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Abstract

We build a stochastic Asset Liability Management (ALM) model
for a life insurance company. Therefore, we deal with both an asset
portfolio, made up of bonds, equity and cash, and a liability portfolio,
comprising with-profit life insurance policies. We define a mortality
model and a surrender model, as well as a new production model.
First, with the purpose of ensuring the solvency of the company and
the achievement of a competitive return, in the interest of both share-
holders and policyholders, the insurer’s portfolio is periodically re-
balanced according to the solution of a nonlinearly constrained opti-
mization problem, that aims to match asset and liability durations,
subject to the attainment of a target return. In addition, several
real world constraints are imposed. When computing the company
balance sheet projections, we consider not only future maturity and
death payments, but also future surrender payments and all the cash
flows due to new production, in order to obtain estimates that are as
reliable as possible. The estimation of the timing and of the numbers
of future surrenders and of future new policyholders requires the ap-
proximation of conditional expectations: to this end, we employ the
Least Squares Monte Carlo technique. Secondly, for each bonds asset
class and for equity asset class we propose a sectorial optimization
problem with the aim of maximizing the expected value of a chosen
utility function, subject to the results obtained from the first stage of
portfolio rebalancing. Finally, we analyse a case study.
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1 Introduction

Many financial decision problems involve the forecasting of future liability
cash flows. For insurance products, the planning horizon extends beyond a
decade: for example, pension funds have a planning horizon of more than 30
years. So, for an insurance company operating in life business, it is essential
to build a model to forecast the evolution of cash inflows and outflows over
time. All the techniques and the models used by a company to address
financial risk due to the mismatching between assets and liabilities portfolios
are part of the Asset and Liabilities management (ALM). The traditional
ALM programs focus on interest rate risk and liquidity risk, but, depending
on the business model of the company, the specific definition of the underlying
models for the assets and liabilities may vary.

Historically, the first ALM methods were developed starting from the
milestone works by Macaulay [27], Samuelson [33], Redington [32] and Fisher
& Weil [18], ordered according to the publication year. In these earlier mod-
els, the bond immunization, i.e., the matching between bond portfolio interest
rate sensitivity and liability streams interest rate sensitivity, was the unique
subject. These models are single stage models and do not take into account
the stochastic evolution of interest rate since they use only the duration,
or at most also the convexity, as risk measure. Nowadays, these techniques
are unsuitable for an insurance company due to the complexity of both the
asset portfolio and the liability portfolio. An insurance asset portfolio is
not composed only of plain vanilla bonds and liquidity, but also of subordi-
nated bonds which have embedded options (typically call options), structured
bonds, no fixed income products, such as stocks, hedge funds, private equity,
and real asset products (see [37]). However, when dealing with ALM models,
the real challenge lies in the liability side. Due to the presence of surrender
options, death benefits and other random features, an ALM model has to
capture the stochastic dynamics and the uncertain characteristics inherent
with insurance policies. The presence of these options with early exercise
and asymmetric distribution makes essential the development of a suitable
valuation functionality, not only to evaluate the company’s balance sheet at
current date, but also to simulate the firm’s position at future dates.

So, a company needs to develop an ALM tool able to forecast its balance
sheet evolution over time predicting future cash inflows and outflows, in
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order to ensure the solvency of the company, i.e., its capability to meet all
its financial obligations. A correct forecasting of the evolution of the balance
sheet, including cash flow generation, and the calculation of duration and
convexity mismatching allow to manage the risk of future unexpected cash
flows that could compromise the business of the firm.

But the aim of an ALM tool does not end here, because the purpose of
ALM is to satisfy the interests of shareholders, policyholders and regulators
in a common framework. Therefore, an ALM tool includes the allocation
of assets to increase the profit of the company. The insurer invests in a
portfolio the return of which is consistent with the offering of competitive
products, in the shareholders’ and policyholders’ interest, while satisfying
the regulators. In this sense, ALM stands between risk management and
strategic asset allocation, having the purpose of maximizing the investment
returns, while minimizing the reinvestment risks. A complete guide on ALM
models can be found in [38] and [39], and in the references therein.

It is clear that these models have a particular relevance in life insurance
industry, even more after the introduction of the Solvency Capital Require-
ment computed under Solvency II Directive (see [34] and [36]), based on
the computation of the 99.5% Value-at-Risk over one year of company’s own
funds, so that a proper joint estimation of both assets and liabilities values
becomes essential.

The literature of ALM models for life insurance companies is very wide.
We refer to [4], [5], [19] and [29], and the references therein. In the life
insurance sector, the presence of embedded options in policies makes very
difficult to correctly forecast the cash outflows (the problem of the pricing
of embedded options has been widely treated in literature, see for example
[2], [1], [3], [21] and [28]). The need of a more accurate approximation of the
portfolio evolution over time, especially on liabilities side, jointly with the
increase in computational power, makes feasible and suitable for an insurance
firm the development of a stochastic scenario-based ALM model. In fact,
significant resources have been invested into the development of such models,
specially in insurance companies. Naturally, a trade off between complexity
and practicality is always involved.

Starting from the seminal works by Bradley and Crane [6] and by Lane
and Hutchinson [25], dynamic stochastic programming techniques have been
applied to ALM models. In particular, Bradley and Crane were the first to
use a dynamic recourse programming in a portfolio problem restricted to fixed
interest securities. Stochastic programming in the form of a multistage re-
course problem is a general formulation of a multistage ALM model in which
the objective function is typically characterized in terms of the expected value
of a linear or nonlinear utility function of wealth at the horizon (see [12]).
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This approach has become very popular in finance both among academics
and practitioners. The literature on the application of stochastic program-
ming with recourse to ALM models is very wide. An interested reader could
find some of these applications in [9], [10], [11], [13], [20] and [37]. Recently,
Fernández et al in [17] have presented an ALM model for a life insurance
company together with its numerical simulations performed in a new high
performance computing architectures provided by GPUs technology. They
consider a portfolio comprising with-profit life insurance policies with some
innovations with respect to literature in the modelling of the surrenders of
the policyholders. However, in the estimate of future supposed liabilities
cash flows, they take into account neither possible future surrenders nor the
so-called new production, i.e. the cash flows due to new policyholders which
subscribe to the policy at future times.

In this paper, we build a two stages stochastic ALM model for a life
insurance company’s portfolio. First, we propose a multistep reinvestment
strategy using a scenario-based approach in which the assets and the lia-
bilities are jointly simulated using appropriated stochastic models. On the
asset side, we consider a portfolio composed of bonds, divided in buckets
of duration, stocks and cash. On the liability side, we consider a portfolio
comprising with-profit life insurance policies, such that policyholders’ saving
account earns a rate given by the maximum between a minimum guaranteed
rate of return and a percentage, called participation rate, of the asset port-
folio return. In order to keep track of the evolution of the liability portfolio,
we take into account, in addition to the policyholders’ saving account model,
the biometric model and the surrender model. Also, we consider cash flows
due to new production. The question of the issue of new policies has been
investigated in previous works (see, for example, [16], [22] and [31]), but we
propose, as far as we know, an innovative approach to this feature with re-
spect to existing literature. At each time step k, we jointly simulate all the
random variables of the model and, then, we compute asset duration and
liability duration, estimating the projections of all future cash flows, made
up of death, maturity and surrender payments, also related to new produc-
tion. To the best of our knowledge, the fact that we consider also cash flows
due to future surrenders and new production when computing balance sheet
projections constitutes an innovation with respect to literature and allows
to better forecast the evolution of the balance sheet of an insurance com-
pany, therefore to compute more reliable estimates of actuarial reserves and
of probabilities of default. From the technical point of view, it leads to the
need to estimate conditional expectations with respect to the information
available at time step k, so that we employ a Least Squares Monte Carlo
technique. At each time step k, after having computed the duration of as-
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set portfolio and of liability portfolio, we perform a rebalancing of the asset
portfolio by solving a nonlinearly constrained optimization problem in which
we minimize the distance between the asset duration and the liability dura-
tion, subject to the achievement of a target return and other constraints that
are typical for an asset allocation problem. Indeed, we consider real world
constraints, such as the so-called budget constraint, constraints that do not
allow short sales, constraints on the upper and on the lower bounds for the
size of a single asset class weight or of a combination of asset classes weights,
constraints on single (on one asset class) and on portfolio turnover. This
dynamic portfolio rebalancing strategy allows to simultaneously satisfy the
interest of shareholders and policyholders. Indeed, the minimization of the
distance between asset duration and liability duration permits to guarantee
the solvency of the company, whereas the achievement of a target return
allows to build a competitive portfolio. Since the decision rules previously
described do not build an optimal dynamic reinvestment strategy, we propose
a second stage of portfolio optimization in order to maximize the expected
value of a chosen utility function, using the results obtained from the previ-
ous rebalancing strategy as investment constraints. However, we focus our
analysis on the first stage of portfolio rebalancing strategy and we do not
perform any tests on the second stage of the portfolio optimization, that re-
quires standard stochastic programming techniques (see, for example, [12]),
leaving the choice of a specific utility function and of the final wealth to the
investment officer of the firm.

