
A Multi-Level Monte-Carlo with FEM for XVA
in European Options

Graziana Colonna, Ana M. Ferreiro-Ferreiro, and Carlos Vázquez

Abstract Counterparty credit risk has been recently incorporated in the pricing of
financial derivatives by adding different adjustments, the set of which is referred
as XVA. In the case of European options to consider stochastic default intensities,
instead of constant ones, a three factor model arises. In this work, we have combined
a numerical method for solving PDEs with Monte Carlo based techniques, to solve a
new hybridmodel forXVApricing. In this way, instead of solving a three dimensional
PDEs problem we solve a one dimensional PDE, with two stochastic coefficients
coming from the stochastic intensities. More specifically, we propose the use of a
Multi-Level Monte Carlo method.

1 Introduction

After Credit Crisis in 2008, unexpected defaults of big companies increased the
relevance of counterparty risk in industry and academia. In derivative contracts,
counterparty risk refers to the possibility that a counterparty defaults while owing
money associated to the contract or while the mark-to-market value of the derivative
is positive for the other part of the contract. Many papers and books developed
techniques for the valuation of derivatives including counterparty risk by means of
valuation adjustments, the set of all of them being referred as total valued adjustment
and denoted by XVA. Some particular adjustments included in XVA are:

• CVA: the cost of hedging counterparty credit risk;
• DVA: the adjustment to a derivative price due to the institution’s own default risk;
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• FVA: the correctionmade to the derivative price to account for a funding cost/ben-
efit related to counterparty risk;

• KVA: the cost of holding regulatory capital associated to counterparty risk.

In order to compute the derivative value including the XVA or the price of the XVA,
three main approaches are considered in the literature: partial differential equations
(PDEs), backward stochastic differential equations (BSDEs) and formulations in
terms of expectations. In the PDEs based approach, the spatial dimension of the time
dependent PDE is equal to the number of underlying stochastic factors. In many
settings, like pricing basket options or interest rate derivatives depending on a large
number of forward or swap rates (LIBORmodels), the required number of stochastic
factors to develop a realistic pricing implies a PDEwith high dimension, thus leading
to the so called curse of dimensionality when numerical methods are addressed. In
the present work, in order to overcome the curse of dimensionality, we aim to exploit
the combination of Monte Carlo methods and the numerical solution of PDEs with
one spatial dimension following the ideas in [5].

2 Modelling with Constant Intensities

Following [3], we consider a derivative contract between two defaultable parties,
the hedger (H) and the investor (I). In order to obtain the value of the derivative
including counterparty risk, the authors consider a portfolio with four traded assets:

• 𝑃𝑅 : default risk-free, zero-coupon bond, with yield 𝑟 ;
• 𝑃𝐻 : default risky, zero-recovery, zero-coupon bond of party H, with yield 𝑟𝐻 ;
• 𝑃𝐼 : default risky, zero-recovery, zero-coupon bond of party I, with yield 𝑟 𝐼 ;
• 𝑆 : underlying asset with no default risk.

Different linear and nonlinear PDEs formulations of the pricing problem can be ob-
tained. The type of PDE depends on the choice of the so calledmark tomarket (MtM)
close outs, which is the value of the derivative in case of default. More precisely, let
𝑉̂𝑡 be the value of the derivative with counterparty risk (hereafter referred as risky
derivative), and let 𝑉𝑡 be the value of the derivative without counterparty risk (risk
free derivative). Possible choices to model the MtM value can be 𝑀𝑡 = 𝑉𝑡 (i.e., equal
to the risky derivative value) or 𝑀𝑡 = 𝑉𝑡 (i.e., equal to the risk free derivative value).
In any case, the value of the risky derivative in case of default is:

• 𝑉̂𝑡 = 𝑀
+ (𝑡, 𝑆) + 𝑅𝐼𝑀− (𝑡, 𝑆), if the investor I defaults first;

• 𝑉̂𝑡 = 𝑀
− (𝑡, 𝑆) + 𝑅𝐻𝑀+ (𝑡, 𝑆), if the hedger H defaults first,

𝑅𝐼 ∈ [0, 1] and 𝑅𝐻 ∈ [0, 1] being the recovery rates of parties 𝐼 and 𝐻, respectively.
By using dynamic hedging methodology and different versions of Ito lemma,

according to the choice of 𝑀 , two different PDEs arise.

