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ABSTRACT

Reinforced Urn Processes (RUPs) represent a flexible class of Bayesian nonparametric models suitable
for dealing with possibly right-censored and left-truncated observations. A reliable estimation of
their hyper-parameters is however missing in the literature. We therefore propose an extension of the
Expectation-Maximization (EM) algorithm for RUPs, both in the univariate and the bivariate case.
Furthermore, a new methodology combining EM and the prior elicitation mechanism of RUPs is
developed: the Expectation-Reinforcement algorithm. Numerical results showing the performance of
both algorithms are presented using artificial and actual data.

Keywords Reinforced urn process · Expectation-Maximization · Expectation-Reinforcement · Bivariate Survival
Function · Censoring

1 Introduction

Real-life data is often censored and/or truncated. For example we have right-censoring, when, in a medical study,
patients are observed over a limited period of time, and the event of interest—next stage of a disease or even death—may
occur after the observation period. And we can also have left-truncation, because many patients can only be diagnosed
when the disease is already in an advanced stage, and knowledge about the first evolutions is not given. Censoring and
truncation are quite common in survival studies, education studies, engineering and risk management [Angrist et al.,
2006, Cheng and Cirillo, 2018, Klein and Moeschberger, 2003, Shen and Yan, 2008, Antonio et al., 2015], among
others.

In the univariate case, truncation and censoring have been extensively studied (see for example Wang [1987] for a very
nice analysis of these phenomena on likelihood estimation), but much less progress has been made in higher dimensions,
even just for the bivariate case. The bivariate case is indeed of special relevance for the many applications it has, in
which at least one variable is subject to either truncation or censoring, e.g. Liuquan and Haobao [2001].

Among the first proposals for a bivariate nonparametric estimator under bivariate censoring we find Campbell and
Földes [1982], Dabrowska [1988], Pruitt [1991a] and Pruitt [1993]. However, as shown in Pruitt [1991b], these
estimators fail to be monotone in specific cases, possibly generating negative probabilities. Interesting works are also
those of Shen and Yan [2008] and Gribkova and Lopez [2015]. The former develops an iterative method to estimate a
generalization of the Dabrowska and Campbell and Földes estimators, which includes the effect of left-truncation, while



A PREPRINT - NOVEMBER 29, 2021

the latter uses a nonparametric estimator via random weights, first defined in Lopez [2012], to compute a nonparametric
copula. Shen and Yan [2008] showed that bivariate truncation complicates things further. In such a case, the univariate
Kaplan-Meier (KM) estimator [Kaplan and Meier, 1958] should not be used for the marginal survival functions, since it
is not consistent. Thus not only the joint distribution, but also the marginals become difficult to handle.

Since left-truncation and right-censoring fall under the umbrella of incomplete data, many authors have opted for an
alternative approach, using the (Expectation-Maximization) EM algorithm of Dempster et al. [1977]. Some relevant
results in the univariate framework are available in Pruitt [1991a], van der Laan [1994], Antonio et al. [2015] and
references therein. The literature is far more limited for bivariate distributions: Nandi and Dewan [2010] is the first work
to approach the problem of bivariate modelling under right-censoring through EM. And, to the best of our knowledge,
nobody has so far proposed an extension of the EM algorithm to include bivariate left-truncation.

In this work, we propose a nonparametric implementation of the EM algorithm that captures both bivariate right-
censoring and left-truncation 1. To do so we rely on the Reinforced Urn Process (RUP) of Muliere et al. [2000], for
both the univariate and the bivariate settings. For the latter, we focus on the bivariate RUP (B-RUP) model of Bulla et al.
[2007], to deal with the non-negative linear dependence between two variables. However, as it shall be clear later, our
algorithms can be adapted to more general constructions, as far as they are build on RUPs.

