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Abstract

In the present article we address the modelling and the numerical computa-
tion of the total value adjustment for European options in a multi-currency
setting when the foreign exchange rates between the different involved cur-
rencies are assumed to be stochastic. Thus, we extend to a more realistic
approach a previous work where constant exchange rates have been consid-
ered. New models are formulated both in terms of linear and nonlinear PDEs
and expectations, the hedging arguments requiring the additional consider-
ation of the exposure to foreign exchange risk. For the nonlinear models,
Picard iteration methods are applied to the formulation in terms of expec-
tations and compared with multilevel Picard iteration methods. In this way,
we avoid the curse of dimensionality associated to the use of deterministic
numerical methods (such as finite differences or finite element methods) for
solving high dimensional PDEs. Some examples of option pricing problems
illustrate the performance of the proposed models and numerical methods.

Keywords: Total value adjustment, Multi-currency, Stochastic foreign
exchange rates, European options, Picard iteration methods

1. Introduction

Since the financial crisis in 2007-08, it is clear that the pricing of different
financial products must include the adjustments associated to the presence
of counterparty risk of both parts involved in the contract. In particular,
this has to be taken into account in the pricing of financial derivatives. The
initial and more classical adjustments were motivated by counterparty risks
related to credit (CVA), funding (FVA) and collateral (CollVA). Later on,
adjustments related to capital (KVA) and margin (MVA) have been added.
Among the classical and more general references on the topic, we address the
readers to the books [5, 10, 25] and the references therein. In the single cur-
rency setting, three main approaches have been widely developed. The first
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one is based on partial differential equations (PDEs) with seminal references
[6, 45], the second one is based on expectations and started with [4], and the
third one is formulated in terms of backward stochastic differential equations
(BSDEs) with the main seminal articles [8, 9]. These three approaches can be
also considered in the multi-currency setting that we analyze in the present
article.

In a global economy, financial institutions operate in different currencies.
Therefore, in the context of XVA they can either fund or post collateral in
different currencies. Some attention to the multi-currency setting has been
recently addressed in the literature. In the present work we start considering
a multi-currency setting, following the ideas in [17], where the joint consid-
eration of CVA, FVA, CollVA and repo adjustments are taken into account.
We will refer to the set of these adjustments as total value adjustment or
XVA. For the additional inclusion of KVA or MVA in the XVA, the ideas in
[24, 23] in the single currency case could be considered.

In the recent article [2], the same problem has been addressed when con-
sidering constant foreign exchange rates between the different involved cur-
rencies. More precisely, in [2] we have addressed the computation of the
XVA for different European vanilla options by means of appropriate pro-
posed models that are formulated in terms of expectations. Moreover, the
XVA pricing problem was also formulated in terms of linear and nonlinear
PDEs, although their numerical solution was not addressed.

The main objective of this article is the extension of the methodology de-
veloped in [2] to the more realistic modelling approach that considers stochas-
tic foreign exchange (FX) rates. First, this extension requires the introduc-
tion of appropriate stochastic dynamics for FX rates and the statement of
the new models based on PDEs and expectations. As a first approach, we
will consider that the stochastic dynamics of each FX rate follows a geo-
metric Brownian motion process, although in the future other more general
dynamics could be considered. Note that the consideration of stochastic FX
rates implies that the number of stochastic factors increases significantly, so
that the curse of dimensionality comes into place when deterministic numer-
ical methods (as finite differences or finite element methods) are considered
for the solution of the corresponding linear and nonlinear high dimensional
PDEs models. Actually, these deterministic numerical methods involve and
exponentially increasing computational cost in the dimension of the PDE.
Therefore, probabilistic methods based on Feynman Kac formula to obtain
an equivalent formulation in terms of expectations seem an appropriate al-
ternative. In the nonlinear case, a general nonlinear Feynman-Kac formula
has been proposed in the seminal work [43]. Among the possible probabilis-
tic methods, the most naive comes from the consideration of the so called
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“Monte Carlo of Monte Carlo” (also know as nested Monte Carlo simulation
or straight-forward Monte Carlo method), which would give rise to an at least
exponentially growing computational cost of the approximation method in
the inverse of the prescribed approximation accuracy. In the nonlinear case,
among the recent advanced nonlinear Monte Carlo techniques to solve the
semilinear PDEs formulations, we point out three of them: branching diffu-
sion methods, deep learning based methods and multilevel Picard iterations.
In next paragraphs we address a short review of these three alternatives.

As pointed out in [28], a first possible way to improve nonlinear Monte
Carlo techniques could be the use of first order BSDEs, although this would
require the use of appropriate regressors to compute the involved conditional
expectations. Therefore, in [28] the author proposes a new method based
on branching diffusions with a marked Galton-Watson random tree to solve
the semilinear PDE arising in CVA computation when the mark to market is
equal to the risky derivative. For this purpose, the author extends the initial
nonlinearities considered by the seminal article of McKean [40] to the case of
a polynomial nonlinearity. Next, a suitable approximation of the sign nonlin-
earity arising in the CVA pricing problem by a polynomial one is proposed.
However, as indicated in [28], this marked branching method requires that
the product of the maturity times the maximun norm of the payoff is small
enough. Recently, in [30] the branching diffusion method has been extended
and combined with Monte Carlo automatic differentiation techniques for the
solution of high dimensional PDEs with polynomial nonlinearities, both in
the solution and in the gradient of the solution. More recently, in [31] the
branching diffusion approach is extended to more general nonlinear Cauchy
problems, including hyperbolic and higher order PDEs.

The use of deep learning methods for XVA computations can be framed
into the highly increasing use of deep learning techniques for the solution of
high dimensional linear and nonlinear PDEs and BSDEs. These techniques
are based in the intensive use of artificial neuronal networks (ANN), which
can approximate with any arbitrary accuracy any continuous function ac-
cording to the Universal Approximation Theorem (see the seminal articles
[37, 11, 32], for example). Actually, deep learning techniques are based on
the connection of several layers of ANNs (deep ANNs). Concerning the use of
deep learning techniques for the solution of high dimensional PDEs, we point
out the works [26, 34], for example. Following the lines in [26] for high di-
mensional semilinear PDEs, the work [15] provides deep learning techniques
for the solution of high dimensional BSDEs by using asymptotic expansions
to reduce the value of the loss function and speed up the convergence. By
means of these deep learning techniques, in [29] a primal-dual approach has
been developed to compute CVA and initial margin (IM). Recently, in [21]
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the authors consider a discretization of the generic BSDE modelling the dy-
namics of the XVA for a derivatives portfolio and parameterize the high
dimensional hedging process at every time point by a family of ANNs. Thus,
BSDEs can be understood as model-based reinforcement learning problems.
Moreover, they show that the method can be used to compute sensitivities.
In [1], also deep learning regression techniques are used to obtain conditional
risk measures in the framework of XVA by following a BSDEs approach.
However, despite the large amount of research and literature improving the
application of deep learning approximation methods to overcome the curse
of dimensionality in XVA computations and its performance in practical and
industrial problems, there is still a lack of rigorous theoretical analysis that
proves the convergence of these numerical techniques to the exact solution
of the problem.

Picard iteration techniques are approximation methods for solving a fixed-
point equation. These methods can be applied to solve nonlinear models
formulated in terms of expectations that have been obtained from the cor-
responding nonlinear PDEs by means of a nonlinear Feynman-Kac formula.
Once the Picard iteration method has been posed, it must be discretized by
means of quadrature formulas. In this article, we propose Picard iteration
methods to solve the nonlinear formulations arising in XVA computation by
using rectangular and trapezoidal quadrature formulas.

Recently, in [13], [33], and [14], the authors propose a family of multi-
level Picard iteration methods, which mainly combine the multilevel Monte
Carlo techniques from [27] and [18] with Picard iteration methods. More
precisely, in [14] the authors develop the theoretical analysis under suitable
smoothness conditions while in [13] they address simulation studies including
applications to financial pricing problems. As indicated in [13], the computa-
tional complexity increases at most linearly in the dimension of the PDE and
quartically in the inverse of the prescribed accuracy. In the present article
we also apply the numerical multilevel Picard iteration methods proposed in
[13].

The article is organized as follows. In Section 2 we deduce mathematical
models for XVA formulated in terms of linear or nonlinear PDEs problems,
depending on the choice of the mark-to-market derivative value. In Section 3
we formulate the problem in terms of expectations, so that Picard iteration
methods can be applied, and introduce the proposed numerical methods
to approximate XVA price. In Section 4 we show and discuss numerical
results that correspond to different examples of European options. Finally,
in Section 5 we summarize the main conclusions.
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2. Mathematical model

In this section, we infer a PDE formulation for the value of a derivative
which is traded between a default-free hedger H and a defaultable investor
I in a multi-currency setting. Therefore, we take into account the valuation
adjustment due to the fact that the investor may default (counterparty risk).
More precisely, we extend the work in [2] by assuming that the FX rates have
stochastic dynamics.