In order to test our ALM model, we firstly present our portfolio rebalanc-
ing strategy under certain market hypotheses and initial scenario assump-
tions. Moreover, we focus on the evolution over time of the number of alive
policies, that is affected by the mortality model as well as by the surrender
and new production models. Finally, an analysis of the participation rate
sensitivity is conducted by keeping track of the evolution over time of actu-
arial reserves, that is to say, the discounted value of all future cash flows on
the liability side, and of own funds, and by investigating default probability.

The paper is organized as follows. In Section 2 we define our asset portfo-
lio and liability portfolio, and we introduce the general features of our ALM
model. In Section 3 we focus on the liability model and on the computation
of liability duration, that requires the estimation of future firm’s cash flows,
consisting of maturity, death and surrender payments, also related to new
production, and entails the definition of a mortality model as well as a sur-
render and new production model. Moreover, we introduce the interest rate
model associated to the term structure of interest rates. In Section 4 we deal
with the asset model, thus presenting bonds, equity and cash models. Then,
in Section 5, we introduce the nonlinearly constrained rebalancing rules to
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Assets Liabilities and Shareholder’s Equity

Capital invested in assets Present value of life insurance policies
Equity capital

Table 1: Simplified life insurance company’s balance sheet.

solve in order to dynamically restructure the asset portfolio. We consider
several real world constraints. In Section 6 we give an overview of the second
stage of the portfolio optimization. In Section 7 we describe market data
and in Section 8 we present and analyse some numerical results. Finally, in
Section 9, we point out the main conclusions.

2 The Model

We build a stochastic ALM model with dynamic reinvestment strategy for a
life insurance company’s portfolio. Therefore, we deal with both a liability
portfolio and an asset portfolio, that is regularly rebalanced in order to not
only obtain a certain portfolio return, but also to be able to meet future
financial obligations. In order to properly rebalance the company’s portfolio,
we need to forecast the balance sheet evolution over time, computing the joint
projections of the future cash flows of both liabilities and assets portfolios.

A simplified balance sheet for a life insurance company is summarized in
Table 1. The last item, equity capital, consists of the surplus which is kept
by the company’s shareholders and is defined by:

Equity capital = Assets− Present value of life insurance policies. (1)

On the asset side, we consider a portfolio composed of bonds, divided in
buckets of duration, equity and cash. Bonds, equity and cash are simulated
together over time according to stochastic models. The need of an insurance
company to have a conservative investment strategy, as required by regulators
[7], is reinforced in our model from the fact that in the case of with-profit life
policies a more aggressive investment strategy would represent an advantage
for policyholders, but an excessive risk for shareholders. In fact, policyholders
would benefit from high returns and would not be hit by negative returns,
since a minimum rate of return is guaranteed, while shareholders would be
hit by negative returns and would barely benefit from positive returns, since
only a small percentage of returns is kept by the company’s shareholders.
Therefore, the company refrains from following a more aggressive investment
strategy. For these reasons, we hold larger positions in fixed-income assets,
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and we allocate a smaller percentage of the total in stocks. Moreover, we
consider some real investment policy constraints on portfolio asset classes
weights and on particular combinations of them.

On the liabilities side, we consider a portfolio only comprising the so-
called with-profit life policies, a type of products that is very popular in life
insurance business. In these contracts, on one hand, the policyholder pays
a premium, that can be either single, paid at the beginning of the contract,
or periodic, paid with a certain frequency during the policy life. On the
other hand, the insurer receives the premiums and invests this capital in the
financial market. Moreover, the insurer pays both a periodic variable rate
in a policyholder saving account and a benefit, that is disbursed at policy
maturity date, if the policyholder is still alive, or before policy maturity
date, if the contract ends before policy expiration, because the policyholder
dies or decides to exercise the surrender option, if the contract entitles to
abandon the policy before maturity. Our ALM model includes the surrender
option. Also, we consider the possibility that policyholders do not enter
into the policy all together, say at time 0, but there is the chance that a
policyholder signs the contract in the following years, thus creating the so-
called new production. In summary, we consider the most important features
of a with-profit life policy:

� policyholders’ saving account grows at a rate given by the maximum
between a minimum guaranteed rate of return and a fraction of the
asset portfolio return;

� a mortality model is taken into account to keep track of death occur-
rences;

� policyholders are entitled to surrender the contract at any time before
the maturity date;

� cash flows due to the so-called new production are included.

In our model, the insurance company has to refund the beneficiaries of
policies of policyholders that die before the maturity date, the policyholders
that abandon the contract before policy expiration, as well as policyholders
that are still alive when their policies expire. Except from the timing of pay-
ments due to the maturity of the policies, the timing of all the other payments
is uncertain and depends on the market evolution and on the stochastic be-
haviour of policyholders’ biometry. More precisely, the decision to abandon
the contract before policy expiration and new production strongly depend
on stochastic economic variables. Indeed, we infer the probability that a
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Asset Model Liability Model

Bond with duration n1 model Policyholder account model
Bond with duration n2 model Surrender model
. . . New production model
Equity model Biometric model
Cash model

Table 2: ALM model.

policyholder cancels the contract before maturity or that a new policyholder
subscribes to the policy comparing the earnings offered by the policy with
the earnings offered by competing products in the market, represented by the
return of a suitable benchmark index chosen from the market. This issue will
be fully addressed in Section 3.1. In contrast with surrender events and new
production, death occurrences are actuarial events, that are usually assumed
independent of economic variables. Therefore, in order to infer the number of
policyholders that die before policy expiration, we follow a biometric model,
based on a life table in which the survival probability of a policyholder is
only dependent on age and gender. More details about the mortality model
are given in Section 3.2.

Our ALM model is summarized in Table 2.
Since the set of contracts could be very copious and, also, each insurance

contract could offer a different guaranteed rate of return, could be signed by
policyholders of different ages and could expire at different dates, computing
the joint projections of the future cash flows of both assets and liabilities
portfolios for each contract can lead to a highly time-consuming task. In
order to manage this issue, as in [17], we group policies with similar char-
acteristics in buckets, called model points, thus reducing the computational
cost of the calculus. More details on how to build the model points can be
found in [24], for instance. Thus, our liability portfolio is given by the set
of model points, I = {mi/mi is a model point}, with cardinality NM := |I|,
so that we will work on a representative set of contracts. More precisely,
in order to handle the heterogeneity of the plethora of different contracts
in the liabilities portfolio, we gather together policies with similar minimum
guaranteed rate of return, similar age of the policyholder and same maturity
date. For example, in Section 8, where some numerical results are shown,
we suppose that all the policies in our liabilities portfolio expire in 10 years,
and that some of these contracts offer a minimum guaranteed rate of return
of 0%, others of 1% and still others of 2%. Moreover, contracts are signed
by policyholders aged from 38 to 67. We split the contracts in model points
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Minimum guaranteed rate of return
0% 1% 2%

Age

[40, 44] (40, 0%) (40, 1%) (40, 2%)
[45, 49] (45, 0%) (45, 1%) (45, 2%)
[50, 54] (50, 0%) (50, 1%) (50, 2%)
[55, 59] (55, 0%) (55, 1%) (55, 2%)
[60, 64] (60, 0%) (60, 1%) (60, 2%)
[65, 69] (65, 0%) (65, 1%) (65, 2%)

Table 3: Example of representative contracts (model points) for different
policyholders’ ages and different minimum guaranteed rates of return. All
contracts have the same time-to-maturity, so that a model point is a couple
(Ā, g), where Ā and g are the representative age and the minimum guaranteed
rate of return, respectively.

as shown in Table 3.
In conclusion of the general description of our ALM model, we introduce

the possibility of default of the insurance company. Indeed, if a policyholder
dies, abandons the contract, or is still alive at policy maturity date, the
company has to pay a refund based on the value of the policyholder’s saving
account, that, as said before, earns an interest rate given by the maximum
between a minimum guaranteed rate of return and a percentage of the return
on the insurer’s investment portfolio. Therefore, the company needs to use
the capital that comes from new production if portfolio return is not sufficient
to meet its liabilities, and, if there are not enough new policyholders, the
company employs its own funds. If own funds become negative, the company
is declared defaulted.