RUPs are neutral-to-the-right processes [Doksum, 1974], and they have been employed in many applications involving
right-censoring, for example in the context of Wrong-Way-Risk modelling [Cheng and Cirillo, 2019], or in annuity
pricing [Souto Arias and Cirillo, 2021]. However, they have not yet been used to model left-truncation. On top of
that, the study and use of RUPs has been so far restricted to the Bayesian community, and all applications have relied
on extensive simulations–mainly Markov Chain Monte Carlo as in Bulla et al. [2007] or Peluso et al. [2015]. In our
opinion, this is mainly due to the lack of reliable estimation tools for the (hyper-)parameters of the different models2.
For a Bayesian statistician, the definition of a proper a priori is a natural and fundamental step of the analysis, and in
case of real ignorance one can always rely on “non-informative" solutions, e.g. Galavotti [2001], Galavotti et al. [2008],
Jeffreys [1946]. However, for researchers who do not feel at ease with subjectivity and prior elicitation, limitations in
the estimation of the model parameters directly from the data can be a deterrent. Our EM algorithm offers a solution.

This said, we also believe that it is important to valorize one of the main features of RUPs: the possibility of combining
expert judgements, in the form of some a priori, and empirical data. This can be of great help for those applications in
which data can be imprecise or missing, but experts have important “gut feelings" (for a discussion see Cheng and Cirillo
[2018]). That is why, besides a more standard EM algorithm, we also propose a novel Expectation-Reinforcement (ER)
algorithm, which exploits the natural reinforcement mechanism of RUPs to complement the EM part.

The structure of the paper develops as follows. In Section 2 we briefly revisit the concepts of right-censoring and
left-truncation, and how they relate to the variables of interest in both the univariate and bivariate cases. Section 3
summarizes the theory of Reinforced Urn Processes, as well as the bivariate construction (B-RUP) of Bulla et al. [2007].
The EM algorithm for RUPs under left-truncated and right-censored data is described in Section 4, while Section 4.4
discusses the new ER algorithm. Simulation results and an application on actual data are presented in Section 5 to
discuss performances, while Section 6 concludes the paper.

2 Left-truncation and right-censoring

Let X = (X1, ..., Xn) and C = (C1, ..., Cn) be identically and independently distributed (i.i.d) observations with
independent distributions FX and FC , respectively.

If right-censoring occurs, we observe the pair (x∗i , δi), where x∗i = min(xi, ci) and δi = 1{x∗
i=xi} for i = 1, ..., n, with

1{·} the indicator function. That is, we observe the minimum between the censoring variable and our target variable,
plus and indicator telling us which of the two we observe.

Let T = (T1, ..., Tn) be another i.i.d. sequence with distribution FT , independent of FX . When left-truncation occurs,
we observe the pair (xi, ti), for i = 1, ..., n, if xi ≥ ti, and nothing otherwise.

Since for xi < ti we do not observe anything, we cannot even realize its existence, that is, there is no information in our
data about x or t for x < t. This suggests that a truncated observation provides even less information than a censored
one, since for cases where P(T ≤ X) is small, the truncated sample will be highly biased with respect to the original

1In the following, when referring to "censoring" and "truncation," we always imply "right-censoring" and "left-truncation", unless
explicitly stated otherwise.

2It should be stressed that the lack of estimation tools for urn models is a more general problem. Urn processes have been mainly
approached from a probabilistic point of view, while statistical inference has always been marginal. Some important exceptions exist,
e.g. Feng et al. [2017], Line and Philippe [2017] or Marcaccioli and Liva [2019], but they are indeed a minority.
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underlying distributions. Such a bias is so relevant that, according to Wang [1987], truncated data can also be classified
as selection-biased data.

Of course, there is also the case when both truncation and censoring occur at the same time, complicating things further.
In such a case it is usually assumed [Cox and Oakes, 1984, Wang, 1987] that the variable of interest X is independent
from both T and C. In a similar situation what one observes is the triplet (x∗, t, δ), with x∗ and δ defined as before if
t ≤ x, and nothing otherwise. As in Wang [1987], we further assume that P(T ≤ C) = 1, hinting towards the existence
of dependence3 between T and C.