We denote by D the domestic currency and by C0, . . . , CN the foreign
currencies. For j = 0, . . . , N , let X

D,Cj

t be the FX rate between currencies
D and Cj at time t, i.e., the value in domestic currency D of one unit of the

foreign currency Cj at time t. The dynamics of the stochastic FX rate X
D,Cj

t

under the real world measure P is described by the SDEs:

dX
D,Cj

t = µX
j

X
D,Cj

t dt+ σX
j

X
D,Cj

t dWXj ,P
t , (1)

where µX
j

and σX
j

are respectively the real world drift and the volatility
of XD,Cj , while WXj ,P is a standard P -Wiener process. Obviously, if Cj =

D for a certain j, then X
D,Cj

t = 1 at any time t. We denote by Xt =
(XD,C0

t , . . . , XD,CN
t ) the vector of the FX rates values at time t and by X̄t =

(XD,C1
t , . . . , XD,CN

t ) the vector of the FX rates values, except the value of
XD,C0 , at time t. Indeed, this notation will be useful in the following, since
we will consider derivatives written on N underlying assets denominated
in currencies C1, . . . , CN , respectively, while C0 will be the currency of the
collateral account.

Alternative more complex models to the geometric Brownian motion de-
fined by (1) are proposed in the literature (see [38, 22], for example). The ad-
ditional consideration of local, stochastic or local/stochastic volatilities leads
to increasing the complexity and the number of stochastic factors, although
the same methodology could be applied.

For i = 1, . . . , N , let Sit denote the price of a foreign asset in units of the
foreign currency Ci at time t and let St = (S1

t , . . . , S
N
t ) be the vector of the

assets prices at time t. Moreover, let ht be the investor’s credit spread at
time t. We assume that under the real world measure P the evolution of the
prices of the foreign assets and of the investor’s credit spread are respectively
governed by the SDEs:

dSit = µS
i,PSitdt+ σS

i

SitdW
Si,P , (2)

dht = µh,Pdt+ σhdW h,P
t , (3)

where µS
i,P and µh are the real world drifts of the processes, while σSi and

σh are their volatilities. Moreover, W Si,P and W h,P are Wiener processes
under the real world measure P .

5



We assume that all the processes are correlated with constant correlations.
The correlation matrix is given by:

P̄ =



1 ρS
1,S2 · · · ρS

1,SN
ρS

1,X0
ρS

1,X1 · · · ρS
1,XN

ρS
1,h

ρS
1,S2

1 · · · ρS
2,SN

ρS
2,X0

ρS
2,X1 · · · ρS

2,XN
ρS

2,h

...
...

...
...

...
...

...
...

...

ρS
1,SN

ρS
2,SN · · · 1 ρS

N ,X0
ρS

N ,X1 · · · ρS
N ,XN

ρS
N ,h

ρS
1,X0

ρS
2,X0 · · · ρS

N ,X0
1 ρX

0,X1 · · · ρX
0,XN

ρX
0,h

ρS
1,X1

ρS
2,X1 · · · ρS

N ,X1
ρX

0,X1
ρX

0,X1 · · · ρX
1,XN

ρX
1,h

...
...

...
...

...
...

...
...

...

ρS
1,XN

ρS
2,XN · · · ρS

N ,XN
ρX

0,XN
ρX

1,XN · · · 1 ρX
N ,h

ρS
1,h ρS

2,h · · · ρS
N ,h ρX

0,h ρX
1,h · · · ρX

N ,h 1


(4)

Although for simplicity we assume constant correlations and volatili-
ties, the methodology can be straightforwardly extended to time dependent
volatilities and correlations.

We denote by Jt the investor’s default state at time t, that is to say:{
Jt = 1 if I defaults before or at time t,

Jt = 0 otherwise.
(5)

From the investor’s point of view, the derivative value in domestic cur-
rency D at time t is given by V D

t = V D(t, St, Xt, ht, Jt). The price in cur-
rency D of the same derivative traded between two non-defaultable counter-
parties is referred to as risk-free derivative price and is denoted by WD

t =
WD(t, St, Xt).

In order to infer the dynamics of XD,Cj , for j = 0, . . . , N , under the
risk neutral probability measure of the domestic market, denoted by QD, we
consider two bonds with maturity T in the domestic market and in the j-th
foreign market, for j = 0, . . . , N , the prices of which at time t are denoted
by BD

t and B
Cj

t , respectively.
By using equation (1), the discounted price of the foreign bond in the

domestic currency D is given by

B̂j,D
t = (BD

t )−1B
Cj

t X
D,Cj

t

= B̂j,D
0 exp

((
rj − rD + µX

j − (σX
j
)2

2

)
t+ σX

j

WXj ,P
t

)
,

(6)

where rD, rj, j = 0, . . . , N , are the risk-free rates in the domestic market and
in the j-th foreign market, respectively. Thus, we are assuming that interest
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rates rD and rj are constant. Note that the consideration of stochastic evo-
lution of these interest rates would increase the number of stochastic factors
in a significant way. The idea is to address this step in a future work.

Thus, the dynamics of B̂j,D
t under the real measure P is given by

dB̂j,D
t = (µX

j

+ rj − rD)B̂j,D
t dt+ σX

j

B̂j,D
t dWXj ,P

t . (7)

From Girsanov’s Theorem [19], there exists a equivalent measure QD, such
that we can build a Wiener process WXj ,QD

under the measure QD, which
is defined as:

WXj ,QD

t = WXj ,P
t +

∫ t

0

msds,

or equivalently, WXj ,QD
satisfies the relation dWXj ,QD

t = dWXj ,P
t + mtdt,

where mt is the process associated to the change of measure.
Therefore, the dynamics of B̂j,D

t under the measure QD is given by

dB̂j,D
t = (µX

j

+ rj − rD −mt σ
Xj

)B̂j,D
t dt+ σX

j

B̂j,D
t dWXj ,QD

t . (8)

Since B̂j,D
t must be a martingale under QD, we get

rD − rj = µX
j −mt σ

Xj

, (9)

that leads to

X
D,Cj

t = X
D,Cj

0 exp

((
rD − rj − (σX

j
)2

2

)
t+ σX

j

WXj ,QD

t

)
, (10)

or equivalently,

dX
D,Cj

t = (rD − rj)XD,Cj

t dt+ σX
j

X
D,Cj

t dWXj ,QD

t . (11)

Also, we need to infer the dynamics of Sit under the risk neutral measure
of the domestic market QD. For this purpose, we assume that the dynamics
of Sit under the risk neutral measure of the domestic market and under the
risk neutral measure of the foreign market, denoted by QCi , are respectively
given by the SDEs:

dSit = µS
i,QD

Sitdt+ σS
i
SitdW

Si,QD

t , (12)

dSit = (ri − qi)Sitdt+ σS
i
SitdW

Si,QCi

t , (13)

where µS
i,QD

is the drift of Sit under the measure QD, σS
i

is its volatility, ri is
the risk-free rate of the i-th foreign market and qi is the continuous dividend

7



yield paid by Sit . Moreover, W Si,QD

t and W Si,QCi

t are a QD-Wiener process
and a QCi-Wiener process, respectively.

We denote by Si,Dt the price of the foreign underlying asset Si in the
domestic currency D, that is to say, Si,Dt = SitX

D,Ci
t . From (11) and (12),

by applying the classical Itô formula we obtain that the dynamics of Si,D

follows the SDE:

dSi,Dt = d(SitX
D,Ci
t )

= (rD − ri + µS
i,QD

+ ρS
iXi

σS
i

σX
i

)SitX
D,Ci
t dt

+ (σS
i

dW Si,QD

+ σX
i

dWXi,QD

)SitX
D,Ci
t .

(14)

Since the drift of Si,D under the risk neutral measure of the domestic
market is given by (rD − qi), we obtain

µS
i,QD

= ri − qi − ρSiXi

σS
i

σX
i

.