3 Liability Model

In this section we describe how we model the cash flows connected to poli-
cyholders’ benefits and premiums. Whereas some cash flows are scheduled,
such as cash flows related to maturity payments, the timing of other cash
flows is not known a priori and can depend either on the market situation, in
the case of payments due to surrender option and in the case of cash inflows
due to new production, or on actuarial events, in the case of payments due
to death occurrences.

We consider a time discretization given by a mesh of equispaced time
instants, 0 = t0 < t1 < . . . < tN = T , and we define the period k as [tk, tk+1],
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for k = 0, . . . , T − 1. In each period, we assume that premiums are paid at
the beginning while benefits are disbursed at the end. Administrative costs
are included in the premium.

At each period, we need to keep track not only of the number of alive
policyholders, but also of the number of policyholders that die or exercise
the surrender option, of the number of policies that expire, as well as of the
number of new policyholders that subscribe to a contract. Therefore, we
introduce the following notations:

� snk,i is the number of policyholders in the model point mi ∈ I that
entered into the contract at time s and are still alive at the end of
period k;

� nk,i is the total number of alive policyholders in model point mi ∈ I at
the end of period k, independently from their starting times, so that

nk,i =
T−1∑
s=0

snk,i;

� sn
D
k,i, sn

S
k,i, sn

M
k,i are the numbers of policyholders in model point mi ∈ I

that started the contract at time s and die, surrender or reach maturity
at period k, respectively;

� nDk,i, n
S
k,i and nMk,i are the vectors defined as:

nXk,i = (0n
X
k,i, 1n

X
k,i, . . . , k−1n

X
k,i), X = {D,S,M}; (2)

� nPk,i is the number of new policyholder in the i-th model point that
enter into the contract at period k.

In the biometric model used to determine the policyholders’ death rate, the
distinction between men and women is taken into account. So, when the
previous symbols present the superscript ”M” or ”F” they are referred only
to the corresponding portion of male or female policyholders, respectively.

We denote by sl
D
k,i, sl

S
k,i and sl

M
k,i the death, surrender and maturity bene-

fits at period k for a policyholder in model point mi that signed the contract
at time s. They are the guaranteed payments in case of death of the poli-
cyholder, cancellation of the contract or policy expiration, respectively, and
their sizes depend on policyholders’ saving account. The saving account
of policyholders in model point mi at period k grows at a rate given by
max(gk,i, βk,iR

P
k ), where gk,i and βk,i are the minimum guaranteed rate of
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return and the participation rate at period k for the model point mi, re-
spectively, and RP

k is the asset portfolio return at period k. Therefore, we
assume death, surrender and maturity benefits at period k for a policyholder
in model point mi that entered into the contract at time s grow according
to the recursive formula:{

sl
X
s,i = lPs,i,

sl
X
k,i = sl

X
k−1,i max(gk,i, βk,iR

P
k ) + lΠk,i, k > s,

(3)

where lPs,i is the payment made by the policyholder when entering into the
contract at period s, and lΠk,i denotes the premium payment made by the
policyholder at period k. In formula (3) X can be either D, S, or M .

Note that we have made the assumption that the benefits in case of death,
survival at maturity or surrender evolve over time according to the same
recursive formula, but, in general, they may have different structures. For
example, there can be some penalties in case of surrender and the minimum
guaranteed rate and the participation rate can depend on X.

Finally, we denote by lDk,i, l
S
k,i and lMk,i the vectors given by:

lXk,i = (0l
X
k,i, 1l

X
k,i, . . . , k−1l

X
k,i), X = {D,S,M}. (4)

After having introduced the previous notations, we are able to list in the
following the quantities we need to take into account to determine the cash
flows at period k.

� Premium payments, Πk. These are the payments made by policy-
holders at the beginning of period k, if still alive. At period k premium
payments related to model point mi are given by:

Πk,i = nk−1,il
Π
k,i. (5)

Clearly, at period k the total amount of premium payments can be
computed as follows:

Πk =

NM∑
i=1

Πk,i. (6)

� New production, Pk. It consists of payments made by new policy-
holders at the beginning of period k. New production at period k for
the model point mi is defined as:

Pk,i = nPk,il
P
k,i, (7)

and the total amount of new production at period k is given by:

Pk =

NM∑
i=1

Pk,i. (8)
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� Death payments, Dk. These are the rewards that the company has
to give to the beneficiaries of policies of policyholders that die before
maturity at period k. Death payments related to model point mi are
given by:

Dk,i = nDk,i · lDk,i. (9)

Evidently, the total amount of death payments at period k is obtained
as:

Dk =

NM∑
i=1

Dk,i. (10)

� Surrender payments, Γk. They are made up of the refunds that the
company has to give to policyholders that abandon the policy before its
contractual expiration date at period k. For model point mi we have:

Γk,i = nSk,i · lSk,i. (11)

The total amount of surrender payments at period k is given by:

Γk =

NM∑
i=1

Γk,i. (12)

� Maturity payments, Mk. These are the payments that the company
has to make due to policies in model point mi that reach maturity at
time k. Maturity payments at period k for model point mi are defined
as:

Mk,i = nMk,i · lMk,i, (13)

and the total amount of maturity payments at period k is obviously
computed as:

Mk =

NM∑
i=1

Mk,i. (14)

Liability value. On the basis of previous definitions, we can write a
formula to describe the evolution over time of the liability value. The value
of liabilities related to model point mi at time 0 is given by L0,i = Π0,i, and,
for k = 1, . . . , Ti − 1, it evolves according to:

Lk,i = Lk−1,i(1 + max(gk,i, βk,iR
P
k )) + Πk,i + Pk,i −Dk,i − Γk,i. (15)

Since Ti denotes the maturity date of policies in model point mi, Lk,i = 0 for
k ≥ Ti.
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Cash flows. We can write the total amount of cash flows at period k as:

cfk =

NM∑
i=1

cfk,i. (16)

In the previous formula, cfk,i denotes the size of cash flows at period k for
model point mi, given by:

cfk,i =


Γk,i +Dk,i if tk < Ti,
Mk,i +Dk,i if tk = Ti,
0 otherwise,

(17)

where Ti denotes the maturity date of policies in the i-th model point.
Liability duration. In the literature of ALM models, the most com-

monly used risk measure is duration. In order to compute the duration of
our liabilities, using the Macaulay duration formula, we have to estimate the
so-called actuarial reserves, that are the present value of the amount that the
insurer needs at future periods to meet obligations associated to the policies.
We denote by vk the actuarial reserves at period k and we have that:

vk =

NM∑
i=1

vk,i, (18)

where vk,i denotes the reserves at period k connected to the i-th model point
and is given by the sum of the discounted supposed cash flows at future
periods j > k, that is to say:

vk,i =
∑
j>k

dj|kcfj,i|k. (19)

In the previous formula, we have denoted by dj|k and cfj,i|k the discount
factor at period j and the size of cash flows at period j for the model point
mi estimated at period k, respectively. More precisely, the discount factor
dj|k is the price at time k of a zero-coupon bond with tenor j and is computed
after having defined a model for the term structure of interest rates. Our
choice for the interest rate model is described in Section 3.4.