A nonparametric estimator for SX was first introduced in Cox and Oakes [1984] and further studied in Tsai, Jewell, and
Wang [1987], as

L(X∗|δ,T) =

n∑
i=1

[(1− δi) log(P(X > x∗i )) + δi log(P(X = x∗i ))− log(P(X ≥ ti))]. (1)

Equation (1) reduces to the KM estimator in the absence of truncation [Kaplan and Meier, 1958], and to the product-limit
estimator of Lynden-Bell [1971] without censoring.

Let us now consider the bivariate situation. Following Shen and Yan [2008], we assume that the joint survival
function SXY of the variables (X,Y ) is independent from the truncation and censoring variables (TX , CX , TY , CY ).
Observations consist of two triplets (x∗, tX , δX) and (y∗, tY , δY ). If the target variables X and Y are independent,
we can write the joint conditional likelihood as the product of the marginal likelihoods, both defined as in Equation
(1). However, when there exists dependence, the likelihood must be modelled jointly, and under left-truncation and
right-censoring it takes the form:

L(X,Y|δX , δY ,TX ,TY ) =

n∑
i=1

[log(P∗(x∗i , y∗i |δXi , δYi ))− log(P(X ≥ tXi , Y ≥ tYi ))], (2)

with

P∗(x, y|δX , δY ) =


P(X = x, Y = y) if δX = 1 and δY = 1,
P(X > x, Y = y) if δX = 0 and δY = 1,
P(X = x, Y > y) if δX = 1 and δY = 0,
P(X > x, Y > y) if δX = 0 and δY = 0.

(3)

For ease of notation, from now on we will write L(X,Y) when referring to the bivariate likelihood in Equation (2),
with the conditioning on censoring and truncation always implied.

With the acronym LTRC, we will indicate left-truncated and/or right-censored observations.

2.1 Assumptions for modelling

To make notation and computations easier, while preserving enough generality and applicability, we will make some
assumptions on censoring and truncation. However, we would like to emphasize that the methodology we propose in
Section 4 is of more general nature and it can also be adapted and employed under different assumptions.

First, we assume that TX and TY are dependent through the relation TY = TX + ε − ε0, where ε0 ≥ 0, and ε is a
random variable (r.v.) that only takes values on the positive integers. This situation arises for example when studying
coupled lifetimes, where TX and TY denote the age at which each individual enters the study [Frees et al., 1996,
Souto Arias and Cirillo, 2021]. In this case the difference between TX and TY is given by the difference in ages
between the individuals, which would be modelled by the r.v. ε− ε0, with ε0 a maximum threshold in the age difference.
This assumption is heavily inspired by experiments where the truncation variable plays a temporal role4.

Second, we set Ci = T i + ∆, for i ∈ {X,Y }. Going back to the coupled lifetimes example, both members of the
couple will be monitored exactly for the same amount of time in case censoring occurs, which explains using the same
r.v. for CX and CY . The new r.v. ∆ serves the purpose of modelling the observation period, so that the age at which
the individuals start the study plus the time under observation trivially gives the age at which they leave the study. This
second assumption is also implicitly giving a temporal meaning to the censoring variable, and it basically means that
the target variable grows linearly with time.

3A similar situation occurs, for example, in lifetime follow-up studies [Klein and Moeschberger, 2003], where T is the age at
which an individual joins the study and C is the age at which they drop out. Since it is not possible to drop out a study without first
joining it, the condition P(T ≤ C) = 1 is trivially met.

4It would be more general to define TY = TX + ε, allowing ε to take negative values, but, again, since most of the times T has a
temporal interpretation [Klein and Moeschberger, 2003], the other form is here preferred.
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3 Univariate and Bivariate Reinforced Urn Processes

Before recalling the mathematical details of the Reinforced Urn Process of Muliere et al. [2000], we give an intuitive
representation of this process using a sequence of Polya urns [Mahmoud, 2008], in the two-color case.

3.1 Urn representation

Assume we have M + 1 Polya urns, where the j-th urn Uj , j = 0, 1, ...,M , initially contains ωj > 0 green (G) balls
and βj > 0 red (R) balls. The only exception is urn U0, which only has green balls. The dynamics of the RUP are
governed by the following rules:

1. The process starts from Urn 0, which is the first urn to be sampled with reinforcement.

2. Every time we pick a ball, we note the color, and we reinforce the urn, that is we put the ball back together
with an extra ball of the same color. This increases the probability of picking that color again in the future.