Therefore, from (12) we get that the dynamics of Sit under the risk neutral
measure of the domestic market follows the SDE:

dSit = (ri − qi − ρSiXi

σS
i

σX
i

)Sitdt+ σS
i

SitdW
Si,QD

t . (15)

By changing the probability measure from P to QD in (3) and denoting
by Mh the investor’s market price of credit risk, the drift of the investor’s
credit spread is given by µh,P −Mhσh, that can be written as

µh,P −Mhσh = −κλ. (16)

In (16) λ represents the investor’s intensity of default, defined as

λ =
h

1−R
, (17)

where R is the constant investor’s recovery rate.
Once we have deduced the dynamics of the processes involved in the model

under the domestic risk neutral measure, in order to compute the derivative
value, we implement a self-financing strategy by building a portfolio Π which
hedges all the risk factors. More precisely, extending the work in [16] to the
multi-currency framework, we assume that:

• H hedges the market risk due to changes in Si, for i = 1, . . . , N , by
trading in fully collateralized derivatives on the same underlying assets.
For i = 1, . . . , N , the net present value in currency Ci of the derivative
written on the underlying asset Si is denoted by H i, so that H i,D =
H iXD,Ci represents the net present value of H i in the currency D;

8



• the exposure to the FX risk due to changes in XD,Cj , for j = 0, . . . , N ,
is hedged by trading in FX derivatives. For j = 0, . . . , N , Ej denotes
the net present value in currency D of the derivative written on the FX
rate XD,Cj ;

• in order to hedge the spread risk due to changes in I’s credit spread h
and the I’s default risk, H has to trade in two credit default swaps with
different maturities written on the investor:

– a short term credit default swap, CDSD(t, t + dt), that is an
overnight credit default swap with unit notional. The protection
buyer pays a premium at time t equal to htdt and receives (1−R)
at time t + dt if the investor defaults between t and t + dt. We
assume that htdt is such that CDSD(t, t+ dt) = 0;

– a long term credit default swap, CDSD(t, T ), that is a cash collat-
eralized credit default swap maturing on T . In general, CDSD(t, T )
is not null.

Furthermore, we consider a collateral account CC0 , denominated in cur-
rency C0 and composed of a portfolio of bonds RC0 and cash MC0 , i.e.:

CC0 = RC0 +MC0 . (18)

According to the self-financing condition of the replicating strategy [16],
the hedger trades in short term bonds maturing on t+dt to match the spread
duration of the uncollateralized part of the derivative. Hence, denoting by
BD(t, t+dt) the value of the short term bond at time t and by Ωt the number
of units of BD(t, t+ dt) at time t, we have:

ΩtB
D(t, t+ dt) = V D

t − C
C0
t XD,C0 . (19)

Therefore, the replicating portfolio Πt at time t is made as follows:

Πt =
N∑
i=1

αitH
i,D
t +

N∑
j=0

ηjtE
j
t + γtCDS

D(t, T ) + εtCDS
D(t, t+ dt)

+ ΩtB
D(t, t+ dt) + βDt ,

(20)

where

• αit represents the weight of the derivative H i,D
t , for i = 1, . . . , N , in the

portfolio composition at time t;

• ηjt denotes the weight of the derivative Ej
t , for j = 0, . . . , N , in the

portfolio composition at time t;
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• γt and εt are the units of the long term credit default swap and of the
short term credit default swap, respectively, in the portfolio composi-
tion at time t;

• Ωt represents the number of units of the short term bond in the portfolio
composition at time t;

• βDt denotes the amount of cash in the portfolio bank account at time
t, which is composed of

βDt = −
N∑
i=1

αitH
i,D
t −

N∑
j=0

ηjtE
j
t − γtCDSD(t, T ) + CC0

t XD,C0
t . (21)

The portfolio composition in (20) is an extension to the multi-currency frame-
work with stochastic FX rates of the portfolio built in [2], where deterministic
FX rates have been considered.

As a consequence of the no arbitrage condition, we have

V D(t, St, Xt, ht, Jt) = Πt(t, St, Xt, ht, Jt),

so that dV D
t = dΠt and the self-financing condition leads to

dV D
t =

N∑
i=1

αitdH
i,D
t +

N∑
j=0

ηjtdE
j
t + γtdCDS

D(t, T ) + εtdCDS
D(t, t+ dt)

+ ΩtdB(t, t+ dt) + dβDt .

(22)

Note that V D depends on both diffusion and jump processes due to the
presence of the investor’s default state J . Therefore, Itô formula for jump-
diffusion processes [44] is applied to obtain the variation of V D from t to
t+ dt:

dV D
t =

∂V D

∂t
dt+

N∑
i=1

∂V D

∂Si
dSit +

N∑
j=0

∂V D

∂Xj
dXj

t +
∂V D

∂h
dht + ∆V DdJt

+

[
1

2

N∑
i,k=1

ρS
iSk

σS
i

σS
k

SitS
k
t

∂2V D

∂SiSk
+

1

2

N∑
j,l=0

ρX
jXl

σX
j

σX
l

Xj
tX

l
t

∂2V D

∂XjX l

+
1

2
(σh)2∂

2V D

∂h2
+

N∑
i=1

N∑
j=0

ρS
iXj

σS
i

σX
j

SitX
j
t

∂2V D

∂Si∂Xj

+
N∑
i=1

ρS
ihσS

i

σhSit
∂2V D

∂Si∂h
+

N∑
j=0

ρX
jhσX

j

σhXj
t

∂2V D

∂Xj∂h

]
dt,
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where ∆V D is the variation of V D
t at default, defined as

∆V D = V D(t, St, Xt, ht, 1)− V D(t, St, Xt, ht, 0). (23)

Note that if the investor defaults at time t the value of the risky derivative
at time t is given by

V D(t, St, Xt, h, 1) = RM+(t, St, Xt, ht) +M−(t, St, Xt, ht), (24)

where M(t, St, Xt, ht) denotes the mark-to-market price and we have used the
notation M+ = max(M, 0) and M− = min(M, 0). Therefore, the variation
of V D at default can be written as

∆V D = RM+ +M− − V D. (25)

In order to compute the variation of Πt in the time interval [t, t+dt], dΠt,
we first consider the dynamics of the short term credit default swap and the
overnight bond, that are respectively given by:

dCDSD(t, t+ dt) = htdt− (1−R)dJt,

dBD(t, t+ dt) = fH,DBD(t, t+ dt)dt,
(26)

where fH,D is the hedger’s domestic funding rate. Moreover, the weight of
the short term bond in the portfolio Πt at time t, Ωt, is deduced from the
self-financing condition (19) and given by:

Ωt =
V D
t − CD

t

BD(t, t+ dt)
. (27)

In addition, from (21) we obtain that the variation of βDt in the time interval
from t to t+ dt is given by

dβDt =−

[
N∑
i=1

αit(c
D + bD,Cj)H i,D

t +
N∑
j=0

ηjt c
DEj

t + γtc
DCDSD(t, T )

]
dt

+
[(
rR + bD,C0

)
RC0
t +

(
cD + bD,C0

)
MC0

t

]
XD,C0
t dt,

(28)

where rR is the instantaneous repo rate associated to the bond RC0 , bD,C0

is the cross-currency basis and cD is the OIS rate in the domestic market.
Thus, the change in Πt in the infinitesimal interval [t, t+ dt] is given by

dΠt =
N∑
i=1

αit

(
∂H i,D

∂t
+ (ri − qi − ρSiXi

σS
i

σX
i

)Sit
∂H i,D

∂Si
+ (rD − ri)X i

t

∂H i,D

∂X i
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+
1

2
(Sitσ

Si

)2∂
2H i,D

∂(Sit)
2

+
1

2
(X i

tσ
Xi

)2∂
2H i,D

∂(X i)2

+ ρS
iXi

σS
i

σX
i

SitX
i
t

∂2H i,D

∂Si∂X i
− (cD + bD,Cj)H i,D

)
dt

+
N∑
j=0

ηj
[
∂Ej

∂t
+ (rD − rj)Xj

t

∂Ej

∂Xj
+

1

2
(Xj

t σ
Xj

)2 ∂2Ej

∂(Xj)2
− cDEj

]
dt

+
N∑
i=1

αitσ
Si

Sit
∂H i,D

∂Si
dW Si

t

+
N∑
i=1

αitσ
Xi

X i
t

∂H i,D

∂X i
dWXi

t +
N∑
j=0

ηjtσ
Xj

Xj
t

∂Ej

∂Xj
dWXj

t

+ γt

[
∂CDSD(t, T )

∂t
dt+

∂CDSD(t, T )

∂h
dh+

1

2
(σh)2∂

2CDSD(t, T )

∂h2
dt

]
− γtcDCDSD(t, T )dt+ γt∆CDS

D(t, T )dJt + εt [htdt− (1−RC)dJ ]

+ (V D
t − C

C0
t X0)fH,Ddt+

[
(rR + bD,C0)RC0

t + (cD + bD,C0)MC0
t

]
XD,C0
t dt.

