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Problem formulation - conceptual level

Example: Control of pendulums on carts

Figure: Single and double pendulums on carts.
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Problem formulation - conceptual level

Example: Control of stochastic process

Figure: A trajectory of a stochastic process described by a SDE.

SDE: Xt = x0 +

∫ t

0
b(t,Xt)dt +

∫ t

0
σ(t,Xt)dWt .
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Problem formulation - conceptual level

Example: Control of stochastic process

Figure: A trajectory of a stochastic process described by a SDE.

SDE: X u
t = x0 +

∫ t

0
b(t,X u

t , ut)dt +
∫ t

0
σ(t,X u

t )dWt ,

Distance to target: |X u
T − 100|2, Expected distance to target: E

[
|X u

T − 100|2
]
.
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Stochastic control - FBSDE

Stochastic control problem

Dynamical system described by an SDE referred to as the State equation

X u
t = x0 +

∫ t

0
b̄(t,X u

t , ut)dt +
∫ t

0
σ̄(t,X u

t )dWt .

X u = (X u
t )t∈[0,T ] state of the system, u = (ut)t∈[0,T ] control of the system, taking on

values in Rd and U ⊂ Rℓ, respectively.

To measure performance of the control, a cost functional is used

Ju(t, x) = E
[ ∫ T

t

f̄ (s,X u
s , us)ds + g(X u

T )
∣∣X u

t = x

]
.

The control problem is to find a control u ∈ U[0,T ](:= set of admissible controls) such
that the cost functional is minimized.
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Stochastic control - FBSDE

FBSDE

Assuming σ̄ is uniformly invertible, Itô’s lemma gives the FBSDE{
Xt = x0 +

∫ t

0 b(s,Xs ,Zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = g(XT ) +
∫ T

t
f (s,Xs ,Zs)ds −

∫ T

t
ZsdWs ,

(1)

where

Zt = DxV (t,Xt)
⊤σ(t,Xt),

Yt = V (t,Xt),

where b(t,Xt ,Zt) := b̄(t,Xt , u
∗), f (t,Xt ,Zt) := f̄ (t,Xt , u

∗) and σ := σ̄.

The solution to (1) is the triple (X ,Y ,Z) of adapted, square integrable processes.
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Using neural networks to approximate FBSDEs

Reformulation for deep BSDE solver

The Deep BSDE solver1 uses the follwing reformulation of a FBSDE
inf

y0,(zt )t∈[0,T ]

E|YT − g(XT )|2, subject to

Xt = x0 +
∫ t

0 b(s,Xs , zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = y0 −
∫ t

0 f (s,Xs , zs)ds +
∫ t

0 zsdWs ,

(2)

compared to {
Xt = x0 +

∫ t

0 b(s,Xs ,Zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = g(XT ) +
∫ T

t
f (s,Xs ,Zs)ds −

∫ T

t
ZsdWs ,

(3)

Motivation:
1 A solution to (3) solves (2);
2 By wellposedness of the FBSDE, the solution is unique.

Problem: Time discrete version does not in general converge to continuous problem.
This is shown in our paper, and we elaborate on why and when this occurs.

1A. Jentzen et. al. Solving high-dimensional partial differential equations using deep learning.
Proceedings of the National Academy of Sciences 115.34 (2018): 8505-8510.
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Using neural networks to approximate FBSDEs

Our reformulation - using properties from stochastic control problem

Our solution: Impose known structure from the stochastic control formulation of the
problem. In our paper we show theoretically and empirically that our method converges.

inf
(zt )t∈[0,T ]

E[Y0(z)] + λVar[Y0(z)], subject to

Y0(z) = g(XT ) +
∫ T

0 f (t,Xt , zt)dt −
∫ T

0 ztdWt , Y0 = E[Y0(z)]

Xt = x0 +
∫ t

0 b(s,Xs , zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = Y0 −
∫ t

0 f (s,Xs , zs)ds +
∫ t

0 zsdWs .

(4)

1 Y0 coincides with the value function of the control problem (property from the
control problem),

2 Y0 is F0−measurable and therefore has zero variance (property from the FBSDE).
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Using neural networks to approximate FBSDEs

Discussion

Why should our algorithms work better?

