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Expected exposure

Let Vt = EQ
t

[∑
j

Bt
BTj

HTj

]
be the discounted value of an asset (or portfolio)

with payoffs HTj .
The positive exposure of V at time t is E+(t) = max(0,Vt).
At initial time t0 we can observe the expected positive exposure at time t:

EE(t0, t) = EQ
t0

[Bt0
Bt

max(0,Vt)
]

1/12



Expected exposure

Let Vt = EQ
t

[∑
j

Bt
BTj

HTj

]
be the discounted value of an asset (or portfolio)

with payoffs HTj .
The positive exposure of V at time t is E+(t) = max(0,Vt).
At initial time t0 we can observe the expected positive exposure at time t:

EE(t0, t) = EQ
t0

[Bt0
Bt

max(0,Vt)
]

Exposures are typically obtained by Monte Carlo simulation and the EE is
obtained from the sample mean:

EE(t0, t) ≈
1

M

M∑
j=1

max
(
0,

Bt0(ωj)

Bt(ωj)
Vt(ωj)

)
.

Thus, we are interested in samples Vt(ω) of the random variable Vt | Ft0.
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Swap portfolio
Consider an interest rate (payer) swap V with price

Vt = N̄
m∑

j=1

τjP(t,Tj)
(P(t,Tj−1)− P(t,Tj)

τjP(t,Tj)
− K

)
.

In affine interest rate models, a ZCB at time t is given by

P(t,T ) = EQ
t
[
exp(−

T∫
t

rs ds)
]

= exp
(
A(t,T ) + B(t,T )rt

)
,

where rt is a random variable (e.g. Gaussian).
Thus, at time t0, Vt is a random variable in one “risk factor” rt , following
some distribution L.

(Vt | Ft0) = (f (rt) | Ft0) ∼ L
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Approximating the portfolio

Let the portfolio Π consist of 1000 swaps V 1, ...,V 1000. Simulating the
price of one portfolio realisation Πt(ω) requires 1000 swap evaluations:

Πt(ω) = V 1
t (ω) + · · ·+ V 1000

t (ω) =: g
(
rt(ω)

)
.
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Approximating the portfolio

Let the portfolio Π consist of 1000 swaps V 1, ...,V 1000. Simulating the
price of one portfolio realisation Πt(ω) requires 1000 swap evaluations:

Πt(ω) = V 1
t (ω) + · · ·+ V 1000

t (ω) =: g
(
rt(ω)

)
.

MC simulation requires:
M expensive, exact evaluations g

(
rt(ωj)

)
, j = 1, . . . ,M.

Simplify with an approximation g̃n ≈ g :
n expensive, exact evaluations at the interpolation points:((

r1t , g(r1t )
)
, . . . ,

(
rn
t , g(rn

t )
))

(Compute the approximation)
M cheap evaluations of the approximation g̃n

(
rt(ωj)

)
, j = 1, . . . ,M.

How to interpolate between distributions?
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Sample transformation

For a continuous random variable Y with cumulative distribution function
FY , it holds FY (Y ) ∼ U [0, 1]. Proof:

FFY (Y )(u) = P[FY (Y ) ≤ u] = P[F−1
Y (FY (Y )) ≤ F−1

Y (u)]
= P[Y ≤ F−1

Y (u)] = FY (F−1
Y (u)) = u

= FU(u).
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FY , it holds FY (Y ) ∼ U [0, 1]. Proof:

FFY (Y )(u) = P[FY (Y ) ≤ u] = P[F−1
Y (FY (Y )) ≤ F−1

Y (u)]
= P[Y ≤ F−1

Y (u)] = FY (F−1
Y (u)) = u

= FU(u).

“Inverse transform sampling”: Sample u from U [0, 1] and set y = F−1
Y (u).

For two continuous random variables X and Y , we have
FX (X) ∼ FY (Y ) ∼ U(0, 1).

From a sample ξ of X we can obtain a sample y of Y via

y = F−1
Y (FX (ξ)).
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Stochastic collocation sampling1

X is a random variable we can easily sample from (e.g. Gaussian), Y is
expensive to sample from. We can relate samples:

y = F−1
Y (FX (ξ)).