Once we have estimated the supposed liabilities cash flows, the liability
duration at period k, LDk , according to the Macaulay formula, is given by:

LDk =

∑
j>k

jdj|kcfj|k∑
j>k

dj|kcfj|k
. (20)
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Period
0 1 2 . . . T − 1

Intervals

I1 pS10, pP10 pS11, pP11 pS12, pP12 . . . pS1T−1, pP1T−1

I2 pS20, pP20 pS21, pP21 pS22, pP22 . . . pS2T−1, pP2T−1

...
...

...
... . . . ...

IQ pSQ0, pPQ0 pSQ1, pPQ1 pSQ2, pPQ2 . . . pSQT−1, pPQT−1

Table 4: Surrender and new production probabilities.

3.1 The Surrender and New Production Model

In order to determine the timing and the size of surrender payments, as well
as new production cash flows, we need to build a model for the probability of
surrender and for the probability of new production, that is the probability
that a contract is signed by a new client.

It makes sense that the exercise of surrender option is strongly dependent
on market condition, since we can suppose that a policyholder abandons the
policy if he finds in the market an analogous product which offers a higher
rate of return with respect to the return rate offered by his policy at the same
moment. Thus, following [17], the surrender probability is parametrized
on the basis of the spread between the earnings offered by the insurance
company, depending on the insurer’s portfolio return, and the return offered
by an analogous product in the market, represented by a benchmark index
return. In this way, we can model the fact that if competing products return
is greater than the rate of return offered by the policy, a policyholder is more
motivated to surrender his investment.

In particular, for each period k and for each model point mi ∈ I, we
introduce the quantity δrSk,i as:

δrSk,i = (RI
k −max(gk,i, βk,iR

P
k ))+, (21)

where RI
k is the benchmark index rate of return at period k. For the sake of

brevity, we have used the notation x+ = max(x, 0). Note that δrSk,i does not
depend on policyholder’s gender or age, but only on the minimum guaranteed
rate of return offered by the contract.

In order to size δrSk,i, we introduce the threshold intervals Iq, for q =
1, . . . , Q. For example, in our numerical tests we choose Q = 3 and define
I1 = [0, 0.01], I2 = (0.01, 0.03], and I3 = (0.03,+∞). We infer the surrender
probability at period k for the model point mi, p

S
k,i, from Table 4, where
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surrender probabilities, depending only on the threshold interval Iq and on
the period k, are denoted by pSqk, for q = 1, 2, 3 and k = 0, . . . , T − 1.
In particular, if δrSk,i falls in the interval Iq, then pSqk gives the surrender
probability at period k for policies in model point mi, i.e., pSk,i = pSqk.

After having inferred the probability of surrender at each period and for
each model point, we model the number of policyholders that entered into
the contract at period s and cancel it at period k by a Binomial distribution:

sn
S
k,i ∼ Bin(snk−1,i, p

S
k,i). (22)

Moreover, new production probability at period k for the model point
mi, denoted by pPk,i, is deduced in a similar way as the surrender probability,
using Table 4, where new production probabilities, pPqk, for q = 1, 2, 3 and
k = 0, . . . , T − 1, depend only on the threshold interval Iq and on the period
k. More precisely, we introduce the quantity

δrPk,i = (max(gk,i, βk,iR
P
k )−RI

k)
+ (23)

and assume that if δrPk,i lies in the interval Iq, then new production probability
at time k in the i-th model point is given by pPqk, i.e., pPk,i = pPqk.

Note that pSqk and pPqk in Table 4 are chosen taking into account that
surrender probability and new production probability increase with δSk,i and
δPk,i, respectively.

Once we have deduced the probability of new production from Table 4 at
each time for each model point, we can model the number of policyholders
in the i-th model point that start the contract at time k, for k > 0, by a
Binomial distribution:

nPk,i ∼ Bin(nk−1,i, p
P
k,i). (24)

We point out that the use of δrSk,i for surrender probability and δrPk,i for
new production probability is due to the fact that it is reasonable to assume
that only if competing products in the market, represented by the benchmark
return RI , offer a rate of return greater than the rate of return offered by
the insurance company, that is, max(gk,i, βk,iR

P
k ), a private investor may be

motivated to abandon the policy, so there may be surrenders, but there are
not new policyholders signing the contract, vice versa, if max(gk,i, βk,iR

P
k )

is greater than RI
k, new clients may be motivated to put his savings in the

policy, but there are not policyholders that exercise the surrender option.

3.2 The Mortality Model

Since the payments due to deaths of policyholders before maturity are not
dependent on market condition, we use a biometric model in which the death
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M F

Age

[40, 44] 0.00573992 0.00347710
[45, 49] 0.00893476 0.00551156
[50, 54] 0.01424265 0.00834881
[55, 59] 0.02298384 0.01345166
[60, 64] 0.03724532 0.02128333
[65, 69] 0.06078708 0.03298144

Table 5: 2019 period life table. Source: Istat (Italian National Institute of
Statistics).

probability is provided by a specific life table (Table 5) depending on pol-
icyholders’ age and gender. More precisely, since in numerical examples
considered in Section 8 we choose a time step of 1 year, that is to say, the
distance between time k and time k + 1 is 1 year, in Table 5 we report the
probabilities that individuals that have just had a birthday will not celebrate
the next birthday.

We denote by pD,Mi and pD,Fi the death probabilities for the model point
mi for male and female policyholders, respectively. In particular, we model
the number of male and female policyholders in model point mi, that entered
into the contract at time s and die at period k, sn

D,M
k,i and sn

D,F
k,i , by a

Binomial distribution, so that:

sn
D,X
k,i ∼ Bin(sn

X
k−1,i, p

D,X
i ), X = {M,F}. (25)

Obviously, the total number of deaths at period k for the model point
mi, denoted by nDk,i, is computed as:

nDk,i =
k−1∑
s=0

(sn
D,M
k,i + sn

D,F
k,i ). (26)

3.3 Approximation of future cash flows

In this section we deal with the estimation at period k of the projections of
future cash flows, given by (16) and (17), at each period j > k, needed to
compute the liability duration, according to (20). More precisely, we have
to estimate the timing and the size of future death, surrender and maturity
payments, taking into account that new policyholders can subscribe to a
policy at future periods.

Future value of death, surrender and maturity benefits. The size
of payments that the company has to make due to death of policyholders,

16



abandons of the contract and policy contractual expiration depends on death,
surrender and maturity benefits, that grow according to (3). Therefore, in
order to measure the expected size of future payments at period k, we need
to estimate:

E[max(gj,i, βj,iR
P
j )|Fk], for j > k, (27)

where E[·|Fk] denotes the expectation with respect to the information avail-
able at period k, denoted by Fk.

In order to estimate (27) we employ the Least Squares Monte Carlo
Method [26]. More precisely, we can write the conditional expectation in
(27) as linear combination of W basis functions {ψw}w=1,...,W as follows:

E[max(gj,i, βj,iR
P
j )|Fk] '

W∑
w=1

b̄wk,j,iψ
w(RP

k ) = b̄Tk,j,iψ(RP
k ). (28)

For example, we can choose the Laguerre polynomials as basis functions,
being simple to implement, because they can be defined recursively:

L0(x) = 1,

L1(x) = 1− x,
Lk(x) = 1

k
((2(k − 1) + 1− x)Lk−1(x)− (k − 1)Lk−2(x)), k ≥ 2.

(29)

We search for the regression coefficients b̄k,j,i that are solution of the
following problem:

b̄∗k,j,i = argmin
b̄k,j,i

Ek

[(
ψ(RP

k )T b̄k,j,i − Ek[max(gj,i, βj,iR
P
j )]
)2]

,

where we have used the notation Ek[·] = E[·|Fk].
We vanish the derivative with respect to b̄k,j,i of the quantity to minimize

and we get:

Ek

[
ψ(RP

k )ψ(RP
k )T
]
b̄∗k,j,i = Ek

[
ψ(RP

k ) max(gj,i, βj,iR
P
j )
]
.