Using mathematical structure from the specific problem leads to fewer entities to
approximate;

Loss surface of objective function seems to be nice and monotonic → easy to
optimize;

Disdvantage of our algorithms:

While deep BSDE solver is (at least conceptually) applicable for all FBSDEs, our
algorithm is applicable only for FBSDEs steming from stochastic control problems.
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Numerical experiments

Setup of numerical experiments

All optimization problems are approximated with the help of ANNs, but any function
approximator efficient enough could be used;

In the following examples, we have analytical solutions available to compare with;

For each solution component, X ,Y and Z we compare to analytical counterpart in
strong and weak sense;

One problem with control in each spatial dimension (d = ℓ) → Algorithm 1;

One problem with control in each spatial dimension (d > ℓ) → Algorithm 2.
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Numerical experiments

Strong and weak approximations of X for ℓ = d = 2

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of Y for ℓ = d = 2

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of Z for ℓ = d = 2

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of X for ℓ = 2 and d = 6

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of Y for ℓ = 2 and d = 6

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of Z for ℓ = 2 and d = 6

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Convergence analysis

Bound for strong error of our numerical scheme:∥∥X − X̂ h,λ
∥∥
S2(Rd )

+
∥∥Y − Ŷ h,λ

∥∥
S2(Rd )

+
∥∥Z − Ẑ h,λ

∥∥
H2(Rk )

≤ C

(
h

α
2 + max

0,...,Nh

(
E
[∥∥ζ∗(tn,Xλ,h

n )− ζ̂∗h,λ(tn,X
λ,h
n )

∥∥2
]) 1

2

)
.

For the initial condition of BSDE:∣∣Y0 − Y h,λ
0

∣∣+ Var
(
Yh,λ

0
)
≤ Chα.

For the terminal condition of BSDE:(
E
[(
g
(
X h,λ

N

)
− Y h,λ

N

)2]) 1
2 ≤ Ch

α
2 .
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Numerical experiments

Convergence plots

Figure: Convergence plots.
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Numerical experiments

Thanks for your attention!
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Back-up slides

Value function and HJB equation

If infimum is attainable, the value function, V , satisfies

V (t, x) ∈ inf
u∈U[t,T ]

Ju(t, x).

Under mild conditions, the value function satisfies a Hamilton–Jacobi–Bellman equation,
which is a quasi-linear parabolic PDE given by{

∂V
∂t

(t, x) +H(t, x ,DxV (t, x),D2
xV (t, x)) = 0, (t, x) ∈ [0,T )× Rn,

V (t, x) = g(x), (t, x) ∈ {T} × Rn,
(5)

where the Hamiltonian, H, is given by

H(t, x , p, q) = inf
v∈U

[
b̄(t, x , v)⊤p + f̄ (t, x , v)

]
,

for all p ∈ Rd .

By inspection, feedback control on the form u∗
t = u∗(t,X u∗

t ,DxV (t,X u∗
t )
)
.

Assumption: From now on, assume (5) has a solution V , with sufficiently many bounded
derivatives.
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Back-up slides

Equidistant time grid π := {0 = t0, t1, . . . , tN = T}, with h = tn+1 − tn and Brownian
increments ∆Wn = Wn+1 −Wn.
Time discrete formulation:

inf
ȳ0,{z̄k})k∈{0,1,...,n−1}

E|ȲN − g(X̄N)|2, subject to

X̄n = x0 +
∑n−1

k=0 b(tk , X̄k , z̄k)h +
∑n−1

k=0 σ(tk , X̄k)∆Wk ,

Ȳn = ȳ0 −
∑n−1

k=0 f (tk , X̄k , z̄k)h +
∑n−1

k=0 z̄k∆Wk .

(6)

To investigate convergence:
1 Fix ȳ0 ∈ R;
2 Minimize the objective in (6) (only over z̄0, z̄1, . . . , z̄N−1, since ȳ0 fixed);
3 Explore the values of the objective function for different ȳ0 (one optimization per ȳ0).

If convergence, then for small h, ȳ0 ≈ Y0 should yield the smallest value of the objective
function.

Is this what we observe empirically? For nice and linear problems, yes. Otherwise, No!
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Back-up slides

Figure: Left: Simple linear problem, Y0 = 1.27. Right: Non-linear problem, Y0 = 0.79.

Left: Y0 is close to the global minimum of the objective function → convergence!

Right: Y0 is close to a local minimum of the objective function. But not close to global
minimum → No convergence!

24 / 21



Back-up slides

Figure: True Y0 = 1.27 Left: ȳ0 = 5. Right: ȳ0 = 2.

Conclusion:
Possible to control system to ”almost satisfy” terminal condition for many different ȳ0

Therefore, no convergence.
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Back-up slides

From continuous to discrete formulations

Want to approximate FBSDE with a time discrete counterpart. Have seen equivalence
between FBSDE and continuous variational problems.

Question: What happens to the reformulations in a time discrete setting?
Answer:

(Discrete counterpart of) variational formulation used for deep BSDE solver
converges for weakly coupled FBSDEs. Not easy to show convergence in the
strongly coupled case;

Some empirical evidence indicates no convergence;

(Discrete counterparts of) our reformulations converges with mild assumptions also
for strongly coupled FBSDEs in Y0.

Under additional assumptions proof that entire FBSDE converges;

Empirical convergence for all problems investigated.
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