Therefore, in order to hedge the risks in the portfolio Π, we choose:

αit =
∂V D

∂Si

∂Hi,D

∂Si

, i = 1, . . . , N,

η0
t =

∂V D

∂X0

∂E0

∂X0

, ηit =
∂V D

∂Xi − αit ∂H
i,D

∂Xi

∂Ei

∂Xi

, i = 1, . . . , N,

γt =
∂V D

∂h
∂CDSD(t,T )

∂h

,

εt =
1

1−R
(
γt∆CDS

D(t, T )−∆V D
)
.

Next, we take into account the equations satisfied byH i,D, Ej and CDSD(t, T ),

12



which are respectively given by:

∂H i,D

∂t
+

(SiσS
i
)2

2

∂2H i,D

∂(Si)2
+

(X iσX
i
)2

2

∂2H i,D

∂(X i)2

+ ρS
iXi

σS
i

σX
i

SiX i ∂
2H i,D

∂Si∂X i
+ (ri − qi − ρSiXi

σS
i

σX
i

)Si
∂H i,D

∂Si

+ (rD − ri)X i∂H
i,D

∂X i
= (cD + bD,Ci)H i,D,

∂Ej

∂t
+

1

2
(XjσX

j

)2 ∂2Ej

∂(Xj)2
+ (rD − rj)Xj ∂E

j

∂Xj
= cDEj,

∂CDSD(t, T )

∂t
+

1

2
(σh)2∂

2CDSD(t, T )

∂h2
+ (µh −Mhσh)

∂CDSD(t, T )

∂h

+
h

1−R
∆CDSD(t, T ) = cDCDSD(t, T ).

Finally, from the previous arguments, equation (22) turns into

∂V D

∂t
+ LSXhV D

= − h

1−R
∆V D + fH,DV D

+ [(rR + bD,C0 − fH,D)RC0 + (cD + bD,C0 − fH,D)MC0 ]XD,C0 ,

(29)

where the differential operator LSXh is given by

LSXh =
1

2

N∑
i,k=1

ρS
iSk

σS
i

σS
k

SiSk
∂2

∂Si∂Sk
+

1

2

N∑
j,l=0

ρX
jXl

σX
j

σX
l

XjX l ∂2

∂Xj∂X l

+
N∑
i=1

N∑
j=0

ρS
iXj

σS
i

σX
j

SiXj ∂2

∂Si∂Xj
+

1

2
(σh)2 ∂

2

∂h2

+
N∑
i=1

ρS
ihσS

i

σhSi
∂2

∂Si∂h
+

N∑
j=0

ρX
jhσX

j

σhXj ∂2

∂Xj∂h

+
N∑
i=1

(ri − qi − ρSiXi

σS
i

σX
i

)Si
∂

∂Si

+
N∑
j=0

(rD − rj)Xj ∂

∂Xj
+ (µh −Mhσh)

∂

∂h
.

(30)

13



By taking into account (16), the differential operator (30) turns into

LSXh =
1

2

N∑
i,k=1

ρS
iSk

σS
i

σS
k

SiSk
∂2

∂Si∂Sk
+

1

2

N∑
j,l=0

ρX
jXl

σX
j

σX
l

XjX l ∂2

∂Xj∂X l

+
N∑
i=1

N∑
j=0

ρS
iXj

σS
i

σX
j

SiXj ∂2

∂Si∂Xj
+

1

2
(σh)2 ∂

2

∂h2

+
N∑
i=1

ρS
ihσS

i

σhSi
∂2

∂Si∂h
+

N∑
j=0

ρX
jhσX

j

σhXj ∂2

∂Xj∂h

+
N∑
i=1

(ri − qi − ρSiXi

σS
i

σX
i

)Si
∂

∂Si

+
N∑
j=0

(rD − rj)Xj ∂

∂Xj
− κ

1−R
h
∂

∂h
.

(31)

Usually, there are two possible choices for the mark-to-market value M
in (25), either equal to the risky derivative value or equal to the value of the
risky-free derivative in terms of counterparty risk [6]. Therefore, from these
two possibilities, we get two alternative PDE models:

• if M = V D, the PDE (29) turns into:

∂V D

∂t
+ LSXhV D − fV D = (r̄RC0 + m̄MC0)XD,C0 + h(V D)+, (32)

• if M = WD, the PDE (29) turns into:

∂V D

∂t
+ LSXhV D −

(
h

1−R
+ f

)
V D

= (r̄RC0 + m̄MC0)XD,C0 + h(WD)+ − h

1−RC

WD,

(33)

where r̄ = rR + bD,C0 − fH,D, m̄ = cD + bD,C0 − fH,D and f = fH,D.
Note that the value of the risk-free derivative, WD, satisfies the PDE:

∂WD

∂t
+ LSX̄WD − fWD = 0,

14



where

LSX̄ =
1

2

N∑
i,k=1

ρS
iSk

σS
i

σS
k

SiSk
∂2

∂Si∂Sk
+

1

2

N∑
j,l=1

ρX
jXl

σX
j

σX
l

XjX l ∂2

∂Xj∂X l

+
N∑

i,j=1

ρS
iXj

σS
i

σX
j

SiXj ∂2

∂Si∂Xj

+
N∑
i=1

(ri − qi − ρSiXi

σS
i

σX
i

)Si
∂

∂Si
+

N∑
j=1

(rD − rj)Xj ∂

∂Xj
.

(34)

If we denote the total value adjustment by U , then we have U = V D−WD.
Moreover, as both the risky derivative and the risk-free derivative at time T
are equal to the payoff G, i.e.,

WD(T, S, X̄) = V D(T, S,X, h) = G(S,X),

then the value of U at maturity T is zero.
Therefore, by taking into account the equations satisfied by the risky

and risk-free derivatives, we obtain the following alternative PDE problems
satisfied by the total value adjustment:

• if M = V D the XVA is the solution of the nonlinear PDE problem:{
∂U
∂t

+ LSXhU − fU = h(WD + U)+ + (r̄RC0 + m̄MC0)XD,C0 ,

U(T, S,X, h) = 0;

(35)

• if M = WD the XVA is the solution of the linear PDE problem:{
∂U
∂t

+ LSXhU −
(

h
1−R + f

)
U = h(WD)+ + (r̄RC0 + m̄MC0)XD,C0 ,

U(T, S,X, h) = 0.

(36)

In both cases, the PDEs are posed in the unbounded domain

D = {(t, S,X, h) ∈ [0, T )× (0,+∞)N × (0,+∞)(N+1) × (0,+∞)}.

Note that the PDE model inferred in this section has the same structure
as the one in [2]. The difference between the two models lies in the fact that
here we have N+1 extra stochastic factors, namely XD,C0 , XD,C1 , . . . , XD,CN ,
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which are assumed to be constant in [2]. Thus, the new model that incorpo-
rates the more realistic approach by considering stochastic foreign exchange
rates also involves much higher spatial dimension in the PDEs problems.
Therefore, as indicated in the introduction, when trying to solve these PDEs
formulations by means of finite differences or finite element methods, the
curse of dimensionality comes into place in a more relevant way. Three pos-
sible alternative probabilistic numerical approaches are based on branching
diffusion methods, deep learning techniques or multilevel Picard iterations.
In the present article we mainly consider a particular Picard iteration scheme
that we will compare with the application of a multilevel Picard iteration
method.

3. Formulation in terms of expectations and numerical methods

In order to apply Picard iteration methods based on Monte Carlo simu-
lation techniques, we follow the same approach as in [2] and we first apply
appropriate Feynman-Kac formulas for the nonlinear [3] and linear [44] PDEs
to obtain their equivalent formulations in terms of expectations. In order to
shorten some notations, we define:

C̄C0 = r̄RC0 + m̄MC0 , C̄D = C̄C0XD,C0 .

Thus, after applying the previously indicated Feynman-Kac formulas, we
get two alternative integral equations.

• If M = V D, the total value adjustment at time t is given by:

U(t, S,X, h) = EQ
t

[
−
∫ T

t

e−f(u−t)
(
hu(W

D(u, Su, X̄u) + U(u, Su, Xu, hu))
+

+ C̄C0
u XD,C0

u

)
du|St = S,Xt = X, ht = h

]
,

(37)

so that the XVA value at time t = 0 (also referred as XVA price), is:

U(0, S,X, h) = EQ
0

[
−
∫ T

0

e−fu
(
hu(W

D(u, Su, X̄u) + U(u, Su, Xu, hu))
+

+ C̄C0
u XD,C0

u

)
du|S0 = S,X0 = X, h0 = h

]
.

(38)
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• If M = WD, the total value adjustment at time t is given by:

U(t, S,X, h) = EQ
t

[
−
∫ T

t

e−
∫ u
t ( hr

1−R
+f)dr

(
hu(W

D(u, Su, X̄u))
+

+ C̄C0
u XD,C0

u

)
du|St = S,Xt = X, ht = h

]
.