In order to compute the regression coefficients, we use Monte Carlo tech-
niques. More precisely, we simulate NP paths of RP

k , for k = 1, . . . , T , and
we denote by RP,n

k the value at time k in the n-th simulation. After having
defined Ψk,i as the W ×W matrix with coefficients:

(Ψk,i)uv =
1

NP

NP∑
n=1

ψu(RP,n
k )ψv(RP,n

k ),
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and dk,j,i as the W -array with the v-th element given by:

(dk,j,i)v =
1

NP

NP∑
n=1

ψv(RP,n
k ) max(gj,i, βj,iR

P,n
j ),

we reduce the problem of regression coefficients computation to the problem
of solving the system Ψk,ib̄k,j,i = dk,j,i.

Once we have obtained regression coefficients, we are able to compute
E[max(gj,i, βj,iR

P
j )|Fk], for j > k, simply using (28). This means we need to

simulate only the current value RP
k .

Future death payments. Once we have estimated the value of the
death benefit at future periods and predicted the number of policyholders
who will die at each future period according to the biometric model described
in Section 3.2, we can compute the size of death payments according to (9)
and (10).

Future surrender payments. In order to forecast the size and the
timing of future surrender payments, we need to predict the number of pol-
icyholders that cancel the contract at each future period j > k and, so, the
probability of surrender at each period j > k. To do that, we compute:

∆RS
i (j|k) = E[δrSj,i|Fk], for j > k. (30)

Indeed, the computation of (30) allows us to forecast the probability of sur-
render at future periods by using Table 4 and, then, the number of abandons
at each future periods according to (22). After having estimated the number
of surrenders at future periods, we can use the estimation of the surren-
der benefit to compute the amount the company is expected to pay due to
surrenders according to (11) and (12).

From the definition of δrSj,i in (21), we get:

∆RS
i (j|k) = Ek[(R

I
j −max(gj,i, βj,iR

P
j )+], for j > k. (31)

Due to the nonlinearity of δrSj,i we estimate the conditional expectations in
(30) with a Least Squares approach [26], thus following the same procedure
we have used to forecast future returns. Therefore, we write ∆RS

i (j|k) as
linear combination of basis functions {ψw}w=1,...,W :

∆RS
i (j|k) '

W∑
w=1

¯̄bwk,j,iψ
w(R̂P

k,i, R
I
k) = ¯̄bTk,j,iψ(R̂P

k,i, R
I
k), (32)

where we have used the notation R̂P
k,i = max(gj,i, βj,iR

P
j ).
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This time, the basis functions are bidimensional functions. For example,
we can choose the bidimensional Laguerre polynomials, given by the product
of couples of unidimensional Laguerre polynomials, defined above.

We look for the regression coefficients ¯̄b∗k,j,i such that:

¯̄b∗k,j,i = argmin
¯̄bk,j,i

Ek

[(
ψ(R̂P

k,i, R
I
k)
T ¯̄bk,j,i − Ek[δrj,i]

)2]
,

that leads to:

Ek

[
ψ(R̂P

k,i, R
I
k)ψ(R̂P

k,i, R
I
k)
T
]
¯̄b∗k,j,i = Ek

[
ψ(R̂P

k,i, R
I
k)δrj,i

]
.

Again, we use Monte Carlo techniques to compute regression coefficients.
More precisely, we simulate NP paths of R̂P

k,i and R̂I
k, for k = 1, . . . , T , and we

denote by R̂P,n
k,i , RI,n

k their respective values at time k in the n-th simulation.

This time, we have to solve the system Ψk,i
¯̄bk,j,i = dk,j,i, where the W ×W

matrix Ψk,i and the W -array dk,j,i are such that:

(Ψk,i)uv =
1

NP

NP∑
n=1

ψu(R̂P,n
k,i , R

I,n
k,i )ψ

v(R̂P,n
k,i , R

I,n
k,i ),

(dk,j,i)v =
1

NP

NP∑
n=1

ψv(R̂P,n
k,i , R

I,n
k )(RI,n

j − R̂
P,n
j,i )+.

After having computed regression coefficients, we obtain RS
i (j|k), for j >

k, from (32), so that we need to simulate only the current values R̂P
k,i and

R̂I
k.

Future new production. Following the same procedure used for ∆RS
i (j|k)

in (30), we compute

∆RP
i (j|k) = E[δrPj,i|Fk], for j > k, (33)

to predict the probability of new production at future periods by using Table
4 with the aim to forecast the number of new policyholders signing a contract
at the each future periods according to (24). New production cash flows are
computed by (7) and (8).

Future maturity payments. As regard to maturity payments, they
can be computed by (13) and (14), taking into account the estimation of
maturity benefit and that the number of policyholders that are still alive
at policy maturity date is given by the total number of policyholders that
entered into the contract, at any time, minus the number of policyholders
that died or surrendered the contract before policy expiration.
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Benchmark index model. In conclusion of the section, we point out
that in order to compute (30) we need to define both the dynamics of the
benchmark return and the dynamics of the asset classes in the portfolio, to
deduce the portfolio return, also needed to compute (27). To end the section,
we describe the model for the benchmark return, whereas the dynamics of
portfolio asset classes are described in Section 4. We assume that the bench-
mark index price follows a geometric Brownian motion. Therefore, the price
of the benchmark index, It, is governed by:

dIt = µIItdt+ σIItdW
I
t , (34)

where the constant parameters µI ∈ R and σI > 0 are the drift and the
volatility of the process It, respectively, and W I

t is a Brownian motion. It
is well known that the solution of equation (34) at time t conditional to Fs,
with s < t, is given by

It = Is exp

(µI − (σI)2

2

)
(t− s) + σI(W I

t −W I
s )

 . (35)

3.4 Interest rate model associated to the term struc-
ture of interest rates

In order to compute the liability duration by using the Macaulay formula
(20), we need to calculate the discount factors, that are prices of zero-coupon
bonds, so that we need to evolve the term structure of interest rates. For
this reason, we introduce a short rate model. The convenience in the use of a
short rate model is that the term structure of interest rates is an affine term
structure in the sense that, at time t, the zero rate with maturity T is an
affine function of the instantaneous short rate process at time t. In particular,
we choose the one factor Hull & White model in the version referred in the
literature as G1 + + model. For the equivalence between G1 + + model and
the original one factor Hull & White model see [8] and [23], for instance.
The advantages in the use of the G1 + + model with respect to its classical
counterpart are well known. For example, the generation of forward paths is
numerically more stable and the analytical formula for bond prices is more
tractable.

In the G1 + + model, the dynamics of the instantaneous short rate rt
under the risk neutral measure Q is given by

rt = xt + ft, (36)
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with initial value r0. We assume that the process xt satisfies the following
stochastic differential equation:{

x0 = 0,

xt = −axxtdt+ σx(t)dW x
t ,

(37)

where ax is a positive constant, σx(t) is a positive deterministic function,
and W x

t is a standard Brownian motion. The function f is deterministic
and is given by an exact fitting to the term structure of discount factors
observed in the market. We choose to employ a piecewise constant functional
specification for the volatility of the process xt. More precisely, the volatility
σx(t) is constant in the intervals [0, 1], (1, 3], (3,+∞), so that:

σx(t) =


σ1, if t ∈ [0, 1],

σ2, if t ∈ (1, 3],

σ3, if t ∈ (3,+∞).

(38)

The parameters ax and σ1, σ2, σ3 can be calibrated by using market
swaption prices. In fact, [14] and [35], for example, present an approximated
swaption pricing formula, effective in the setting of the G1 + + model, in the
case that the strike is at the money:

ES(0, T, tk, K,N) = N
V OL√

2π

k∑
i=1

τiP (0, ti) ≡ N
V OL√

2π
P tk
t1 , (39)

where ES(0, T, tk, K,N) is the price at time 0 of a European call swaption
with maturity T , strike K, and nominal value N , which gives the holder the
right to enter at time T = t0 into a swap in which the holder pays the fixed
rate K and receives the Libor rate at dates t1, . . . , tk, with t0 < t1 < . . . < tk.
In (39) τi denotes the year fraction from ti−1 and ti, P (0, ti) represents the
price at time 0 of a zero-coupon bond with maturity ti years, and

V OL =

√∫ T

0

(σ(u)x)2A2e2axudu,

with

A = e−a
xT P (0, T )

axP tk
t1

− e−axtk P (0, tk)

axP tk
t1

− K

ax

k∑
i=1

e−a
xtiτi

P (0, ti)

P tk
t1

.

