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Abstract Since the global financial crisis of 2007–2008, different adjustments are
considered in the pricing of financial products to incorporate the counterparty risk;
the set of these adjustments is referred to as total value adjustment or XVA. In this
work we first pose a partial differential equations (PDE) model for pricing the XVA
associated to European-like derivatives in multi-currency situations. Moreover, we
formulate and solve the XVA pricing problem in terms of expectations to overcome
the curse of dimensionality arising in PDEs formulation. Numerical results illustrate
the performance of the proposed Monte Carlo algorithms to price best-of-all call
options and the sum of put options denominated in different currencies. The second
example additionally illustrates the appropriate scalingwhen the number of stochastic
factors (currencies) becomes large.

1 Statement of Partial Differential Equations Model

As a consequence of the financial crisis of 2007–2008, it was clear that the possibil-
ity of counterparties default should be taken into account in the pricing of financial
derivatives by means of appropriate valuation adjustments, either related to credit
(CVA), funding (FVA) or collateral (CollVA), for example. More recently, adjuste-
ments related to capital (KVA) or margin (MVA) have been considered. We address
the reader to the books [5, 9, 10] and the references therein. In the single currency
framework three main approaches have been developed. A first one based on PDEs
with seminal references [6, 16], the second one based on expectations started with
[4], and the third one based on backward stochastic differential equations [7, 8].
In the present work we consider a multi-currency setting, following the ideas

in [12], where the joint consideration of CVA, FVA, CollVA and repo adjustments
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are taken into account. We will refer to the set of this adjustments as total value
adjustment or XVA. For the additional inclusion of KVA or MVA in the XVA, the
ideas in [14, 13] in the single currency case could be considered.
In this section we pose a PDE formulation for the value of a derivative traded in a

multi-currency framework, taking into account the total value adjustment to consider
possible defaults of the counterparties involved in the deal.
Let 𝑆𝑡 = (𝑆1

𝑡 , . . . , 𝑆
𝑁
𝑡 ) be the vector, at time 𝑡, of the underlying assets prices

𝑆𝑖𝑡 , 𝑖 = 1, . . . , 𝑁 , each one of them being denominated in its corresponding foreign
currency 𝐶𝑖 . Moreover, let ℎ𝑡 be the investor’s credit spread, and 𝑋

𝐷,𝐶 𝑗

𝑡 (for 𝑗 =
0, . . . , 𝑁) the foreign exchange (FX) rate between the domestic currency 𝐷 and 𝐶 𝑗 ,
namely the domestic price of one unit of the foreign currency 𝐶 𝑗 .
The stochastic differential equations (SDEs) governing the evolution of the prices

of the underlying assets, the FX rates (see [5]), and the investor’s credit spread under
the risk neutral probability measure (𝑄𝐷) of the domestic market are:

𝑑𝑆𝑖𝑡 = (𝑟 𝑖 − 𝑞𝑖)𝑆𝑖𝑡 𝑑𝑡 + 𝜎𝑆
𝑖

𝑆𝑖𝑡 𝑑𝑊
𝑆𝑖

𝑡 , 𝑖 = 1, . . . , 𝑁 , (1)

𝑑𝑋
𝐷,𝐶 𝑗

𝑡 = (𝑟𝐷 − 𝑟 𝑗 )𝑋𝐷,𝐶 𝑗

𝑡 𝑑𝑡 + 𝜎𝑋 𝑗

𝑋
𝐷,𝐶 𝑗

𝑡 𝑑𝑊𝑋 𝑗

, 𝑗 = 0, . . . , 𝑁, (2)

𝑑ℎ𝑡 = −^
ℎ𝑡

1 − 𝑅 𝑑𝑡 + 𝜎
ℎ 𝑑𝑊ℎ

𝑡 , (3)

where 𝑟𝐷 and 𝑟 𝑖 are respectively the risk-free rate in currencies 𝐷 and 𝐶𝑖 , 𝑞𝑖 is the
dividend paid by 𝑆𝑖 , and 𝑅 is the investor’s recovery rate. Moreover, 𝜎𝑆𝑖 , 𝜎𝑋 𝑗 and
𝜎ℎ are the volatility functions of 𝑆𝑖𝑡 , 𝑋

𝐷,𝐶 𝑗

𝑡 and ℎ𝑡 , respectively, while 𝑊𝑆𝑖 , 𝑊𝑋 𝑗

and𝑊ℎ are correlated Brownian motions. Nevertheless, in the following we consider
𝜎𝑋