3. If the color of the ball is green, we move forward to the next urn, and repeat from step 2. On the other hand, if
the color is red we go back to Urn 0, and the process starts anew.

Notice that from Urn 0 we necessarily move to Urn 1, while from all the other urns, we can move forward or jump back
to Urn 0.

0 1 2 3 4

(a) Urn scheme: initial composition.

0 1 2 3 4

(b) Urn scheme: updated composition after the trajectory
(•G, •G, •R).

Figure 1: Representation of the RUP as a series of Pólya urns. After each sampling the urns are updated in a way that
reinforces the probability of a given sampling.

In Figure 1b we see an example of a possible trajectory (•G, •G, •R) and the resulting urn composition after each
sampling. Notice that the probability of observing the same path in the next cycle has increased, thanks to the
reinforcement mechanism, which allows for learning.

If the data we want to model includes right-censoring and left-truncation, the previous graphic can be modified as
follows. In case of a right-censored observation, we do not include the red ball, with everything else unchanged. If the
sample is left-truncated with value j, we start drawing from urn Uj , instead of U0. It is clear that in this way we can
reproduce Equation (4).

In the simple example above we have assumed that reinforcement (the number of extra balls added after each drawing)
is unitary for the sake of clarity, but one can easily add a parameter r controlling how many balls are added to each urn
after sampling. Clearly, the higher r, the quicker the RUP will change according to sampling, while it will barely move
from the initial urn compositions for r → 0. The importance of r is discussed in several papers, e.g. Cheng and Cirillo
[2018], Cirillo et al. [2010], Peluso et al. [2015]. The calibration of r allows us to control for how much a RUP should
learn from data via reinforcement, and how much we actually trust our a priori, i.e. the initial compositions of the urns.

3.2 Some more formality

We start by defining the mathematical backbone of the RUP: the beta-Stacy process of Walker and Muliere [1997], to
which we refer for all detail.

4
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The beta-Stacy process (BSP) is a random distribution that can sample discrete (discrete BSP) or continuous (continuous
BSP) distributions. It can be seen as a generalization of the Dirichlet process [Ferguson, 1973], and it represents a very
flexible tool for Bayesian nonparametrics [Hjort et al., 2010]. In what follows we focus on the discrete BSP.

Definition 3.1 (Walker and Muliere [1997]). A random distribution function F is a discrete beta-Stacy process with
jumps at j ∈ N0 and parameters {βj , ωj}j∈R+ , if there exist mutually independent random variables {Vj}j∈N0

, each
beta distributed with parameters (βj , ωj), such that the random mass assigned by F to {j}, written F ({j}), is given by
Vj
∏
i<j(1− Vi).

Following Walker and Muliere [1997], we introduce couples {βj , ωj} ∈ R+ × R+, with j ∈ N0, such that βj , ωj ≥ 0,
βj + ωj > 0, and limn→∞

∏n
j=0

ωj
βj+ωj

= 0. Then, given a beta-Stacy process F with parameters {βj , ωj , j}, and a
LTRC sample (X∗n,Tn, δn), withX∗n = {x∗n, n ≥ 1}, the sequenceXn = {xn, n ≥ 1} is a RUP with reinforcement
r if

Ŝ(x) = P(Xn+1 > x|X∗n,Tn, δn) =

x∏
j=0

[
1−

βj + r ·m∗j (X∗n, δn)

βj + ωj + r · sj(X∗n,Tn)

]
, (4)

where m∗j (xn,dn) =
∑n
i=1 1{xi=j,di=1} is the number of exact observations at x=j, and sj(xn, tn) =∑n

i=1 1{ti≤j≤xi} is the number of observations censored at j under left-truncation.

