Counterfactual Explanations (CEs)
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Maragno et al. (2021)
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Trust region constraints


https://arxiv.org/abs/2111.04469
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OCL Model

min - f(z,w,y)
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OCL Model
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https://arxiv.org/abs/2002.06278
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OCL Model

min_ (2, w,y)

xcR" ycRk

s.t. g(z,w,y) <0

Y= ilp(w,’lU)
N
X = zﬂ'ixi
l
N

., N

Incumbent solutions
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https://www.researchgate.net/publication/327414612_Bandwidth_Maximization_Approach_for_Displaced_Left-Turn_Crossovers_Coordination_under_Heterogeneous_Traffic_Conditions

Case Study
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y: good or bad credit risk?

Label Variable name F1 F2 F3 F4 F5 F6 F7 F8* F9* F
F1 duration x 24.0 137126 4.0 25.0 4.0 1.0 1.0 A A 1
F2 credit_amount Part A: validity, proximity, coherence

F3 instalment_commitment  (g) 16.48 3.88 26.71

F4 age Part B: validity, proximity, coherence, sparsity

OptiCL F5
A Python Package for N

Optimization with Constraint
Learning

Codes and Examples

https://github.com/hwiberg/OptiCL

residence_since

avictina ~vadite

(a) 7:12 - -
Part C: validity, proximity, coherence
(a) 7.12 = -

® - -

() = = i
Part D: validity, proximity, coherence
(a) 512 - -
(b) - - 1.96
(c) = = =
Part E: validity, proximity, coherence
(a) 22.0 1283.52 -
(b) - 1965.12 -

(c) 12.0 1893.04 -

Part F: validity, proximity, coherence,

(a) - - -
(b)
(c)

. sparsity, diversity

, sparsity, diversity, actionability

26.63

. sparsity, diversity, actionability, data manifold closeness
= = - - B - 4
42.0 - 2.0 - C B -
29.0 - - - - - -

, sparsity, diversity, actionability, data manifold closeness, causality


https://github.com/hwiberg/OptiCL
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X =arg min d(x,x X =arg min d(x,x
s.t. h(x) = y s.t. h(x+s) = Yy, SES “Uncertainty Set”

Example: § = {s € R™: [|s|[,, < €}
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h(x) =5 max g (W)

s.t. h(X+w)=9y, weW,
XEW
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DHH &
@dhh

The @AppleCard is such a fucking sexist program. My
wife and | filed joint tax returns, live in a community-
property state, and have been married for a long time.
Yet Apple’s black box algorithm thinks | deserve 20x
the credit limit she does. No appeals work.

Traduci il Tweet

9:34 PM - 7 nov 2019 - Twitter for iPhone

Apple Card &

% @AppleCard
Well, if your wife would have had a 20+ years relationship
with our bank, and would have been regarded as Premium

customer at some point in time, she would also receive a 20x
credit limit.

source


https://www.youtube.com/watch?v=kAwINLl8SVY
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» A general framework for CEs Diabetes o - S

Decision tree

= c-convex hull for data manifold closeness

] Intervals for inﬁnitely_many CES Pregnancies m Glucose m BloodPressure ﬂ SkinThickness m
Insulin m BMI m DiabatesPedigreeFunction Age m
= Additional case studies Model prediction 0
. . Sparsity Data manifold Robustness
» Comparison against other methods = e

» User study via dedicated webpage

" Food for thought: Adversarial attacks

Pregnancies Glucose BloodPressure SkinThickness
=3 13.70002 == 273.9002 =0 66 =0
Insulin BMI DiabatesPedigreeFunction Age

rm—) 0 — 258 tmm— 17477 v



