Efficient valuation of (non-)linear products for xVA

Felix Wolf ${ }^{1}$
Joint work with Griselda Deelstra ${ }^{1}$ and Lech Grzelak ${ }^{2,3}$
${ }^{1}$ Department of Mathematics, Université libre de Bruxelles
${ }^{2}$ Financial Engineering, Rabobank ${ }^{3}$ Mathematical Institute, Universiteit Utrecht

April 19, 2022

Rabobank

Expected exposure

Let $V_{t}=\mathbb{E}_{t}^{\mathbb{Q}}\left[\sum_{j} \frac{B_{t}}{B_{T_{j}}} H_{T_{j}}\right]$ be the discounted value of an asset (or portfolio) with payoffs $H_{T_{j}}$.
The positive exposure of V at time t is $E^{+}(t)=\max \left(0, V_{t}\right)$.
At initial time t_{0} we can observe the expected positive exposure at time t :

$$
\mathrm{EE}\left(t_{0}, t\right)=\mathbb{E}_{t_{0}}^{\mathbb{Q}}\left[\frac{B_{t_{0}}}{B_{t}} \max \left(0, V_{t}\right)\right]
$$

Expected exposure

Let $V_{t}=\mathbb{E}_{t}^{\mathbb{Q}}\left[\sum_{j} \frac{B_{t}}{B_{j}} H_{T_{j}}\right]$ be the discounted value of an asset (or portfolio) with payoffs $H_{T_{j}}$.
The positive exposure of V at time t is $E^{+}(t)=\max \left(0, V_{t}\right)$.
At initial time t_{0} we can observe the expected positive exposure at time t :

$$
\mathrm{EE}\left(t_{0}, t\right)=\mathbb{E}_{t_{0}}^{\mathbb{Q}}\left[\frac{B_{t_{0}}}{B_{t}} \max \left(0, V_{t}\right)\right]
$$

Exposures are typically obtained by Monte Carlo simulation and the EE is obtained from the sample mean:

$$
\operatorname{EE}\left(t_{0}, t\right) \approx \frac{1}{M} \sum_{j=1}^{M} \max \left(0, \frac{B_{t_{0}}\left(\omega_{j}\right)}{B_{t}\left(\omega_{j}\right)} V_{t}\left(\omega_{j}\right)\right)
$$

Thus, we are interested in samples $V_{t}(\omega)$ of the random variable $V_{t} \mid F_{t_{0}}$.

Swap portfolio

Consider an interest rate (payer) swap V with price

$$
V_{t}=\bar{N} \sum_{j=1}^{m} \tau_{j} P\left(t, T_{j}\right)\left(\frac{P\left(t, T_{j-1}\right)-P\left(t, T_{j}\right)}{\tau_{j} P\left(t, T_{j}\right)}-K\right)
$$

In affine interest rate models, a ZCB at time t is given by

$$
\begin{aligned}
P(t, T) & =\mathbb{E}_{t}^{\mathbb{Q}}\left[\exp \left(-\int_{t}^{T} r_{s} \mathrm{~d} s\right)\right] \\
& =\exp \left(A(t, T)+B(t, T) r_{t}\right)
\end{aligned}
$$

where r_{t} is a random variable (e.g. Gaussian).
Thus, at time t_{0}, V_{t} is a random variable in one "risk factor" r_{t}, following some distribution \mathcal{L}.

$$
\left(V_{t} \mid \mathscr{F}_{t_{0}}\right)=\left(f\left(r_{t}\right) \mid \mathscr{F}_{t_{0}}\right) \sim \mathcal{L}
$$

Approximating the portfolio

Let the portfolio Π consist of 1000 swaps V^{1}, \ldots, V^{1000}. Simulating the price of one portfolio realisation $\Pi_{t}(\omega)$ requires 1000 swap evaluations:

$$
\Pi_{t}(\omega)=V_{t}^{1}(\omega)+\cdots+V_{t}^{1000}(\omega)=: g\left(r_{t}(\omega)\right)
$$

Approximating the portfolio

Let the portfolio Π consist of 1000 swaps V^{1}, \ldots, V^{1000}. Simulating the price of one portfolio realisation $\Pi_{t}(\omega)$ requires 1000 swap evaluations:

$$
\Pi_{t}(\omega)=V_{t}^{1}(\omega)+\cdots+V_{t}^{1000}(\omega)=: g\left(r_{t}(\omega)\right)
$$

MC simulation requires:

- M expensive, exact evaluations $g\left(r_{t}\left(\omega_{j}\right)\right), j=1, \ldots, M$.