By defining β∗j = βj +m∗j (xn,dn) and ω∗j = ωj + sj(xn, tn)−m∗j (xn,dn), we obtain a new beta-Stacy process F ∗

with parameters {β∗j , ω∗j , j}, which means that the beta-Stacy process is conjugate to LTRC data5. Note that, although
Equation (4) allows to work with (discretized) float numbers, we focus only on positive integers, so that the dummy
variable j in the product takes jumps of size one.

Using the previous urn example, we can notice that Ŝ(x) in Equation (4) corresponds to the probability of selecting at
least x consecutive green balls, starting from urn U0. The couples {βj , ωj} play the role of the initial compositions of
the urns, while the functions m∗j (xn,dn) and sj(xn, tn) determine the extra number of green and total balls added to
each urn, respectively.

An important characteristic of the beta-Stacy process as a random distribution, inherited from the Dirichlet process, is
that its trajectories can be centered around a certain probability distribution G(·), which in Bayesian nonparametric
estimation plays the role of the prior distribution. As shown in Walker and Muliere [1997], a necessary condition for
this property to hold is that

βj
βj + ωj

=
G(j)−G(j − 1)

1−G(j − 1)
, j ∈ N (5)

where G(j) = PG(X ≤ j) is the probability that X is at most j under the prior G.

Although the choice for the couples {βj , ωj} in terms of G(·) is not unique if we simply want Equation (5) to hold,
here we follow the steps of Walker and Muliere [1997], assuming

βj = cjG({j}), ωj = cj(1−G(j)), cj ∈ R+, j ∈ N, (6)

with cj denoting the strength of belief in our prior knowledge and G({j}) = PG(X = j). The name “strength of belief”
comes from the fact that, for high values of cj , it will be difficult for the posterior distribution to deviate from the a
priori, unless one has large amounts of data. On the contrary, when cj → 0, we recover the KM estimator of Cox and
Oakes [1984] from Equation (4), and the a priori plays no role whatsoever.

Finally, observe that the roles of the strength of belief parameters cj and of the reinforcement parameter r are actually
opposite. In fact, it is possible to fix one of them and just work with the remaining one, and choosing one or another (or
both) is just a matter of taste in the calibration.

3.3 The Bivariate RUP (B-RUP) of Bulla et al. [2007]

Assume we observe couples of data of the form ((X∗n,T
X
n , δ

X
n ), (Y ∗n ,T

Y
n , δ

Y
n )), where Xn = {Xn, n ≥ 1} and

Yn = {Yn, n ≥ 1} are the possibly censored observations corresponding to the variables of interest X and Y . As
before TXn and T Yn are the truncation processes for X and Y , respectively.

A flexible yet simple way of modelling the dependence between X and Y is to consider the one-factor construction of
Bulla et al. [2007], basen on three independent components: one common and two idiosyncratic factors for X and Y .

5The RUP was originally defined only for right-censored observations [Muliere et al., 2000, Walker and Muliere, 1997]. In
Appendix A we prove that the RUP is also conjugated to left-truncated observations, and Equation (4) still defines a proper RUP.

5
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Let A, B and C be independent RUPs with parameters (βAj , ω
A
j ), (βBj , ω

B
j ) and (βCj , ω

C
j ) for j ∈ N0. These RUPs

can be subject to left-truncation and right-censoring. Now, set

X = A+B,

Y = A+ C.
(7)

The dependence between X and Y clearly relies entirely on A, hence, conditioned on this common process, X and Y
are independent. A straightforward calculation yields

Cov(Xn+1, Yn+1|An,Bn,Cn) = Var(An+1|An), n ≥ 1, (8)

where An = {An, n ≥ 1} is a sample of size n from A, and similarly for Bn and Cn. Notice that the dependence
between X and Y is therefore linear and non-negative.

Bulla et al. [2007] showed that the sequence {(Xn, Yn), n ≥ 1} is exchangeable, thus, by the de Finetti theorem, there
exists a joint random distribution function FXY , conditionally on which the elements of (Xn,Yn) are independent
and identically distributed according to FXY . We refer to Bulla et al. [2007] for a detailed explanation of the many
probabilistic properties of FXY . For our purposes, the most relevant feature of the model is the one-factor construction.
As we will see in the next section, this will allow us to derive a simple and efficient iterative method to estimate the
parameters of the model.