(39)

Therefore, the XVA price is:

U(0, S,X, h) = EQ
0

[
−
∫ T

0

e−
∫ u
0 ( hr

1−R
+f)dr

(
hu(W

D(u, Su, X̄u))
+

+ C̄C0
u XD,C0

u

)
du|S0 = S,X0 = X, h0 = h

]
.

(40)

In order to numerically approximate the XVA value in both the nonlinear
case (38) and the linear case (40), we first introduce a time discretization
based on a uniform mesh with Z time nodes tZ = z∆t, z = 0, . . . , Z − 1, the
constant ∆t = T/(Z − 1) being the time step.

Taking into account the previous time mesh, we can discretize the dy-
namics of the underlying assets Si (for i = 1, . . . , N), the FX rates Xj (for
j = 0, . . . , N), the investor’s credit spread h, and the two components of the
collateral account, i.e., RC0 and MC0 , by using the Euler-Maruyama scheme
[36]. Thus, for z = 0, . . . , Z − 2, we consider the iterative procedure:

Sitz+1
= Sitz + (ri − qi − ρSiXi

σS
i

σX
i

)Sitz∆t+ σS
i

Sitz∆W
Si

tz+1
,

Xj
tz+1

= Xj
tz + (rD − rj)Xj

tz∆t+ σX
j

Xj
tz∆W

Xj

tz+1
,

htz+1 = htz −
κ

1−RC

htz∆t+ σh∆W h
tz+1

,

RC0
tz+1

= RC0
tz + (rR + bD,C0)RC0

tz ∆t,

MC0
tz+1

= MC0
tz + (cD + bD,C0)MC0

tz ∆t,

where ∆W Si

tz+1
= W Si

tz+1
−W Si

tz , for i = 1, . . . , N , ∆WXj

tz+1
= WXj

tz+1
−WXj

tz , for

j = 0, . . . , N , and ∆W h
tz+1

= W h
tz+1
−W h

tz are increments of the corresponding
Brownian motions, which are correlated according to the correlation matrix
(4). Note that in practice the correlated Brownian motions can be built
from independent Brownian motions by using the Cholesky factorization of
the correlation matrix.

In both cases (38) and (40), the computation of XVA value requires in-
tegral approximation techniques by numerical quadrature formulas. In next
paragraphs we describe the different methods we have used in the nonlinear
and linear cases.
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Nonlinear case (M = V D). We denote by INL the integral in the right
hand side of (38), i.e.,

INL =

∫ T

0

e−fu
(
hu(W

D(u, Su, X̄u) + U(u, Su, Xu, hu))
+ + C̄C0

u XD,C0
u

)
du.

(41)

We will approximate the integral by using the simple rectangular formula, as
follows:

INL ' T

(
h0(WD(0, S0, X̄0) + U(0, S0, X0, h0))+ + C̄C0

0 XD,C0

0

)
, (42)

or the simple trapezoidal formula:

INL ' T

2

(
e−fT

(
hT (WD(T, ST , X̄T ))+ + C̄C0

T XD,C0

T

)
+ h0(WD(0, S0, X̄0) + U(0, S0, X0, h0))+ + C̄C0

0 XD,C0

0

)
.

(43)

Since (38) is an integral equation, the implementation of a fixed-point
method (Picard iteration method) is required to compute the XVA price.
Thus, starting both from U0 = 0, in the case of the simple rectangular for-
mula or the simple trapezoidal formula we respectively consider the iteration
procedure:

U l+1(0, S0, X0, h0) = T E

[
h0(WD(0, S0, X̄0)+U l(0, S0, X0, h0))++C̄C0

0 XD,C0

0

]
,

(44)
or

U l+1(0, S0, X0, h0) =
T

2
E

[
e−fT

(
hT (WD(T, ST , X̄T ))+ + C̄C0

T XD,C0

T

)
+ h0(WD(0, S0, X̄0) + U l(0, S0, X0, h0))+ + C̄C0

0 XD,C0

0

]
,

(45)

for l = 0, 1, 2, . . ., until a convergence test with a prescribed tolerance is
fulfilled.

Linear case (M = WD). In this case, we denote by IL the integral in
the right hand side of (40), i.e.,

IL =

∫ T

0

e−
∫ u
0 ( hr

1−R
+f)dr

(
hu(W

D(u, Su, X̄u))
+ + C̄C0

u XD,C0
u

)
du, (46)
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and approximate the integral by using the composite rectangular formula:

IL ' ∆t
Z−2∑
z1=0

exp

(
−∆t

z1−1∑
z2=0

(
htz2

1−R
+ f

))
·
(
htz1 (WD(tz1 , Stz1 , X̄tz1

))+ + C̄C0
tz1
XD,C0
tz1

)
,

(47)

or the composite trapezoidal formula:

IL ' ∆t

2

Z−2∑
z1=0

[
exp

(
−∆t

2

z1−1∑
z2=0

(
htz2 + htz2+1

1−R
+ 2f

))
·
(
htz1 (WD(tz1 , Stz1 , X̄tz1

))+ + C̄C0
tz1
XD,C0
tz1

)
+ exp

(
−∆t

2

z1∑
z2=0

(
htz2 + htz2+1

1−R
+ 2f

))
·
(
htz1+1(W

D(tz1+1, Stz1+1 , X̄tz1+1))
+ + C̄C0

tz1+1X
D,C0

tz1+1

)]
.

(48)

Note that in the nonlinear case we consider only simple rectangular and
simple trapezoidal formulas due to the fact that the use of composite formulas
requires to know the values of U at intermediate time nodes, but we only know
the final value of U , that is, U is null at the final node tZ−1 = T . Therefore,
one could approximate the value of U at each node going backwards from
the last node, although in this way a nested Monte Carlo problem arises.

Besides the previously described Picard iteration methods for the nonlin-
ear model, we have also coded and applied to the nonlinear case the multilevel
Picard iteration method proposed in [13]. Note that this method is also ap-
plied in [13] to a special case of the model in [6] to obtain the CVA in a
single currency setting. In the next section we will include the comparison
between the results of the previously described Picard iteration methods and
the multilevel Picard iteration.

4. Numerical results

In this section we present some results obtained by using the techniques
described in the previous one. More precisely, we consider the pricing of some
multiasset derivatives written on underlying assets denominated in different
currencies [46], taking into account counterparty risk.

In particular, we use different quadrature formulas to approximate in-
tegrals involved in the expressions of XVA price (38) and (40) and analyse
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how this affects the Monte Carlo confidence intervals for risk free price, risky
price and XVA price, as well as the elapsed computational time. Moreover,
we are interested in how different choices of the initial values of the underly-
ing assets, of the mark-to-market value M , and of the FX rates volatilities,
affect both the risky derivative and the XVA prices.

In all forthcoming numerical examples, for the linear case and the nonlin-
ear case with Picard iteration method we have set the number of simulations
equal to 104 and the number of time nodes in the discretized dynamics of
the involved processes to Z = 103. Unless otherwise stated, we have used
data listed in Table 1, where we denote by r = (r0, r1, r2) the vector of the
risk-free rates in the foreign markets, q = (q1, q2) the vector of the dividends
paid by the corresponding underlying assets, σS = (σS

1
, σS

2
) the vector of

the assets volatilities, and σX = (σX
0
, σX

1
, σX

2
) the vector of the FX rates

volatilities.

r = (0.07, 0.09, 0.12) σS = (0.30, 0.20) q = (0.07, 0.08) rD = 0.14

X0 = (0.13, 0.89, 1.12) σX = (0.38, 0.40, 0.35) RC0
0 = 25 MC0

0 = 25
h0 = 0.20 κ = 0.01 σh = 0.2 R = 0.3
cD = 0.06 rR = 0.05 bD,C0 = 0.02 f = 0.06

Table 1: Data

Moreover, for the linear case and the nonlinear case with the Picard
iteration methods, we report Monte Carlo 99% confidence intervals in the
corresponding tables while the average Monte Carlo value is used for each
point in the figures.

As indicated at the end of the previous section, we have also applied to
all forthcoming numerical examples the multilevel Picard iteration method
proposed in [13] to solve the nonlinear model. More precisely, for the numer-
ical solution with multilevel Picard iteration we have considered the Picard
parameter ρ = 5 and the number of Picard iterations k = ρ. At each Picard
iteration l, we consider a composite rectangular quadrature formula with ρk−l

rectangles and a number of Monte Carlo paths mk,l,ρ = ρk−l, for l = 1, . . . , k.
Moreover, as also suggested in [13], we consider 10 runs of the multilevel
Picard iteration method with the previous configuration to obtain the mean
values we report in the corresponding tables for each numerical example. For
further details on the method and the notation, we address the reader to [13].