We have calibrated the G1 + + model using the swaption prices observed
on September 30, 2020, and reported in Table 6, thus obtaining the following
parameters values: ax = 0.0048, and σ1 = 0.0018, σ2 = 0.0042, σ3 = 0.0065.
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Maturity Tenor Strike Price

1 1 -0.00490 0.00074
2 2 -0.00423 0.00313
3 3 -0.00316 0.00792
5 4 -0.00081 0.01741
5 5 -0.00032 0.02221
7 7 0.00203 0.04046
10 10 0.00278 0.07113

Table 6: Swaption prices observed on September 30, 2020. Source:
Bloomberg.

After having calibrated the parameters of the process xt, in order to
simulate the process rt, we use its conditional distribution. More precisely,
from (36) and (37), for s < t, we have that rt, conditional to Fs, is normally
distributed with:

E[rt|Fs] =xse
−ax(t−s) + ft,

Var[rt|Fs] =(σx(t))2 1− e−2ax(t−s)

2ax
,

where E and Var denote the mean and the variance under the measure Q,
respectively.

In the framework of the G1++ model, the price of a zero coupon bond at
time t with maturity at time T , P (t, T ), can be computed using the following
formula:

P (t, T ) = A(t, T )e−B(t,T )xt , (40)

where

A(t, T ) =
PM(0, T )

PM(0, t)
e

1
2

[V (t,T )−V (0,T )+V (0,t)], (41)

B(t, T ) =
1− e−ax(T−t)

ax
, (42)

V (t, T ) =
(σx(t))2

(ax)2

(
T − t− 2

1− e−ax(T−t)

ax
+

1− e−2ax(T−t)

2ax

)
. (43)

In (41) PM(0, t) denotes the market price of a zero-coupon bond with matu-
rity t years, observed at time 0, i.e., the initial term structure.
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4 Asset Model

Our asset portfolio is composed of bonds, equity and cash. We split the bonds
into four classes with different maturities: a class for bonds with maturity
less than 3 years; a class including all the bonds with maturity between 3 and
5 years; a class comprising bonds with maturity from 5 to 10 years; finally,
a class consisting of bonds with maturity greater than 10 years.

Since an insurance company has a conservative investment strategy, the
largest part of portfolio is composed of bonds. So, in our strategy, we consider
a lower bound for the portion of portfolio invested in bonds. We also consider
an upper bound for the part of portfolio invested in equity. The remaining
part is invested in cash. Section 5 deals with the question of constraints on
portfolio weights with more details, whereas in the following we describe the
stochastic models used to simulate the returns of portfolio asset classes.

Bonds and equity models. In order to simulate bonds and equity
returns, we assume that the underlying indexes dynamics follow geometric
Brownian motions. Therefore, denoting by St the price of equity index at
time t and by Bτ

t the price at time t of bond index with duration τ , we have:

dSt =µSStdt+ σSStdW
S
t , (44)

dBτ
t =µB

τ

Bτ
t dt+ σB

τ

Bτ
t dW

Bτ

t , (45)

where µS, µB
τ ∈ R are the drifts of the processes St and Bτ

t , respectively, and
σS, σB

τ
are strictly positive constant parameters representing their volatil-

ities. Moreover, W S
t and WBτ

t are correlated Brownian motions and, obvi-
ously, they are both correlated with the other sources of randomness in the
model, i.e., W I

t , that appears in (35), and W x
t , that is involved in (37). It is

well known that the solutions of equations (44) and (45) at time t conditional
to Fs, with s < t, are respectively given by

St =Ss exp

(µS − (σS)2

2

)
(t− s) + σS(W S

t −W S
s )

 , (46)

Bτ
t =Bτ

s exp

(µBτ − (σB
τ
)2

2

)
(t− s) + σB

τ

(WBτ

t −WBτ

s )

 . (47)

We refer to the work by Doherty and Garven [15] as an early paper
where the Geometric Brownian Motion has been used in modelling Asset
and Liabilities. In the paper a discrete-time option pricing model is used to
derive the “fair” rate of return of an insurance firm.
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Cash model. The evolution of the dynamics of cash in the asset portfolio
is deduced from the short rate model described in Section 3, taking into
account that (see [14], for instance):

e
∫ t
0 r(s)ds =

e
∫ t
0 x(s)ds

e−
∫ t
0 f(s)ds

=
e
∫ t
0 x(s)ds

PM(0, t)e−
1
2
V (0,t)

. (48)

Note that the dynamics of the process xt is given in (37), PM(0, t) denotes
the market price of a zero-coupon bond with maturity t, and the value of
V (0, t) can be computed by (43).

We would like to point out that all the processes in the model are simu-
lated according to their dynamics in the real world measure, P , but cash is
simulated from rt whose dynamics is in the risk neutral measure, Q. Indeed,
in the case of cash we can assume that the dynamics in P coincides with the
dynamics in Q, being the risk premium null.

Asset value. After having described the dynamics of portfolio asset
classes, we are able to compute the asset portfolio return at each period k,
RP
k , so that we can write a formula for the evolution of the asset value over

time:
Ak = Ak−1(1 +RP

k ) + Πk + Pk −Dk − Γk −Mk, k > 0, (49)

where A0 is given by premiums collected from policyholders at period 0 plus
the initial investment on the part of the company.

5 First stage of portfolio rebalancing

In our stochastic ALM model, we consider a dynamic reinvestment strategy
in which the asset portfolio is restructured at each period k according to
the evolution of the liabilities portfolio. We use a scenario-based simulation
approach. For each scenario at each period k, the investment strategy decides
which types of asset class must be sold or bought in order to guarantee
that there is enough money to meet the obligations with policyholders and
company’s shareholders. In particular, for each simulation at each period k,
we compute the duration of liabilities, the duration of asset portfolio and the
asset portfolio return. Then, we rebalance our asset portfolio with the aim
to accomplish two goals:

i. matching between assets duration and liabilities duration. More pre-
cisely, we aspire to minimize the positive part of the difference between
assets duration and liabilities duration, since liquidity problems can
arise when the assets have a longer duration than liabilities, but not
vice versa;
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Budget constraint
∑

i∈Iα α
i
k = 1

No short selling constraint αik ≥ 0, ∀i ∈ Iα

Investment policy constraints

∑4
n=1 α

Bn
k ≥ mB

αEk ≤ME

Turnover constraints

∣∣αik − αik−1

∣∣ ≤ TO, ∀i ∈ Iα∑
i∈Iα

∣∣αik − αik−1

∣∣ ≤ TOtot

Table 7: Constraints imposed in the optimization problem.

ii. achievement of a certain target return. In particular, we ask that the
portfolio return is not too much distant from the benchmark return.

In order to rebalance our portfolio composition, for each simulation at
each period k, we solve a nonlinearly constrained optimization problem sub-
ject to several real world constraints. In particular, we consider the so-called
budget constraint and no short selling constraint, and for each asset class
we set upper and lower bounds and we fix a maximum turnover. In ad-
dition, we set a maximum portfolio turnover, and we impose other linear
constraints given by the investment policy. All these constraints are reason-
able for an insurance company and we calibrate them on an EU-based life
insurance company’s portfolio. We summarize all these constraints in Table
7, where we have denoted by αk = (αB1

k , αB2
k , αB3

k , αB4
k , αEk , α

C
k ) the array of

asset classes weights at period k. In particular, αBnk , αEk , αCk are the weights
in the portfolio composition at period k of the n-th class of bonds, equity
and cash, respectively. We denote by Iα = {B1, B2, B3, B4, E, C}. In Table
7 mB denotes the lower bound for the sum of the bonds weights in port-
folio composition, ME the upper bound for weight of equity, and TO and
TOtot are, respectively, the maximum turnover on each asset class and the
maximum portfolio turnover.