4 The Expectation-Maximization (EM) and the Expectation-Reinforcement (ER)
Algorithms

The EM algorithm is the de-facto-standard when dealing with incomplete data. It was originally introduced in Dempster
et al. [1977], although particular instances of the algorithm had already been developed in Turnbull [1976]. From
a mathematical point of view, the algorithm requires the computation of the expectation of the complete likelihood
log f(x|θ) at each iteration, conditioned on the observed incomplete data y, and the estimates of the parameters from
the previous iteration. Given the many meanings of the term “incomplete", the EM algorithm comes in many flavours in
the literature [McLachlan and Krishnan, 2008]. Here, as said before, when we talk about incomplete data, we always
refer to observations that suffer from left-truncation and/or right-censoring.

In the following, to improve readability, we will use the following short notation:

pX(x) := P(X = x|θ), (9)

and
p
[k]
X (x) := P(X = x|θ[k]), (10)

where θ is the vector of parameters (of the B-RUP) and the superscript k denotes a quantity computed at the k-th
iteration of the EM algorithm. We also introduce the survival function SX(x) := P(X > x|θ), and S[k]

X (x) analogously.

4.1 Univariate case

Let X be a r.v. on the positive integers such that

SX(j) =

j∏
i=0

Gi
Ni
, j ≥ 0. (11)

Following the urn representation of Section 3, Gj denotes the number of green balls in urn Uj , and Nj the total number
of balls in the same urn. These pairs (Gi, Ni) (or rather, their ratio) are the variables we wish to calibrate via the EM
algorithm6.

If we have a series of i.i.d. observations X = {xi, 1 ≤ i ≤ n} generated according to Equation (11), the sample
log-likelihood is:

L(X) = L(X|θ) =

n∑
i=1

log(Nxi −Gxi)− log(Nxi) +

xi−1∑
j=0

(log(Gj)− log(Nj))

 . (12)

6Notice that defining the pair (Gi, Ni) is mathematically redundant. Given Equation (11), only the ratio between Gi and Ni is
actually relevant. The reason for this choice is that it helps us maintain the urn interpretation of Section 3, particularly useful for the
results of Subsection 4.4.

6
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If we derive this expression with respect to Gi, we obtain the optimal values:

Gj =
sj+1(X)

sj(X)
Nj , (13)

where sj(X) =
∑n
i=1 1{j≤xi} was defined in Section 3. If we now plug Equation (13) into Equation (11), we end up

with the KM estimator in the absence of censoring. It is also straightforward to prove that, in the case of right-censoring
and left-truncation, we recover the estimator of Cox and Oakes [1984]. After all, these estimators were specifically built
to maximize the likelihood of these type of observations! This also corresponds to the RUP estimator of Equation (4),
when we ignore the contribution of the prior distribution elicited by the pairs (βj , ωj).

Although the parameters’ estimates can already be obtained through classical maximum likelihood estimation (MLE),
implementing the EM version of this problem will help us highlight some of the key points that we will use for the
bivariate setting, where a MLE solution is far from trivial.

Estimating censored observations via EM is a well-known and extensively studied problem [Turnbull, 1976], and so it
poses no major difficulty. The hard part is to do the same for left-truncation. In Dempster et al. [1977] and McLachlan
and Jones [1988], it was already explained that we need to estimate the whole sample from our truncated (biased)
observations. In our case, the biased data is that for which T ≤ X , and the complete sample is the one considering as
well the cases in which T > X .