Approximating the portfolio

Let the portfolio Π consist of 1000 swaps V^{1}, \ldots, V^{1000}. Simulating the price of one portfolio realisation $\Pi_{t}(\omega)$ requires 1000 swap evaluations:

$$
\Pi_{t}(\omega)=V_{t}^{1}(\omega)+\cdots+V_{t}^{1000}(\omega)=: g\left(r_{t}(\omega)\right)
$$

MC simulation requires:

- M expensive, exact evaluations $g\left(r_{t}\left(\omega_{j}\right)\right), j=1, \ldots, M$.

Simplify with an approximation $\widetilde{g}_{n} \approx g$:

- n expensive, exact evaluations at the interpolation points:

$$
\left(\left(r_{t}^{1}, g\left(r_{t}^{1}\right)\right), \ldots,\left(r_{t}^{n}, g\left(r_{t}^{n}\right)\right)\right)
$$

- (Compute the approximation)
- M cheap evaluations of the approximation $\widetilde{g}_{n}\left(r_{t}\left(\omega_{j}\right)\right), j=1, \ldots, M$. How to interpolate between distributions?

Sample transformation

For a continuous random variable Y with cumulative distribution function F_{Y}, it holds $F_{Y}(Y) \sim \mathcal{U}[0,1]$. Proof:

$$
\begin{aligned}
F_{F_{Y}(Y)}(u) & =\mathbb{P}\left[F_{Y}(Y) \leq u\right]=\mathbb{P}\left[F_{Y}^{-1}\left(F_{Y}(Y)\right) \leq F_{Y}^{-1}(u)\right] \\
& =\mathbb{P}\left[Y \leq F_{Y}^{-1}(u)\right]=F_{Y}\left(F_{Y}^{-1}(u)\right)=u \\
& =F_{U}(u) .
\end{aligned}
$$

Sample transformation

For a continuous random variable Y with cumulative distribution function F_{Y}, it holds $F_{Y}(Y) \sim \mathcal{U}[0,1]$. Proof:

$$
\begin{aligned}
F_{F_{Y}(Y)}(u) & =\mathbb{P}\left[F_{Y}(Y) \leq u\right]=\mathbb{P}\left[F_{Y}^{-1}\left(F_{Y}(Y)\right) \leq F_{Y}^{-1}(u)\right] \\
& =\mathbb{P}\left[Y \leq F_{Y}^{-1}(u)\right]=F_{Y}\left(F_{Y}^{-1}(u)\right)=u \\
& =F_{U}(u) .
\end{aligned}
$$

"Inverse transform sampling": Sample u from $\mathcal{U}[0,1]$ and set $y=F_{Y}^{-1}(u)$.

Sample transformation

For a continuous random variable Y with cumulative distribution function F_{Y}, it holds $F_{Y}(Y) \sim \mathcal{U}[0,1]$. Proof:

$$
\begin{aligned}
F_{F_{Y}(Y)}(u) & =\mathbb{P}\left[F_{Y}(Y) \leq u\right]=\mathbb{P}\left[F_{Y}^{-1}\left(F_{Y}(Y)\right) \leq F_{Y}^{-1}(u)\right] \\
& =\mathbb{P}\left[Y \leq F_{Y}^{-1}(u)\right]=F_{Y}\left(F_{Y}^{-1}(u)\right)=u \\
& =F_{U}(u) .
\end{aligned}
$$

"Inverse transform sampling": Sample u from $\mathcal{U}[0,1]$ and set $y=F_{Y}^{-1}(u)$.
For two continuous random variables X and Y, we have $F_{X}(X) \sim F_{Y}(Y) \sim \mathcal{U}(0,1)$.