– Non Linear PDE when 𝑀𝑡 = 𝑉𝑡 :
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𝜕𝑡𝑉̂ + A𝑉̂ − 𝑟𝑉̂ = (1 − 𝑅𝐻 )𝜆𝐻 (𝑉̂)− + (1 − 𝑅𝐼 )𝜆𝐼 (𝑉̂)+ + 𝑠𝐹 (𝑉̂)+,
𝑉̂ (𝑇, 𝑆) = 𝐻 (𝑆). (1)

– Linear PDE when 𝑀𝑡 = 𝑉𝑡 :{
𝜕𝑡𝑉̂ + A𝑉̂ − (𝑟 + 𝜆𝐻 + 𝜆𝐼 )𝑉̂ = −(𝑅𝐻𝜆𝐻 + 𝜆𝐼 )𝑉− − (𝑅𝐼𝜆𝐼 + 𝜆𝐻 )𝑉+ + 𝑠𝐹 (𝑉)+,
𝑉̂ (𝑇, 𝑆) = 𝐻 (𝑆),

(2)

where we use the differential operator A = 1
2𝜎

2𝑆2 𝜕2

𝜕𝑆2 + 𝑟𝑅𝑆 𝜕
𝜕𝑆
and the notation 𝑥+

and 𝑥− for the positive and negative parts of 𝑥. Moreover, 𝑟𝑅 is the rate paid in a
repurchase agreement, 𝑠𝐹 is the funding cost, 𝑟𝐹 is the hedger funding rate, 𝜆𝐻 and
𝜆𝐼 denote the constant intensities of default of hedger and investor, respectively. The
function 𝐻 is the pay-off of the derivative in terms of the underlying asset price 𝑆.
If 𝑈 denotes the XVA, then 𝑉̂ = 𝑉 + 𝑈, where 𝑉 is the price of the risk-free

derivative. For a European vanilla option, the Black-Scholes formula provides the
value of 𝑉 . From (1) and (2), we obtain the corresponding PDEs for the XVA price.

– If 𝑀𝑡 = 𝑉𝑡 then𝑈 satisfies the nonlinear PDE problem:{
𝜕𝑡𝑈 + A𝑈 − 𝑟𝑈 = (1 − 𝑅𝐻 )𝜆𝐻 (𝑉 +𝑈)− + (1 − 𝑅𝐼 )𝜆𝐼 (𝑉 +𝑈)+ + 𝑠𝐹 (𝑉 +𝑈)+,
𝑈 (𝑇, 𝑆) = 0;

(3)
– If 𝑀𝑡 = 𝑉𝑡 then𝑈 satisfies the linear PDE problem:{

𝜕𝑡𝑈 + A𝑈 − (𝑟 + 𝜆𝐻 + 𝜆𝐼 )𝑈 = (1 − 𝑅𝐻 )𝜆𝐻 (𝑉)− + (1 − 𝑅𝐼 )𝜆𝐼 (𝑉)+ + 𝑠𝐹 (𝑉)+,
𝑈 (𝑇, 𝑆) = 0,

(4)

Note that in the case of constant intensities of default, there is only one stochastic
factor 𝑆𝑡 and the spatial dimension of the governing PDE is equal to one. PDEs
problems (3) and (4) for constant intensities have been numerically solved in [1],
where the method of characteristics (Semi-Lagrangian method) for time discretiza-
tion is combined with a finite element method (FEM) for the spatial discretization.
Additionally, a fixed point iteration is applied to solve the nonlinear PDE.

3 Hybrid Models for Stochastic Intensities

The main objective of the present work is the extension of the previous setting with
constant intensities of default to the casewith stochastic intensities of default. For this
purpose, we pose a hybrid model with three stochastic factors, which is governed
by a PDE with two coefficients that are stochastic factors. This approach avoids
the alternative consideration of a PDE with three spatial variables, the numerical
solution of which is more computationally demanding. Thus, we pose the following
linear PDE with one spatial dimension and the two stochastic coefficients:
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𝜕𝑡𝑈 + A𝑈 − (𝑟 + 𝜆𝐻𝑡 + 𝜆𝐼𝑡 )𝑈 = (1 − 𝑅𝐻 )𝜆𝐻𝑡 (𝑉)− + (1 − 𝑅𝐼 )𝜆𝐼𝑡 (𝑉)+ + 𝑠𝐹 (𝑉)+,
𝑈 (𝑇, 𝑆) = 0,

where the stochastic default intensities satisfy the following SDEs:

𝑑𝜆𝐼𝑡 = −
𝑘 𝐼

1 − 𝑅𝐼 𝜆
𝐼
𝑡 𝑑𝑡 +

𝜎𝐼

1 − 𝑅𝐼 𝑑𝑊
𝐼
𝑡 , 𝑑𝜆𝐻𝑡 = − 𝑘𝐻

1 − 𝑅𝐻 𝜆
𝐻
𝑡 𝑑𝑡 +

𝜎𝐻

1 − 𝑅𝐻 𝑑𝑊
𝐻
𝑡 ,

with 𝜎𝐼 and 𝜎𝐻 being the volatilities of the intensities of default while 𝑘 𝐼 and 𝑘𝐻
are drift parameters.𝑊 𝐼

𝑡 and𝑊𝐻
𝑡 are Brownian motions.