This function g := F−1
Y ◦ FX is computationally expensive (inversion of

FY ).

1L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, and C.W. Oosterlee. The
stochastic collocation Monte Carlo sampler: highly efficient sampling from “expensive”
distributions. Quantitative Finance, 19(2):339–356, 2019.
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X is a random variable we can easily sample from (e.g. Gaussian), Y is
expensive to sample from. We can relate samples:

y = F−1
Y (FX (ξ)).

This function g := F−1
Y ◦ FX is computationally expensive (inversion of

FY ).
1 Find interpolation points x1, ..., xn (“collocation points”) and evaluate

exactly: yi = g(xi), i = 1, . . . , n.
2 Build approximation function g̃n ≈ g based on these n points.
3 Obtain (approximated) samples ỹi = g̃n(ξi) of Y from (cheap)

samples ξi of X .

1L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, and C.W. Oosterlee. The
stochastic collocation Monte Carlo sampler: highly efficient sampling from “expensive”
distributions. Quantitative Finance, 19(2):339–356, 2019.
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Why collocation?

“Classic interpolation” framework:

Πt(ω) = g(rt(ω)) ≈ g̃n(rt(ω))

Collocation framework:

y =
(
F−1

Y ◦ FX
)
(ξ) = g(ξ) ≈ g̃n(ξ).

We know the cheap distribution X (e.g. interest rate) and the function g ,
but we do not need knowledge about the distribution of Y .
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Why collocation?

“Classic interpolation” framework:
Πt(ω) = g(rt(ω)) ≈ g̃n(rt(ω))

Collocation framework:
y =

(
F−1

Y ◦ FX
)
(ξ) = g(ξ) ≈ g̃n(ξ).

We know the cheap distribution X (e.g. interest rate) and the function g ,
but we do not need knowledge about the distribution of Y .
Difference to “standard” function interpolation: We evaluate g̃n at random
points from the known distribution X .
Example Lagrange polynomial over interpolation points x1, . . . , xn:

g̃n(ξ) =
n∑

i=1

g(xi)`i(ξ),

where

`i(ξ) =
n∏

j=1,j 6=i

ξ − xj
xi − xj 6/12



Connection to Gaussian Quadrature
Let pi be an orthogonal, polynomial basis in L2(X), i.e.

b∫
a

pi(x)pj(x)fX (x)dx = δijE[pi(X)2].

We want to find weights wi and collocation points xi , i = 1, . . . , n, so that
b∫

a

g(x)fX (x)dx ≈
n∑

i=1

g(xi)wi .

Find weights and points by consideration of enough exact integrals:∫ b

a
p0(x)dx = w1p0(x1) + · · ·+ wnp0(xn)∫ b

a
p1(x)dx = w1p1(x1) + · · ·+ wnp1(xn)

. . .
7/12



Optimal Collocation Points

g̃n(ξ) =
n∑

i=1

g(xi)`i(ξ), `i(ξ) =
n∏

j=1,j 6=i

ξ − xj
xi − xj
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Choice of interpolation function

The approximation g̃n ...
must be cheap to evaluate:
“n exact + M cheap evaluations � M exact valuations”
must offer high accuracy
may preserve properties of g (e.g. monotonicity)
may be differentiable

There are many options:

Lagrange polynomials, Chebyshev polynomials, Hermite polynomials, ...
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Higher dimensions2

The number of interpolation points should not grow too fast.

Cartesian grid of (optimal) collocation points vs. Smolyak sparse grid

2L.A. Grzelak. Sparse Grid Method for Highly Efficient Computation of Exposures for
xVA. arXiv:2104.14319, 2021.
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Hybrid portfolio of (many) stock contracts and swaps.
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Many directions to investigate

Error bounds for different interpolation methods (in higher
dimensions)
Interplay between interpolation points and interpolation methods
Effects on portfolios of non-linear derivatives
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Thank you for listening!
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