From a sample ξ of X we can obtain a sample y of Y via

$$
y=F_{Y}^{-1}\left(F_{X}(\xi)\right)
$$

Stochastic collocation sampling ${ }^{1}$

X is a random variable we can easily sample from (e.g. Gaussian), Y is expensive to sample from. We can relate samples:

$$
y=F_{Y}^{-1}\left(F_{X}(\xi)\right)
$$

This function $g:=F_{Y}^{-1} \circ F_{X}$ is computationally expensive (inversion of F_{Y}).

[^0]
Stochastic collocation sampling ${ }^{1}$

X is a random variable we can easily sample from (e.g. Gaussian), Y is expensive to sample from. We can relate samples:

$$
y=F_{Y}^{-1}\left(F_{X}(\xi)\right)
$$

This function $g:=F_{Y}^{-1} \circ F_{X}$ is computationally expensive (inversion of F_{Y}).
(1) Find interpolation points x_{1}, \ldots, x_{n} ("collocation points") and evaluate exactly: $y_{i}=g\left(x_{i}\right), i=1, \ldots, n$.
(2) Build approximation function $\widetilde{g}_{n} \approx g$ based on these n points.
(3) Obtain (approximated) samples $\widetilde{y}_{i}=\widetilde{g}_{n}\left(\xi_{i}\right)$ of Y from (cheap) samples ξ_{i} of X.

[^1]
Why collocation?

"Classic interpolation" framework:

$$
\Pi_{t}(\omega)=g\left(r_{t}(\omega)\right) \approx \widetilde{g}_{n}\left(r_{t}(\omega)\right)
$$

Collocation framework:

$$
y=\left(F_{Y}^{-1} \circ F_{X}\right)(\xi)=g(\xi) \approx \tilde{g}_{n}(\xi)
$$

We know the cheap distribution X (e.g. interest rate) and the function g, but we do not need knowledge about the distribution of Y.

Why collocation?

"Classic interpolation" framework:

$$
\Pi_{t}(\omega)=g\left(r_{t}(\omega)\right) \approx \widetilde{g}_{n}\left(r_{t}(\omega)\right)
$$

Collocation framework:

$$
y=\left(F_{Y}^{-1} \circ F_{X}\right)(\xi)=g(\xi) \approx \tilde{g}_{n}(\xi)
$$

We know the cheap distribution X (e.g. interest rate) and the function g, but we do not need knowledge about the distribution of Y.

Difference to "standard" function interpolation: We evaluate \widetilde{g}_{n} at random points from the known distribution X.

Why collocation?

"Classic interpolation" framework:

$$
\Pi_{t}(\omega)=g\left(r_{t}(\omega)\right) \approx \widetilde{g}_{n}\left(r_{t}(\omega)\right)
$$

Collocation framework:

$$
y=\left(F_{Y}^{-1} \circ F_{X}\right)(\xi)=g(\xi) \approx \widetilde{g}_{n}(\xi)
$$

We know the cheap distribution X (e.g. interest rate) and the function g, but we do not need knowledge about the distribution of Y.
Difference to "standard" function interpolation: We evaluate \widetilde{g}_{n} at random points from the known distribution X.
Example Lagrange polynomial over interpolation points x_{1}, \ldots, x_{n} :

$$
\widetilde{g}_{n}(\xi)=\sum_{i=1}^{n} g\left(x_{i}\right) \ell_{i}(\xi)
$$

where

$$
\ell_{i}(\xi)=\prod_{j=1, j \neq i}^{n} \frac{\xi-x_{j}}{x_{i}-x_{j}}
$$

Connection to Gaussian Quadrature

Let p_{i} be an orthogonal, polynomial basis in $L^{2}(X)$, i.e.

$$
\int_{a}^{b} p_{i}(x) p_{j}(x) f_{X}(x) d x=\delta_{i j} \mathbb{E}\left[p_{i}(X)^{2}\right]
$$

We want to find weights w_{i} and collocation points $x_{i}, i=1, \ldots, n$, so that

$$
\int_{a}^{b} g(x) f_{X}(x) \mathrm{d} x \approx \sum_{i=1}^{n} g\left(x_{i}\right) w_{i}
$$