𝑗

= 0 in order to have deterministic FX rates.
Next, let 𝐽𝑃𝑡 be the investor’s default state at time 𝑡, i.e., 𝐽𝑃𝑡 = 1 in case of default

before or at time 𝑡, otherwise 𝐽𝑃𝑡 = 0. We use the notation𝑉𝐷𝑡 = 𝑉𝐷 (𝑡, 𝑆𝑡 , ℎ𝑡 , 𝐽𝑃𝑡 ) for
the derivative value at time 𝑡 from the investor’s point of view in domestic currency
and 𝑉𝑅𝐹,𝐷𝑡 = 𝑉𝑅𝐹,𝐷 (𝑡, 𝑆𝑡 ) for the corresponding risk-free derivative price, i.e,
traded between two non-defaultable counterparties.
In order to price the derivative, we follow [11, 12] and consider a self-financing

portfolio Π that hedges all the risk factors: the market risk due to changes in
𝑆1, 𝑆2, . . . , 𝑆𝑁 , the investor’s spread risk due to changes in ℎ, and the investor’s
default risk. Moreover, we assume the existence of a collateral account, denomi-
nated in currency 𝐶0, composed of a portfolio of bonds 𝑅𝐶0 and cash 𝑀𝐶0 . We
address the reader to [2] for further details.
No arbitrage arguments and the self-financing condition, jointly with the use of

Itô’s formula for jump-diffusion processes, lead to the following pricing PDE for a
European-like derivative with counterparty risk (see [2], for details):

𝜕𝑉𝐷

𝜕𝑡
+ L𝑆ℎ𝑉𝐷 − 𝑓 𝐻,𝐷𝑉𝐷 +

ℎ

1 − 𝑅Δ𝑉
𝐷

=

[
(𝑟𝑅 + 𝑏𝐷,𝐶0 − 𝑓 𝐻,𝐷)𝑅𝐶0 + (𝑐𝐷 + 𝑏𝐷,𝐶0 − 𝑓 𝐻,𝐷)𝑀𝐶0

]
𝑋𝐷,𝐶0 , (4)



XVA in a multi-currency setting 267

where L𝑆ℎ is the second order differential operator given by

L𝑆ℎ =
1
2

𝑁∑︁
𝑖,𝑘=1

𝜌𝑆
𝑖𝑆𝑘𝜎𝑆

𝑖

𝜎𝑆
𝑘

𝑆𝑖𝑆𝑘
𝜕2

𝜕𝑆𝑖𝜕𝑆𝑘
+ 1

2
(𝜎ℎ)2 𝜕

2

𝜕ℎ2

+
𝑁∑︁
𝑖=1

𝜌𝑆
𝑖ℎ𝜎𝑆

𝑖

𝜎ℎ𝑆𝑖
𝜕2

𝜕𝑆𝑖𝜕ℎ
+

𝑁∑︁
𝑖=1
(𝑟 𝑖 − 𝑞𝑖)𝑆𝑖 𝜕

𝜕𝑆𝑖
− ^ℎ

1 − 𝑅
𝜕

𝜕ℎ
,

(5)

and Δ𝑉𝐷 is the variation of 𝑉𝐷 upon default defined as Δ𝑉𝐷 = 𝑅𝑀+ + 𝑀− − 𝑉𝐷 ,
with 𝑀 (𝑡, 𝑆𝑡 , ℎ𝑡 ) representing the mark-to-market derivative price.
Two possible values for 𝑀 are usually chosen [6]: either equal to the risky value

or to the risk-free value of the derivative. We choose 𝑀 = 𝑉𝐷 , so that (4) turns into

𝜕𝑉𝐷

𝜕𝑡
+ L𝑆ℎ𝑉𝐷 − 𝑓 𝑉𝐷 = (𝑟𝑅𝐶0 + �̄�𝑀𝐶0 )𝑋𝐷,𝐶0 + ℎ(𝑉𝐷)+, (6)

where 𝑟 = 𝑟𝑅 + 𝑏𝐷,𝐶0 − 𝑓 𝐻,𝐷 , �̄� = 𝑐𝐷 + 𝑏𝐷,𝐶0 − 𝑓 𝐻,𝐷 and 𝑓 = 𝑓 𝐻,𝐷 .
Next, we denote by 𝑈 the XVA price, that can be computed as the difference

between the risky derivative value 𝑉𝐷 and the risk-free derivative value 𝑉𝑅𝐹,𝐷 . As
𝑉𝐷 and 𝑉𝑅𝐹,𝐷 are both equal to the payoff at maturity 𝑇 , we have𝑈 (𝑇, 𝑆, ℎ) = 0.
Considering that the risk-free price follows the multidimensional Black-Scholes

equation, from (6) we obtain the following nonlinear PDE for the XVA price [2]:

𝜕𝑈

𝜕𝑡
+ L𝑆ℎ𝑈 − 𝑓𝑈 = ℎ

(
𝑉𝑅𝐹,𝐷 +𝑈

)+ + (
𝑟𝑅𝐶0 + �̄�𝑀𝐶0

)
𝑋𝐷,𝐶0 , (7)

jointly with the final condition𝑈 (𝑇, 𝑆, ℎ) = 0, where (𝑡, 𝑆, ℎ) ∈ [0, 𝑇) × (0, +∞)𝑁 ×
(0, +∞). As an alternative, the choice 𝑀 = 𝑉𝑅𝐹,𝐷 leads to a linear model [2].