At period k the optimization problem consists of finding an optimal array
of asset classes weights αk such that:

minimize (AD(αk)− LDk )+;

subject to

{
βLRI

k+1 ≤ RP
k+1 ≤ βURI

k+1, with constant βL, βU ,

constraints in Table 7.

(50)

Note that assets duration, AD, is a combination of durations of bonds in the
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assets portfolio.
In a general framework, we can include transaction costs, that arise when

rebalancing the assets portfolio. In the case of no null transaction costs the
portfolio return at period k is given by:

RP
k = αk ·Rk − [cS · (αk−1 −αk)+ + cB · (αk −αk−1)+], (51)

where cS and cB are the vectors of asset classes selling and buying costs,
respectively, and Rk is the vector of asset classes returns at time k. In the
numerical tests we assume null transaction costs, because the introduction
of transaction costs different from zero substantially increases the elapsed
computational time, but does not affect results in a significant way, in the
sense that results with transaction costs are comparable to results without
them.

6 Second stage of portfolio optimization

In the previous section we have chosen a portfolio rebalancing strategy that
ensures the company will be solvable, and shareholders and policyholders
will benefit from a competitive return. But the proposed strategy is not
necessarily optimal. For this reason, we now introduce a second stage of
portfolio optimization with the aim of maximizing the expected value of a
chosen utility function, taking into account the results obtained from the first
stage of portfolio rebalancing. Indeed, in the first step of portfolio rebalanc-
ing we consider only six asset classes, and in the second step for each bonds
asset class and for equity asset class, taking into account several sub-sectors,
we run a sectorial optimization problem that maximizes the expected util-
ity function of terminal wealth over specified horizon (see [10]). We suggest
to solve sectorial optimization problems in the second stage to refrain from
managing an excessive number of asset classes. For instance, for each bond
asset class sub-sectors could be government core and government peripheral
bonds, financial and corporate bonds, financial investment grade and finan-
cial sub-investment grade bonds, etc. For equity asset class sub-sectors could
be energy, healthcare, utilities, information technology, etc.

More precisely, chosen a utility function U , at each time step k we solve
five sectorial optimization problems, so that we search for the optimal weights
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vectors ωik = (ωi,1k , . . . , ω
i,Ni
k ), for i ∈ Iα \ {C}, such that:

maximize Ek

max
ω̄i

k+1

Ek+1

max
ω̄i

k+2

Ek+2

[
. . .max

ω̄i
T−1

ET−1

[
U(ωiT−1 ·Ri

T )
]
. . .

]
 ;

subject to

Ni∑
j=1

ωi,jk = αik,

(52)

where Ri
l and Ni are the vector of sub-sectors returns at period k and the

number of sub-sectors for asset class i, respectively. In this way, an optimal
portfolio strategy is proposed (see [30]).

However, in numerical results presented in Section 8 we focus on the
first step of the portfolio rebalancing strategy, because the second step can
be performed by standard techniques of stochastic programming (see, for
example, [12]).

7 Market data

In our portfolio optimization problem we assume the insurance company can
invest in six specific asset classes, summarized in Table 8. In order to simulate
the dynamics of bonds and equity log-returns, respectively deduced from (44)
and (45), we use the historical estimations of annualized mean and standard
deviation of representative indexes daily log-returns, computed considering
an annualization factor of 252. We do the same for the dynamics of log-
returns of the benchmark index, used in the surrender and new production
models. The dynamics of the benchmark return is inferred from (34). Indexes
and their log-returns statistics are listed in Table 8. We have considered daily
observations from September 30, 2010 to September 30, 2020, for a total of
2614 observations. Data have been obtained from Bloomberg. Also, in Table
8, for each representative index of the asset classes of the investable portfolio
we show the index duration, given by the average duration of the index
components, weighted on the basis of their market prices. Finally, since cash
log-returns are simulated by using the short rate model, in Table 8, we report
the representative index for the short rate, used only as proxy to estimate
correlation between the dynamics of cash and the dynamics of all the other
stochastic variables. Indeed, all the sources of randomness in the model are
correlated. When simulating, the historical correlation of indexes is used as
correlation between the Brownian motions in the model, i.e., W I , involved
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Log-returns
Asset class Index Duration Mean Std

B1 bonds, maturity 1-3 EZ1X 1.883087 0.004453 0.006722
B2 bonds, maturity 3-5 EZ2X 3.814414 0.015954 0.016217
B3 bonds, maturity 5-10 EZ6X 6.859975 0.037001 0.033788
B4 bonds, maturity >10 EZ9X 16.48279 0.075430 0.080750
E equity MXEM 0 0.033442 0.183722
r short rate Eur003m - - -
BI benchmark NCV0 - 0.028616 0.039320

Table 8: Asset classes representative indexes, short rate representative index
and benchmark index. Duration, annualized mean and annualized standard
deviation for daily log-returns are reported.

B1 B2 B3 B4 E r BI
B1 1 0.9308 0.7422 0.5675 0.2288 0.0048 0.4078
B2 0.9308 1 0.9145 0.7588 0.1947 -0.0013 0.6187
B3 0.7422 0.9145 1 0.9310 0.1118 -0.0017 0.8263
B4 0.5675 0.7588 0.9310 1 -0.0086 0.0005 0.9121
E 0.2288 0.1947 0.1118 -0.0086 1 -0.0180 -0.1818
r 0.0048 0.0016 -0.0075 -0.0154 -0.0180 1 -0.0124
BI 0.4078 0.6187 0.8263 0.9121 -0.1818 -0.0124 1

Table 9: Correlation matrix.

in the dynamics of the benchmark index (34), W x, included in the dynamics
of the short rate (37), W S, that is in the dynamics of equity (44), and WBτ ,
contained in the dynamics of bonds with duration τ (45).

In Table 9 we report the historical correlations.
Since the aim of an insurance company is not only to meet its financial

obligations, but also to obtain a profit, we are interested in the changes in
own funds value. Therefore, we keep track of the evolution over time of the
difference between asset and liability values, so that we need to make an
assumption on the relation between them at the initial time, say at time 0.
In particular, we set the level of liabilities at the initial time to 90% of the
value of the assets at the same time, that is to say, the following relation is
satisfied:

L0 = 0.887A0. (53)

Another assumption we need to make concerns the initial portfolio com-
position, described in Table 10. Portfolio is periodically rebalanced observing
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Asset class Weight

B1 bonds, maturity 1-3 21.09%
B2 bonds, maturity 3-5 22.91%
B3 bonds, maturity 5-10 35.79%
B4 bonds, maturity >10 15.38%
E equity 3.74%
C cash 1.09%

Table 10: Initial portfolio composition.

constraints on asset classes weights, as fully discussed in Section 5. In par-
ticular, in Table 7 we choose mB = 0.70, ME = 0.20, TO = 0.05, and
TOtot = 30.

8 Numerical results

In this section some numerical results are presented. In particular, we deduce
how the portfolio has to be rebalanced according to the strategy illustrated
in Section 5. Also, we focus on the values of actuarial reserves and own
funds. Moreover, we are interested in the study of the impact of mortality
model and of surrender and new production models on how the number of
alive policies changes over time.

We have used 103 simulations for the phase of regression coefficients com-
putation in the Least Squares Monte Carlo method and we have generated
104 different scenarios for the phase of portfolio composition optimization.
All tests have been performed by using Matlab on an Intel(R) Core(TM)
i7-8550U, 1.99 GHz, 16 GB (RAM), x64-based processor.

In the following, we make the assumptions listed below:

� all contracts have the same value, say e10 000, in the moment they are
signed;

� all policies expire at the same future date, say at time T = 10 years;

� the initial number of policyholders in each model point is reported in
Table 11;

� at the initial time policies are equally distributed between male and
female policyholders (gender equality);

� portfolio is rebalanced at each time step, that is one year;
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Minimum guarantee
Age 0% 1% 2%

40 50 5 1
45 55 5 3
50 55 10 3
55 60 25 15
60 70 80 23
65 60 100 50

Table 11: Initial number of policyholders in each model point.