Find weights and points by consideration of enough exact integrals:

$$
\begin{aligned}
& \int_{a}^{b} p_{0}(x) \mathrm{d} x=w_{1} p_{0}\left(x_{1}\right)+\cdots+w_{n} p_{0}\left(x_{n}\right) \\
& \int_{a}^{b} p_{1}(x) \mathrm{d} x=w_{1} p_{1}\left(x_{1}\right)+\cdots+w_{n} p_{1}\left(x_{n}\right)
\end{aligned}
$$

Optimal Collocation Points

$$
\widetilde{g}_{n}(\xi)=\sum_{i=1}^{n} g\left(x_{i}\right) \ell_{i}(\xi), \ell_{i}(\xi)=\prod_{j=1, j \neq i}^{n} \frac{\xi-x_{j}}{x_{i}-x_{j}}
$$

Optimal Collocation Points

$$
\widetilde{g}_{n}(\xi)=\sum_{i=1}^{n} g\left(x_{i}\right) \ell_{i}(\xi), \ell_{i}(\xi)=\prod_{j=1, j \neq i}^{n} \frac{\xi-x_{j}}{x_{i}-x_{j}}
$$

Optimal Collocation Points

$$
\widetilde{g}_{n}(\xi)=\sum_{i=1}^{n} g\left(x_{i}\right) \ell_{i}(\xi), \ell_{i}(\xi)=\prod_{j=1, j \neq i}^{n} \frac{\xi-x_{j}}{x_{i}-x_{j}}
$$

Optimal Collocation Points

$$
\widetilde{g}_{n}(\xi)=\sum_{i=1}^{n} g\left(x_{i}\right) \ell_{i}(\xi), \ell_{i}(\xi)=\prod_{j=1, j \neq i}^{n} \frac{\xi-x_{j}}{x_{i}-x_{j}}
$$

Optimal Collocation Points

$$
\widetilde{g}_{n}(\xi)=\sum_{i=1}^{n} g\left(x_{i}\right) \ell_{i}(\xi), \ell_{i}(\xi)=\prod_{j=1, j \neq i}^{n} \frac{\xi-x_{j}}{x_{i}-x_{j}}
$$

Optimal Collocation Points

$$
\widetilde{g}_{n}(\xi)=\sum_{i=1}^{n} g\left(x_{i}\right) \ell_{i}(\xi), \ell_{i}(\xi)=\prod_{j=1, j \neq i}^{n} \frac{\xi-x_{j}}{x_{i}-x_{j}}
$$

Choice of interpolation function

The approximation $\widetilde{g}_{n} \ldots$

- must be cheap to evaluate:
" n exact $+M$ cheap evaluations $\ll M$ exact valuations"
- must offer high accuracy
- may preserve properties of g (e.g. monotonicity)
- may be differentiable

There are many options:
Lagrange polynomials, Chebyshev polynomials, Hermite polynomials, ...

Higher dimensions ${ }^{2}$

The number of interpolation points should not grow too fast.
Cartesian grid of (optimal) collocation points vs. Smolyak sparse grid

${ }^{2}$ L.A. Grzelak. Sparse Grid Method for Highly Efficient Computation of Exposures for xVA. arXiv:2104.14319, 2021.

Hybrid portfolio of (many) stock contracts and swaps.

Many directions to investigate

- Error bounds for different interpolation methods (in higher dimensions)
- Interplay between interpolation points and interpolation methods
- Effects on portfolios of non-linear derivatives

Many directions to investigate

- Error bounds for different interpolation methods (in higher dimensions)
- Interplay between interpolation points and interpolation methods
- Effects on portfolios of non-linear derivatives

Thank you for listening!

[^0]: ${ }^{1}$ L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, and C.W. Oosterlee. The stochastic collocation Monte Carlo sampler: highly efficient sampling from "expensive" distributions. Quantitative Finance, 19(2):339-356, 2019.

[^1]: ${ }^{1}$ L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, and C.W. Oosterlee. The stochastic collocation Monte Carlo sampler: highly efficient sampling from "expensive" distributions. Quantitative Finance, 19(2):339-356, 2019.