4 Numerical Methods for the Hybrid Model

A first possible naive approach to solve the hybrid model consists in using a crude
Monte Carlo (MC) to simulate the paths of the stochastic intensities at the discrete
times of the time discretization mesh used for the PDE numerical solution. This
method can be sketched as follows:

• Simulate 𝑁 paths of 𝜆𝐻 and 𝜆𝐼 (i.e., 𝜆𝐻,𝑖 and 𝜆𝐼,𝑖 , 𝑖 = 1, . . . , 𝑁.)
• Solve numerically the (linear or nonlinear) PDE for each path to obtain 𝑈̃𝑖 .
• Compute, as solution of the model, the expectation by using Monte Carlo with:

E[𝑈̃] = 1
𝑁

𝑁∑︁
𝑖=1
𝑈̃𝑖

In the present work, we also aim to speed up theMonte Carlo convergence and reduce
the variance by using the Multi Level Monte Carlo (MLMC) method presented in
[4]. The main ideas of MLMC can be summarized as follows:
If we want to compute the expected value of a process𝑄 = 𝐹 (𝑆𝑡 ), where the process
satisfies 𝑑𝑆𝑡 = 𝑎(𝑆𝑡 , 𝑡)𝑑𝑡 + 𝑏(𝑆𝑡 , 𝑡)𝑑𝑊𝑡 and 𝑡 ∈ [0, 𝑇], we can write:

E[𝑄̂𝐿] = E[𝑄̂0] +
𝐿∑︁
𝑙=1
E[𝑄̂𝑙 − 𝑄̂𝑙−1],

where 𝐿 > 0 is a positive integer and 𝑄̂𝑙 is an approximation of 𝑄, estimated on the
discretisation of the time interval with the time step ℎ𝑙 = 𝑇

𝑀𝑙 , 𝑀 being a positive
integer. Let 𝑌𝑙 denote an approximation of E[𝑄̂𝑙], then:

𝑌𝐿 = 𝑌0 +
𝐿∑︁
𝑙=1
𝑌𝑙 − 𝑌𝑙−1.

Therefore, each 𝑌𝑙 is computed with the MC method, using 𝑁𝑙 simulations.
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5 Numerical Results

We consider an example with a European put option and we compare the case of
constant intensities (1-factor model) with a couple of cases with stochastic intensities
(2-factor and 3-factor models). We use a linear PDE model, which is numerically
solved with the method developed in [1] using a uniform spatial mesh with 1000
nodes and a time step depending on the level in the MLMC method. As MLMC
parameters we consider 𝐿 = 4 and 𝑀 = 4, with 𝑁𝑙 = 500 simulations per level.
First, assuming that 𝜆𝐼 = 0 we compare the 1-factor and 2-factor models corre-

sponding to the cases 𝜆𝐻 constant and 𝜆𝐻 stochastic, respectively. The values of the
parameters are 𝜎 = 0.3, 𝑟 = 0.04, 𝜆𝐻0 = 0.04 (constant case and initial intensity in
stochastic case), 𝑅𝐻 = 0.4, 𝑅𝐼 = 0.3, 𝑘𝐻 ∈ {0.1, 0.3, 0.5, 0.7}, 𝜎𝐻 = 0.2, the strike
𝐾 = 2 and the maturity 𝑇 = 0.5. The PDE variables are 𝑡 ∈ [0, 𝑇] and 𝑆 ∈ [0, 3].
Next, we compare the 1-factor and 3-factor models, where we additionally consider
a stochastic 𝜆𝐼 , with parameters 𝜆𝐼0 = 0.04, 𝑘 𝐼 ∈ {0.1, 0.3, 0.5, 0.7} and 𝜎𝐼 = 0.2.
In Figure 1 we show the XVA prices of 1-factor versus 2-factor (left) models

and of 1-factor versus 3-factor models (right), illustrating that differences increase
for small values of the underlying asset and for larger values of drift coefficients in
the stochastic equations governing intensities of default. The XVA is negative as it
represents the decrease in the risk free put value due to the probability of default. For
small values of the asset, the put option is in the money and one counterparty will be
interested in exercising so he/she will be (more) exposed to the other counterparty
default. As the exposure has a more negative impact on the put option value for
smaller asset values, the XVA becomes more negative and more sensitive to the
variation of the drifts of the stochastic intensities of default.
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Fig. 1: Comparison 1-factor versus 2-factor models (left) and 1-factor versus 3-factor
models (right), for different drifts in stochastic intensities.

Finally, by using as reference solution the one obtained with MLMC with param-
eters 𝐿 = 5, 𝑁𝑙 = 2000, we compare the crude MC and the MLMC for the 3-factors
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hybrid model. Figure 2 shows the maximum error with respect to time step (left) and
computational times (right), clearly illustrating the advantages of MLMC.
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Fig. 2: Comparison of errors in crude Monte Carlo (MC) and Multi Level Monte
Carlo (MLMC).

6 Conclusions

A hybrid model has been proposed for the case of stochastic intensities of default
involving three factors in the evaluation of XVA. The hybrid approach allows to
consider PDEs with one spatial dimension and two stochastic coefficients, thus
avoiding the solution for PDEs with three spatial dimensions. Multi Level Monte
Carlo speeds up the convergences with respect to the use of a crude Monte Carlo
numerical methodology. Numerical results illustrate the effect of considering more
realistic stochastic intensities of default with respect to constant ones. More details,
specially about the numerical examples and their discussion, will appear in [2].
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