All the described numerical methods for the examples have been imple-
mented from scratch in Matlab codes on an Intel(R) Core(TM) i7-8550U,
1.99 GHz, 16 GB (RAM), x64-based processor.
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Figure 1: Option on the maximum in the nonlinear case. Risk-free price (left) and risky
price (right) as functions of the initial values of the underlying assets. Integrals are ap-
proximated by the simple trapezoidal rule

4.1. Risk-free, risky and XVA prices as functions of the underlying assets

We assume that the default-free hedger H buys from the defaultable
counterparty an option on the maximum of two underlying assets : the price
of the first one, S1

t , is denominated in the foreign currency C1, while the price
of the second one, S2

t , is denominated in the foreign currency C2. The payoff
function is given by:

G(t, S1
t , S

2
t , X

D,C1
t , XD,C2

t ) = (max(S1
tX

D,C1
t , S2

tX
D,C2
t )−K)+, (49)

where K denotes the strike value in domestic currency D, which is set to
K = 15 in the numerical tests.

Figure 1 represents the risk-free price and the risky price in the nonlinear
case. The simple trapezoidal formula has been used to approximate the inte-
grals in the XVA pricing equation (38). As expected, the risky derivative is
less expensive than the risk-free derivative, so that the XVA price is negative,
because the counterparty may default and, therefore, owes the hedger H a
reduction in the derivative price.

Obviously, the XVA price is negative regardless of the choice of the mark-
to-market value, as shown in Figure 2, where we plot the XVA price in the
nonlinear case, when the mark-to-market value M is equal to the risky deriva-
tive price V D, and in the linear case, when M is equal to the risk-free price
WD. Results have been obtained using both simple rectangular and sim-
ple trapezoidal quadrature formulas. In general, the simple rectangular rule
gives greater estimate values, in absolute terms, than the simple trapezoidal
rule, both in the nonlinear and in the linear cases.

In order to better illustrate the difference between the nonlinear case and
the linear case, in Table 2 we report the Monte Carlo confidence intervals for
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(a) Nonlinear case. The integral is approximated
by the simple rectangular formula
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(b) Nonlinear case. The integral is approximated
by the simple trapezoidal formula
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(c) Linear case. The integral is approximated by
the simple rectangular formula
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(d) Linear case. The integral is approximated by
the simple trapezoidal formula

Figure 2: Option on the maximum. XVA price in both the nonlinear case (top) and in
the linear case (bottom) as function of the initial values of the underlying assets. Simple
rectangular (left) and trapezoidal (right) quadrature formulas have been used.
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the risky price and the XVA price for different values of the initial price of
the underlying asset S2, while the initial price of S1 is fixed to 20. Table 2
includes the nonlinear case, the linear case with simple quadrature formulas,
and the linear case with composite quadrature formulas. In any case, we
observe the same trend: the total value adjustment becomes more and more
negative by increasing the initial price of S2 and, therefore, the derivative
price increases. However, it is shown that the simple rectangular formula
gives more negative XVA estimates than the simple trapezoidal formula in
the nonlinear case and than all the other considered quadrature formulas in
the linear case.

In Table 3, for the nonlinear case we show that the results obtained
with the multilevel Picard iteration method belong to the confidence interval
computed with the simple trapezoidal quadrature formula, while it is not
the case when using the rectangle formula. Therefore, if we consider that
the multilevel Picard iteration method provides a reference solution, then by
using simple trapezoidal rule we get enough accuracy.

4.2. XVA price for different values of FX rates volatilities

In this example, we assume that the hedger buys from the counterparty
a best of put/put option, the payoff of which is given by:

G(t, S1
t , S

2
t , X

D,C1
t , XD,C2

t ) = max((K1−S1
tX

D,C1
t )+, (K2−S2

tX
D,C2
t )+), (50)

where S1
t and S2

t are the prices of the two underlying assets denominated
in their respective foreign currencies C1 and C2. Moreover, we denote by
K = (K1, K2) the vector of the strike values for the involved put options. In
our numerical examples we have taken S0 = (12, 15) and K = (12, 15).

We investigate how different values of the FX rates volatilities affect the
XVA price. In particular, we keep fixed the volatility of XD,C0 , say σX

0
=

0.275, while for the volatilities of XD,C1 and XD,C2 we choose either a high
volatility value, say 0.50, or a low volatility value, say 0.05.

Moreover, we also consider the case of null FX rates volatilities, so that
FX rates are deterministic time-dependent functions. In fact, by considering
σX

j ≡ 0 in (11), we obtain dX
D,Cj

t = (rD − rj)XD,Cj

t dt, so that

X
D,Cj

t = X
D,Cj

0 exp((rD − rj)t).

Furthermore, we also consider the case of constant FX rates with X
D,Cj

t =

X
D,Cj

0 , that corresponds to the modelling approach in [2].
In Table 4 we show the XVA confidence intervals for the nonlinear case,

while in Table 5 we report the results for the linear case. With reference to the
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Nonlinear case
Simple rectangular formula Simple trapezoidal formula

S1 S2 V D XVA V D XVA
20 10 [3.6869,3.9608] [-0.7830,-0.7561] [3.9789,4.252] [-0.4935,-0.4626]
20 15 [5.1665,5.4484] [-0.9260,-0.8982] [5.4525,5.7341] [-0.6423,-0.6101]
20 20 [8.2995,8.6308] [-1.2401,-1.2071] [8.5750,8.9072] [-0.9670,-0.9282]
20 25 [12.4525,12.8606] [-1.6615,-1.6208] [12.7147,13.1249] [-1.4024,-1.3533]
20 30 [17.0868,17.5811] [-2.1332,-2.0838] [17.3342,17.8318] [-1.8900,-1.8290]

Linear case
Simple rectangular formula Simple trapezoidal formula

S1 S2 V D XVA V D XVA
20 10 [3.9500,4.2207] [-0.5231,-0.4931] [3.9946,4.2685] [-0.47652,-0.4473]
20 15 [5.4095,5.6882] [-0.6862,-0.6552] [5.4724,5.7549] [-0.62112,-0.5907]
20 20 [8.5072,8.8350] [-1.0358,-0.9994] [8.6051,8.9380] [-0.93541,-0.8990]
20 25 [12.6172,13.0212] [-1.5010,-1.4561] [12.7589,13.1699] [-1.3563,-1.3103]
20 30 [17.2048,17.6942] [-2.0202,-1.9658] [17.3944,17.8928] [-1.8273,-1.7705]

Linear case
Composite rectangular formula Composite trapezoidal formula

S1 S2 V D XVA V D XVA
20 10 [3.9939,4.2681] [-0.4777,-0.4472] [3.9940,4.2681] [-0.4776,-0.4472]
20 15 [5.4724,5.7552] [-0.6217,-0.5898] [5.4725,5.7553] [-0.6216,-0.5897]
20 20 [8.6056,8.9391] [-0.9356,-0.8971] [8.6057,8.9393] [-0.9355,-0.8970]
20 25 [12.7592,13.1712] [-1.3570,-1.3079] [12.7594,13.1714] [-1.3569,-1.3077]
20 30 [17.3943,17.8940] [-1.8290,-1.7677] [17.3945,17.8942] [-1.8287,-1.7675]

Table 2: Option on the maximum. Risky price and XVA price confidence intervals in
the nonlinear and the linear case for different initial values of the underlying assets with
different numerical integration formulas.

S1 S2 Rectangular Trapezoidal Multilevel Picard Iteration
20 10 [-0.7830,-0.7561] [-0.4935,-0.4626] -0.4847
20 15 [-0.9260,-0.8982] [-0.6423,-0.6101] -0.6333
20 20 [-1.2401,-1.2071] [-0.9670,-0.9282] -0.9506
20 25 [-1.6615,-1.6208] [-1.4024,-1.3533] -1.3692
20 30 [-2.1332,-2.0838] [-1.8900,-1.8290] -1.8542

Table 3: Option on the maximum with the nonlinear model. XVA values computed with
simple quadrature formulas (confidence intervals) and multilevel Picard iteration (mean
over 10 runs).
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Simple formulas Multilevel
σX Rectangular Trapezoidal Picard Iteration

(0.275,0.05,0.05) [-0.4948,-0.4882] [-0.2039,-0.1952] -0.1984
(0.275,0.05,0.50) [-0.5826,-0.5728] [-0.3027,-0.2900] -0.2940
(0.275,0.50,0.05) [-0.5809,-0.5702] [-0.2898,-0.2766] -0.2844
(0.275,0.50,0.50) [-0.6515,-0.6399] [-0.3710,-0.3563] -0.3640
(0.000,0.00,0.00) [-0.4906,-0.4842] [-0.2000,-0.1914] -0.1943