� policyholders pay a single premium at the beginning of the contract;

� the participation rate β is the same for all model points, and is set to
95%, constant over time, unless otherwise stated.

In Figure 1 we exhibit how the portfolio composition is rebalanced every
year following the strategy described in Section 5. In particular, we show
the mean value of portfolio composition weights over all the scenarios. We
infer that the weight of bonds with maturity less than 3 years has to increase
significantly over time, while the weight of equity rises slightly. Moreover, the
weights of cash and bonds with maturity between 3 and 5 years remain nearly
constant over time, whereas we have to invest less and less in bonds with
longer maturity. The portfolio composition evolution in Figure 1 originates
from the fact that all policies expire at time T = 10, so that liability duration
approaches to zero with the passing of time. As a result, in order to match
asset duration and liability duration, we need to invest more and more in
asset classes with short duration, and less and less on asset classes with long
duration.

In Figure 2 we illustrate how much the liability value of each model point
weighs on the total value of liabilities. We consider the interval [0, 9], because
at maturity date, i.e., T = 10, all policyholders have been refunded and
the total liability value is zero. We note that the weights of model points
related to younger policyholders increase over time, while the weights of
model points associated with policyholders aged 60 or more decrease. In fact,
young policyholders are less likely to die with respect to older policyholders
(see Table 5), so that death payments that the company has to make at each
time are due especially to deaths of older policyholders. This means that the
company has to refund before maturity more old policyholders than young
policyholders, thus lightening the weight on the total value of liabilities of
model points related to old policyholders.
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Figure 1: Portfolio composition rebalancing.
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Figure 2: Model points weights on liabilities value.
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Figure 3: Mean number of alive policies at each time. On the left the total
number is plotted; on the right the distinction between males and females is
taken into account.

As regard to the number of alive contracts, it decreases over time, as
shown in Figure 3. Evidently, at each time step new production is not enough
to counterbalance deaths and surrenders. However, the evolution of the
number of alive policies may be different if other assumptions are made on
the model or another set of parameters is chosen. It is even possible that
the number of alive contracts increases over time, since the number of new
investors may exceed the number of policyholders who die or exercise the
surrender option. The right plot in Figure 3 considers separately male and
female policyholders, thus allowing us to evaluate the effect of mortality
model on the changes of the alive policies number. In fact, since the surrender
and the new production models do not depend on gender, the different rate
of decrease for men and women is only due to the fact that women mortality
rate is lower than men mortality rate (see Table 5).

In order to better analyse the issue of new production, in Figure 4 we
plot the mean number over all the scenarios of alive policyholders considering
separately policies with different starting time. So, on the top we show the
number of policies that started at time 0, on the bottom the numbers of
policies that started after time 0. As expected, the major decrease can be
observed in the population that entered into the contract at time 0, meaning
that at each time it is more likely that a policyholder who started the contract
at time 0 dies or abandons the policy rather than a policyholder who started
the contract after time 0. In fact, the set of policyholders that entered at
time 0 is more numerous.

Participation rate sensitivity. So far we have considered a fixed par-
ticipation rate, but it is interesting to study how different values for β in-
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Figure 4: Mean number of alive policies with different starting time. The
plot on the top displays the evolution of the number of alive contracts that
started at time zero; lines in the plot on the bottom show the evolution of
the numbers of alive policies that started at time 1, 2, . . . , 9, respectively.
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fluence actuarial reserves and own funds, as well as the number of abandons
and new production.

In Figure 5 we plot actuarial reserves for different values of β. As ex-
pected, if β grows, the payments that the company has to make due to
policyholders who die, abandon the contract or reach maturity, are more
consistent. Therefore, actuarial reserves, discounted expectation of future
disbursements, increase. Note that we consider the time interval [0, 9], thus
ignoring the maturity date, T = 10, when all policies have expired and ac-
tuarial reserves are zero, because the company has no more future payments
to make.

In Figure 6 we show the difference between asset value and liability value
changing the participation rate. Evidently, the difference examined in the
plot decreases when increasing the participation rate, in fact:

At − Lt = At−1(1 +RP
t )−

NM∑
i=1

Lt−1,i(1 + max(gi, βR
P
t )), (54)

where the liability term increases if β becomes greater. However, in any case
own funds rise over time.
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Figure 5: Mean actuarial reserves
for different values of the partici-
pation rate.
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Figure 6: Mean difference between
asset value and liability value for
different values of the participation
rate.

In addition, Figure 6 shows that at each time step the mean value of the
difference between asset value and liability value is positive. However, in some
scenarios own funds become negative and the company is declared defaulted.
In Table 12 we report the probability of default, defined as the ratio between
the number of scenarios in which the company defaults and the total number
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Figure 7: Mean number of alive policies at each time for different values of
the participation rate.

β Probability of default

90.0% 1.10%
92.5% 1.31%
95.0% 1.68%

Table 12: Probability of default for different values of the participation rate.

of scenarios (10000), for three different values of the participation rate β.
Obviously, probability of default rises by increasing β.

Finally, we analyse how the value of the participation rate affects the
changes in the number of alive policies over time, as shown in Figure 7. On
the contrary of what happens in the right plot in Figure 3, where the impact of
the mortality model is presented, in Figure 7 the effect of surrender and new
production models can be observed. In fact, the mortality model does not
depend on the participation rate, while surrender and new production models
strongly depend on it (see Section 3.1). In particular, the earnings offered
by the insurance company rise when increasing β, so that less policyholders
are motivated to abandon the contract, and more investors subscribe to the
policy. As a result, the number of alive policies decreases more slowly in the
case of larger values of the participation rate.

9 Conclusions

In this paper, we have built a two stages ALM model for a life insurance com-
pany, including a policyholders’ saving account model, a mortality model and
a surrender model, as well as a new production model, an innovative feature
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with respect to existing works in literature, as far as we know. In order to
handle the large number of contracts we have split them into model points,
by grouping policies with similar age of the policyholder, same minimum
guaranteed rate of return, and same time-to-maturity. Since an insurance
company has the purpose of both ensuring its solvency and obtaining a profit,
firstly, we have built a strategy for the asset portfolio rebalancing that aims
to match asset duration and liability duration, and to achieve a target return.
Also, we have considered several real world constraints on portfolio compo-
sition weights. From the technical point of view, the portfolio rebalancing
strategy is the result of a nonlinearly constrained optimization problem, that
requires the computation of future cash flows projections. According to our
knowledge, we have proposed an innovation with respect to literature: when
computing balance sheets projections, we have considered, in addition to
future death and maturity payments, also future surrender payments and
future cash flows due to new production. Next, we have proposed a second
stage of portfolio rebalancing that includes sectorial optimization problems
with the aim to maximize the expected value of a chosen utility function. In
this way, we have built an optimal portfolio rebalancing strategy based on
risk-averse decisions.

On the side of numerical tests, we have focused on the first stage of port-
folio rebalancing, and we have shown how the portfolio has to be dynami-
cally rebalanced and how the liability value associated to each model point
weighs on the total value of liabilities. We have pointed out the effect of the
mortality model on the evolution over time of the number of alive policies by
considering separately male policyholders and female policyholders. We have
proposed an analysis of the participation rate sensitivity, taking account of
the evolution of actuarial reserves and of own funds. As expected, actuar-
ial reserves increase and own funds decrease by increasing the participation
rate. Moreover, we have focused on the positive result that the mean value of
own funds raises over time for any considered value of the participation rate.
However, there is a small probability, depending on the participation rate,
that in certain scenarios the company defaults, because own funds become
negative. Finally, we have analysed how the number of alive policies varies
by changing the value of the participation rate, thus showing how it depends
on surrender and new production models. Indeed, the participation rate does
not affect policyholders’ mortality, so that the different rate of decrease in
the number of alive policies with different values of the participation rate is
due only to the different numbers of surrenders and of new policyholders.
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