2 Formulation in Terms of Expectations

Since the spatial dimension of (7) increases with the number of currencies, the PDE
easily becomes high dimensional in space. Therefore, we propose in this section an
alternative expectation-based formulation. In this way, we overcome the so-called
curse of dimensionality, that affects most of the numerical approaches to solve PDE
problems. Thus, we use a Monte Carlo method to approximate expectations in a
multidimensional framework, allowing to manage problems that involve more than
two stochastic factors.
In order to compute the values of 𝑈 by using the Monte Carlo method, we apply

the nonlinear Feynman-Kac theorem [15], that relates the solution of nonlinear PDEs
with the solution of BSDEs. More precisely, Theorem 1.1 in [3] can be applied to
formulate (7) in terms of the following nonlinear integral equation:
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𝑈 (𝑡, 𝑆, ℎ) = 𝐸𝑄
𝐷

𝑡

[
−

∫ 𝑇

𝑡

𝑒− 𝑓 (𝑢−𝑡)
(
ℎ𝑢

(
𝑉𝑅𝐹,𝐷 (𝑢, 𝑆𝑢) +𝑈 (𝑢, 𝑆𝑢, ℎ𝑢)

)+
+

(
𝑟𝑅

𝐶0
𝑢 + �̄�𝑀𝐶0

𝑢

)
𝑋
𝐷,𝐶0
𝑢

)
𝑑𝑢 | 𝑆𝑡 = 𝑆, ℎ𝑡 = ℎ

]
. (8)

Analogously to [12], the integrand in the first line of (8) corresponds to
CVA+FVA, while the integrand in the second line is related to CollVA and repo
adjustment.
In order to compute the XVA given at time 𝑡 = 0, i.e. when the derivative is priced,

we numerically solve (8) with a fixed point method and a trapezoidal quadrature
formula. Thus, we start from𝑈0 = 0 and recursively compute until convergence:

𝑈ℓ+1 (0, 𝑆, ℎ) = 𝐸𝑄
𝐷

0

[
−

∫ 𝑇

0
𝑒− 𝑓 𝑢

(
ℎ𝑢

(
𝑉𝑅𝐹,𝐷 (𝑢, 𝑆𝑢) +𝑈ℓ (𝑢, 𝑆𝑢, ℎ𝑢)

)+
+

(
𝑟𝑅

𝐶0
𝑢 + �̄�𝑀𝐶0

𝑢

)
𝑋
𝐷,𝐶0
𝑢

)
𝑑𝑢

���� 𝑆0 = 𝑆, ℎ0 = ℎ

]
.

3 Numerical Results

We now report some results obtained by using the Monte Carlo method for the
evaluation of differentmulti-asset options in the presence of XVA. In all the examples
we have considered constant FX rates and maturity 𝑇 has been set to 6 months.
The values of the parameters are specified in Table 1. Moreover, we have used
𝑁𝑃 = 10000 paths and 𝑁𝑇 = 1000 time steps. Other test cases are presented in [2].

Table 1: Financial data.

𝑟1 = 0.30 𝑟2 = 0.24 ℎ0 = 0.20 𝜌𝑆
1𝑆2

= 0.15 𝑅𝐷
0 = 15 𝑓 = 0.06

𝑞1 = 0.24 𝑞2 = 0.18 𝑅𝐶 = 0.30 𝜌𝑆
1ℎ = 0.40 𝑀𝐷

0 = 15 𝑟 = 0.01
𝜎𝑆1

= 0.30 𝜎𝑆2
= 0.20 ^ = 0.01 𝜌𝑆

2ℎ = −0.20 �̄� = 0.02

In the first example we assume the default-free hedger 𝐻 buys, from a defaultable
counterparty 𝐶, a European best-of-all call option, the payoff of which is given by:

𝐺 (𝑡, 𝑆1, 𝑆2) = max
(
(𝑋𝐷,𝐶1𝑆1 − 𝐾1)+, (𝑋𝐷,𝐶2𝑆2 − 𝐾2)+

)
, (9)

where 𝑆1 and 𝑆2 are two assets respectively written in currencies𝐶1 and𝐶2, and 𝐾1,
𝐾2 are the strike values given in the domestic currency 𝐷. In our numerical tests,
we have chosen 𝐾1 = 12 and 𝐾2 = 15.
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Figure 1 shows the risky option price and XVA, the latter being negative because
𝐻 asks the counterparty 𝐶 for a reduction in the price since 𝐶 may default. Table 2,
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Fig. 1: Best-of-all call option. Price of the risky option (left) and total value adjust-
ment (right).

where the notation 𝑆𝑖,𝐷 = 𝑋𝐷,𝐶𝑖𝑆𝑖 has been used, shows Monte Carlo 99% confi-
dence intervals for option prices and XVA values for different initial asset prices and
investor’s credit spread values. Since the credit spread represents the probability of
𝐶’s default, the XVA value becomes more negative when increasing ℎ.

Table 2: Best-of-all call option. Monte Carlo confidence intervals.

𝑆1,𝐷 = 10 𝑆1,𝐷 = 14
𝑆2,𝐷 ℎ 𝑉𝐷 𝑋𝑉𝐴 𝑉𝐷 𝑋𝑉𝐴

12 0.10 [0.1200,0.1681] [-0.2401,-0.2394] [2.2464,2.3812] [-0.3591,-0.3542]
12 0.15 [0.1128,0.1609] [-0.2473,-0.2466] [2.1785,2.3133] [-0.4270,-0.4220]
12 0.20 [0.1055,0.1535] [-0.2547,-0.2539] [2.1089,2.2437] [-0.4967,-0.4916]
18 0.10 [3.1003,3.2270] [-0.4057,-0.3991] [3.9446,4.0757] [-0.4521,-0.4439]
18 0.15 [3.0087,3.1354] [-0.4974,-0.4907] [3.8293,3.9603] [-0.5674,-0.5591]
18 0.20 [2.9146,3.0413] [-0.5915,-0.5847] [3.7109,3.8420] [-0.6859,-0.6774]

In the second example we consider that the non-defaultable hedger 𝐻 buys, from
a defaultable counterparty 𝐶, a portfolio of 𝑁 European put options denominated in
different currencies, so that the portfolio payoff function is given by:

𝐺 (𝑡, 𝑆1, . . . , 𝑆𝑁 ) =
𝑁∑︁
𝑖=1
(𝐾 𝑖 − 𝑋𝐷,𝐶𝑖𝑆𝑖)+ , (10)

where 𝑆𝑖 (𝑖 = 1, . . . , 𝑁) are the prices of the underlying assets, respectively written
in currencies 𝐶𝑖 , while 𝐾 𝑖 are the respective strike values in the domestic currency
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𝐷 for each put option. Table 3 shows the Monte Carlo 99% confidence intervals
for the risk-free, risky and XVA prices for different numbers of underlying assets.
Moreover, the elapsed computational time is reported, thus showing a linear increase
with the number of assets (stochastic factors). The initial assets prices and the strike
values lie in the interval [10, 18].

Table 3: Sum of put options. Monte Carlo confidence intervals and elapsed time.

Assets 𝑉𝑅𝐹,𝐷 𝑉𝐷 𝑋𝑉𝐴 Time (s)
2 [4.9927, 5.1547] [ 4.2446, 4.4104] [-0.7510,-0.7414] 1.0167
8 [18.7710,19.1090] [16.5670,16.9110] [-2.2186,-2.1827] 3.3562
32 [65.9540,66.4760] [58.7910,59.3200] [-7.2220,-7.0965] 16.530

Finally, we restrict our analysis to the case of the sum of two put options and
we set 𝐾1 = 20 and 𝐾2 = 25. Note that the XVA is negative because the buyer of
the derivative 𝐻 will ask the counterparty 𝐶 for a reduction in the price due to the
potential default of 𝐶. As shown in Figure 2, the XVA becomes more negative when
the option is in the money, namely when the asset prices are lower, because 𝐻 would
be more affected by𝐶’s default, while the XVA approaches to zero if the asset prices
increase, so that the option becomes out of the money. Moreover, the XVA becomes
more negative when increasing the number of assets which increases the payoff so
that 𝐻 is more affected by 𝐶’s default.
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(right).



XVA in a multi-currency setting 271

4 Conclusions

With the aim of modelling the total value adjustment in a multi-currency setting,
we have extended our methodology [1]. Thus, we have stated a nonlinear model and
proposed a Monte Carlo method to compute the XVA, that overcomes the curse of
dimensionality. We show the suitable performance of the proposed methodology in
several examples with European options involving up to 32 underlying assets.
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