XD,Cj ≡ X
D,Cj

0 [-0.5045,-0.4979] [-0.2153,-0.2064] -0.2108

Table 4: Best of put/put option with nonlinear model. XVA price for different sets of FX
rates volatilities values with simple quadrature formulas (confidence intervals) and with
multilevel Picard iteration (mean over 10 runs). Results in the last row correspond to
constant FX rates.

cases with no null FX rates volatilities, as expected, regardless of the choice
of the mark-to-market values and of the quadrature formula, XVA is more
negative when both XD,C1 and XD,C2 have high volatility values, increases
when only one of the two FX rates has a high volatility, and is greater when
both the FX rates have low volatility values. In fact, higher volatilities
correspond to higher levels of risk, therefore, in that case XVA becomes
more negative, thus making the risky derivative price lower. Note that when
all volatilities are null we are considering time dependent deterministic FX
rates that decrease with time from their initial value X

D,Cj

0 . In this case
the XVA is less negative than any stochastic FX rates case, as shown in the
corresponding rows of Table 4 and Table 5. In order to compare with the
case of constant FX rates developed in [2], we show in the last row of both

tables the results for XD,Cj ≡ X
D,Cj

0 , which are a bit more negative than
in the corresponding deterministic time dependent case (where the FX rates
values decrease with time) and less negative than in the stochastic FX rates
case when certain level of volatility is assumed.

Note that the last column of Table 4 shows the XVA obtained with mul-
tilevel Picard iteration. As in the previous case, for all sets of FX rates
volatilities, the confidence interval obtained with the simple trapezoidal for-
mula includes the values computed with multilevel Picard iteration method,
which is not the case for the confidence intervals provided by the rectangle
formula.

In Figure 3 we plot the risk-free price, the risky price and the XVA price
as functions of the initial prices of the underlying assets in the nonlinear
case. The approximation of the integral in (38) has been obtained by the
simple trapezoidal formula, the results of which are in agreement with the
reference solution obtained with the multilevel Picard iteration method (see
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Simple formulas Composite formulas
σX Rectangular Trapezoidal Rectangular Trapezoidal

(0.275,0.05,0.05) [-0.2060,-0.1982] [-0.1959,-0.1877] [-0.1973,-0.1887] [-0.1973,-0.1887]
(0.275,0.05,0.50) [-0.3069,-0.2956] [-0.2911,-0.2792] [-0.2935,-0.2809] [-0.2935,-0.2809]
(0.275,0.50,0.05) [-0.3009,-0.2885] [-0.2793,-0.2668] [-0.2800,-0.2668] [-0.2799,-0.2668]
(0.275,0.50,0.50) [-0.3827,-0.3695] [-0.3574,-0.3436] [-0.3591,-0.3445] [-0.3591,-0.3444]
(0.000,0.00,0.00) [-0.2013,-0.1936] [-0.1921,-0.1841] [-0.1937,-0.1852] [-0.1936,-0.1852]

XD,Cj ≡ X
D,Cj

0 [-0.2180,-0.2101] [-0.2069,-0.1986] [-0.2086,-0.1998] [-0.2086, -0.1998]

Table 5: Best of put/put option with the linear model. XVA price confidence intervals
for different sets of FX rates volatilities values with simple and composite quadrature
formulas. Results in the last row correspond to constant FX rates.

Table 4). As already discussed in the case of the option on the maximum
between two underlying assets, the total value adjustment is negative and
reduces the price of the risky derivative with respect to the corresponding
risk-free derivative. Moreover, it is shown that the derivative value increases
by decreasing one or both the initial prices of the underlying assets and,
consequently, XVA becomes more negative, because when the derivative is
more valuable the counterparty default would lead the hedger to a worse loss.

4.3. Elapsed time

Finally, in order to investigate how the elapsed computational time changes
for the different mehods when increasing the number of the underlying assets,
in the following example we assume that the hedger buys from the counter-
party a basket call option written on N underlying assets S1, . . . , SN with
weights α1, . . . , αN . Therefore, the payoff function is given by:

G(t, S1
t , S

2
t , X

D,C1
t , XD,C2

t ) =

( N∑
i=1

αiSitX
D,Ci

t −K
)+

, (51)

In the numerical tests we have chosen K = 5.
In particular, we choose N = 2, 4, 8, 16 and for any chosen value of N

we consider data in the first N + 1 rows of the left part in Table 6 and the
corresponding column of the right part in Table 6, where we have denoted by
α the vector of the underlying assets weights, that is to say, α = (αi, . . . , αN).

In Table 7 we show Monte Carlo 99% confidence intervals for the prices
of the risky derivative and the XVA, jointly with the elapsed computational
time for both the linear and the nonlinear cases with different numbers of
underlying assets. Rectangular and trapezoidal quadrature formulas are used
to approximate integrals involved in the XVA price formulas. In addition,
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Figure 3: Best of put/put option in the nonlinear case. Risk-free price, risky price and XVA
price as functions of the initial values of the underlying assets. Integrals are approximated
by the simple trapezoidal rule.
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α

i Si0 ri qi σS
i

XD,Ci
0 σX

i
N = 2 N = 4 N = 8 N = 16

0 - 0.30 - - 0.47 0.27
1 10 0.30 0.24 0.35 0.89 0.34 0.4982 0.1695 0.1490 0.0531
2 14 0.24 0.15 0.28 0.54 0.35 0.5018 0.3501 0.1197 0.0632
3 15 0.25 0.20 0.26 0.15 0.34 0.1130 0.1959 0.0666
4 12 0.31 0.26 0.24 1.21 0.30 0.3674 0.1004 0.0625
5 10 0.28 0.22 0.35 0.33 0.26 0.1706 0.0613
6 10 0.29 0.23 0.25 0.16 0.24 0.1169 0.0722
7 13 0.32 0.30 0.27 0.61 0.29 0.0815 0.0719
8 14 0.28 0.22 0.24 0.14 0.28 0.0659 0.0597
9 15 0.34 0.29 0.26 1.20 0.30 0.0465
10 12 0.33 0.26 0.28 0.12 0.29 0.0556
11 11 0.25 0.18 0.34 1.13 0.30 0.0652
12 15 0.23 0.16 0.28 0.19 0.30 0.0711
13 16 0.22 0.17 0.35 0.62 0.33 0.0702
14 12 0.26 0.19 0.24 1.11 0.32 0.0511
15 17 0.32 0.29 0.28 0.17 0.31 0.0641
16 18 0.26 0.21 0.28 0.28 0.29 0.0598

Table 6: Data for the basket option. For N = 2, 4, 8, 16 we respectively consider the first
3, 5, 9, 17 rows of the table on the left and the corresponding column of the table on the
right for the vector of weights α.

for the nonlinear case also the number of Picard iterations is reported. Con-
cerning the prices of the risky derivative and XVA, in the linear case the
confidence intervals coincide in the three or four decimal figures when using
both composite formulas (they could be taken as reference values), the result
of the simple trapezoidal rule being the closest to these values while the one
from single rectangular formula is usually a bit more far than those ones.
In the nonlinear case, the confidence intervals provided by the trapezoidal
rule are closer to the corresponding reference values obtained in the linear
case. With respect to elapsed times, as expected, the simple rectangular and
the simple trapezoidal formulas are faster in the linear case, where the fixed
point method is not employed. The elapsed computational time in the non-
linear case depends not only on the quadrature formula itself, but also on
the number of iterations needed by the fixed point method: the rectangular
formula always needs more iterations than the trapezoidal formula and turns
out to be slower if N = 4 or N = 16. In the linear case the simple and the
composite rectangular formulas are faster than the simple and the compos-
ite trapezoidal formula, respectively. Moreover, the composite formulas are
obviously slower than the corresponding simple formulas.
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N V D XVA Time FPI

2

NL
simple rect [2.2616,2.3476] [-0.6135,-0.6042] 1.8803 13
simple trap [2.5433,2.6296] [-0.3325,-0.3215] 2.0698 11

L

simple rect [2.5919,2.6804] [-0.2833,-0.2714] 1.5015
simple trap [2.5538,2.6408] [-0.3211,-0.3112] 2.4905
comp rect [2.5528,2.6397] [-0.3225,-0.3119] 8.2648
comp trap [2.5528,2.6398] [-0.3225,-0.3119] 8.3771

4

NL
simple rect [3.4511,3.5332] [-0.7290,-0.7199] 3.8816 14
simple trap [3.6617,3.7444] [-0.5197,-0.5074] 3.3307 11

L

simple rect [3.7352,3.8202] [-0.4460,-0.4317] 2.4135
simple trap [3.6773,3.7606] [-0.5030,-0.4924] 2.9364
comp rect [3.6766,3.7600] [-0.5042,-0.4925] 8.7305
comp trap [3.6766,3.7601] [-0.5041,-0.4924] 9.8473

8

NL
simple rect [0.0987,0.1271] [-0.4048,-0.4024] 6.8170 11
simple trap [0.0323,0.0605] [-0.4720,-0.4682] 7.1890 9

L

simple rect [0.1014,0.1301] [-0.4031,-0.3983] 5.7553
simple trap [0.0511,0.0791] [-0.4532,-0.4497] 6.6416
comp rect [0.0525,0.0806] [-0.4519,-0.4480] 13.2813
comp trap [0.0526,0.0807] [-0.4519,-0.4479] 14.3597

16

NL
simple rect [1.0071,1.0308] [-0.4784,-0.4758] 14.0100 13
simple trap [1.1801,1.2040] [-0.3061,-0.3020] 13.3564 11

L

simple rect [1.2212,1.2457] [-0.2651,-0.2603] 12.3217
simple trap [1.1879,1.2119] [-0.2979,-0.2944] 12.5906
comp rect [1.1881,1.2121] [-0.2979,-0.2940] 19.7964
comp trap [1.1881,1.2122] [-0.2979,-0.2940] 20.4875

Table 7: Basket option. Risky price and XVA price confidence intervals in the nonlinear
case (NL) and in the linear case (L) for increasing number N of underlying assets. Different
quadrature formulas are used to approximate integrals. The elapsed computational time in
seconds and the number of fixed point iterations (FPI) for the nonlinear case are reported.
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N Method XVA Time FPI

2
simple rect [-0.6135,-0.6042] 1.88 13
simple trap [-0.3325,-0.3215] 2.07 11
MPI -0.3279 4543.18

4
simple rect [-0.7290,-0.7199] 3.8816 14
simple trap [-0.5197,-0.5074] 3.3307 11
MPI -0.5097 5935.35

8
simple rect [-0.4048,-0.4024] 6.8170 11
simple trap [-0.4720,-0.4682] 7.1890 9
MPI -0.4686 8697.76

16
simple rect [-0.4784,-0.4758] 14.0100 13
simple trap [-0.3061,-0.3020] 13.3564 11
MPI -0.3034 14350.53

Table 8: Basket option for increasing number N of underlying assets for the nonlinear case.
XVA confidence intervals computed with simple rectangular and trapezoidal formulas and
XVA mean values over 10 runs of the multilevel Picard iteration (MPI) method. The
elapsed computational times in seconds for all methods and the number of fixed point
iterations (FPI) for the simple formulas with Picard iteration methods are reported.

Finally, in Table 8 we compare the solution of the nonlinear case with sim-
ple rectangular, simple trapezoidal and multilevel Picard iteration method.
As in the previous numerical examples, the computed confidence intervals
with simple trapezoidal rule include the values provided by the multilevel
Picard iteration method for all the chosen values of N . Moreover, the re-
ported computational times for both methods makes the simple trapezoidal
quadrature formula more competitive. Note that the computational time re-
ported for the multilevel Picard iteration method corresponds to the 10 runs
to compute the mean value reported in Table 8.

5. Conclusions

In the previous work [2], the models and computations of the XVA for
a multi-currency setting have been developed when constant exchange rates
between the different currencies are considered. In order to pose a more re-
alistic modelling approach, the main objective of the present work has been
to extend the previous work to the consideration of stochastic models for the
evolution of foreign exchange rates. Note that the consideration of stochastic
exchange rates significantly increases the number of underlying risk factors.
Thus, after proposing suitable dynamics for exchange rates evolution, the
portfolio replication and the dynamic hedging methodologies have provided
the formulation of the XVA pricing problem in terms of linear and nonlinear
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PDEs with larger dimensions than in the case of constant exchange rates.
Moreover, the use of Feynman-Kac formulas allows to obtain the equiva-
lent formulations in terms of expectations, so that Monte Carlo simulation
techniques can be applied to the corresponding linear and nonlinear models.
In the nonlinear case, Picard iteration methods based on simple rectangu-
lar and trapezoidal quadrature formulas can be compared with the recently
introduced multilevel Picard iteration methods [13, 14].

Concerning the comparison of numerical methods when applied to all
the considered examples, it seems that Picard iteration method with simple
trapezoidal quadrature formula exhibits the best balance of accuracy and
computational cost. Thus, the 99% Monte Carlo confidence interval provided
by this method always contains the reference value obtained with multilevel
Picard iteration method, with a significantly shorter computational time.
With the same order of computational cost, the confidence interval obtained
with the simple rectangular formula does not contain the XVA price provided
by the multilevel Picard iteration method.

From the modelling point of view, numerical examples illustrate the con-
sequences of using the more realistic stochastic models for the evolution of
exchange rates. As illustrated in Tables 4 and 5, when considering time de-
pendent deterministic FX rates, the price of the XVA is underestimated with
respect to the case of more realistic stochastic rates evolution, namely the
confidence interval of the XVA is located in a less negative region than in the
stochastic case. In the case of constant FX rates, this underestimation also
appears when compared with stochastic FX rates with a large enough level
of volatility.

As possible future extensions of the present work, a first step could be
the consideration of more sophisticated models for the stochastic evolution
of FX rates, by incorporating local [12], stochastic [7] or local/stochastic
volatility [39], see also the books [38, 22] and the references therein. Another
extension could be the consideration of stochastic dynamics for the risk free
rates operating in each market, as proposed in [35] in a multi-currency setting,
thus additionally increasing the number of stochastic factors. Note that
the joint consideration of stochastic volatility models for FX combined with
stochastic interest rates for cross-currency markets has been widely addressed
for two currencies, see [42] and the references therein. For example, a Heston
model for the FX rate evolution can be combined with a one factor model
for each stochastic rate [41] or the one proposed in [20].
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Statistiques 55, 184–210.

[31] Henry-Labordère, P., Touzi, N., 2021. Branching diffusion representa-
tion for nonlinear Cauchy problems and Monte Carlo approximation.
Annals of Applied Probability 31, 2350–2375.

[32] Hornik, K., 1991. Approximation capabilities of multilayer feedforward
networks. Neuronal Networks 4, 251–257.

[33] Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T., von Wurstem-
berger, P., 2020. Overcoming the curse of dimensionality in the numeri-
cal approximation of semilinear parabolic partial differential equations.
Proceedings of the Royal Society A 476, 20190630.

34



[34] Jentzen, A., Salimova, D., Welti, T., 2021. A proof that deep arti-
ficial neural networks overcome the curse of dimensionality in the nu-
merical approximation of Kolmogorov partial differential equations with
constant diffusion and nonlinear drift coefficients. Communications in
Mathematical Sciences 19, 1167–1205.

[35] Kjaer, M., 2017. Consistent XVA Metrics Part II: Multicurrency.
Bloomberg http://ssrn.com/abstract=2932338.

[36] Kloeden, P.E., Platen, E., 2011. Numerical Solution of Stochastic Dif-
ferential Equations. Springer, Berlin.

[37] Kolmogorov, A., 1956. On the representation of continuous functions of
several variables by superposition of continuous functions of one variable
and addition. Doklady Akademii Nauk SSSR 108, 679–681.

[38] Lipton, A., 2001. Mathematical Methods for Foreign Exchange. World
Scientific, London.

[39] Lipton, A., Gal, A., Lasis, A., 2014. Pricing of vanilla and first gener-
ation exotic options in the local stochastic volatility framework: survey
and new results. Quantitative Finance 14, 1899–1922.

[40] McKean, H., 1975. Application of Brownian motion to the equation
of Kolmogorov-Petrovskii-Piskunov. Communications on Pure and Ap-
plied Mathematics 28, 323–331.

[41] Oosterlee, C.W., Grzelak, L.A., 2012. On cross-currency models with
stochastic volatility and correlated interest rates. Applied Mathematical
Finance 19, 1–35.

[42] Oosterlee, C.W., Grzelak, L.A., 2020. Mathematical Modelling and
Computation in Finance. World Scientific, London.

[43] Pardoux, E., Peng, S., 1990. Adapted solution of a backward stochastic
differential equation. Systems and Control Letters 14, 55–61.

[44] Pascucci, A., 2011. PDE and Martingale Methods in Option Pricing.
Springer Science & Business Media.

[45] Piterbarg, V., 2010. Funding beyond discounting: collateral agreements
and derivatives pricing. Risk Magazine 2, 97–102.

[46] Rapuch, G., Roncalli, T., 2004. Dependence and two-asset options pric-
ing. J. Comput. Finance 7, 23–33. URL: https://doi.org/10.21314/
JCF.2004.119, doi:10.21314/JCF.2004.119.

35