Unfortunately, by the very definition of truncation, there is no information at all in our data set about the region T > X .
At most, what we can do is estimate the size of the whole sample, M , as

M =
n

P(T ≤ X)
, (14)

and consider every value of (X,T ) for which T > X holds7. Therefore, given an LTRC sample where the first n0
observations are uncensored and the other n − n0 are right-censored, we distinguish three clear components in our
complete log-likelihood:

• T ≤ X and X uncensored:

L1(X, δ, T ) =

n0∑
i=1

[log(pX(xi)) + log(pT (ti))]. (15)

• T ≤ X and X right-censored:

L2(X, δ, T ) =

n∑
i=n0+1

[E(log(pX(X))|X > xi) + log(pT (ti))]. (16)

• T > X:

L3(X, δ, T ) = M [k]
∞∑
x=0

∞∑
t=x+1

[log(pX(x)) + log(pT (t))] p
[k]
X (x) p

[k]
T (t), (17)

with M [k] =
n

p[k](T ≤ X)
, where p[k](T ≤ X) is the probability of truncation using the estimates of the k-th

iteration, and

E(log(pX(X))|X > xi) =

∞∑
j=x0+1

log(pX(j)) p
[k]
X (j|X > xi). (18)

Notice that in the second likelihood component, the truncation variable is not affected by censoring, and that
L3(X, δ, T ) is not conditioned on the data, because there are no observations that fall in that region.

Now we only need to apply the maximization step with respect to L(X,T ) = L1(X,T ) + L2(X,T ) + L3(X,T ) in
order to complete the model. Observe that the maximization in this case is very simple since we can treat the likelihoods
of X and T separately. In fact, one can prove that

GXj =

∑n0

i=1 S
[k]
X (j|xi) +

∑n
i=n0+1 S

[k]
X (j|X > xi) + S

[k]
X (j|T > X)∑n0

i=1 S
[k]
X (j − 1|xi) +

∑n
i=n0+1 S

[k]
X (j − 1|X > xi) + S

[k]
X (j − 1|T > X)

NX
j , (19)

and

GTj =

∑n
i=1 S

[k]
T (j|ti) + S

[k]
T (j|T > X)∑n

i=1 S
[k]
T (j − 1|ti) + S

[k]
T (j − 1|T > X)

NT
j . (20)

7This clearly requires modelling the truncated variable too, which not only increases the dimensionality of the problem, but, in
many applications, one cannot infer any meaningful result from it, making it of no particular interest.

7
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4.2 One-factor model without LTRC

Let us assume that there is no truncation nor censoring at first. Thanks to the one-factor construction, we can write the
complete likelihood as the product of the likelihoods of A, B and C. That is,

log p(A = a,B = b, C = c|θ) = log pA(a) + log pB(b) + log pC(c), (21)

which greatly simplifies computations, since we can work on each component separately. For example, using the EM
algorithm, the complete likelihood of A given a single observation (x, y) of X and Y is given by

QA(θ|θ[k]) =

x∧y∑
a=0

log pA(a) p
[k]
A (a|x, y). (22)

A few comments about this equation are in order. First, the lower limit of the summation in Equation (22) is zero
because we work with nonnegative processes. Secondly, the upper limit is the minimum of x and y, since A cannot be
bigger than X or Y . This is a direct consequence of Equation (7) and nonnegativity.

Further, given that

pA(a|x, y) =
pA(a)pB(x− a)pC(y − a)

pXY (x, y)
, (23)

we can write Equation (22) as

QA(θ|θ[k]) =

x∧y∑
a=0

log pA(a)
p
[k]
A (a)p

[k]
B (x− a)p

[k]
C (y − a)

p
[k]
XY (x, y)

. (24)

However, we will keep using Equation (22), as it is easier to read and interpret.

Once we have the expectation of the complete likelihood, we only need to compute the derivatives with respect to the
parameters and equal them to zero to obtain the values of the next iteration. The following expression for the derivative
of (11) with respect to its parameters will be used extensively throughout the rest of this section:

∂ log pA(a)

∂GAj
=


0 if j > a
−1

NAj −GAj
if j = a

1
GAj

if j < a.

(25)

Combining Equations (25) and (22), we get

∂QA(θ|θ[k])
∂GAj

=
1

GAj
S
[k]
A (j|x, y)− 1

NA
j −GAj

p
[k]
A (j|x, y). (26)

Equating this last expression to zero and solving for GAj yields the value for the next iteration:

GAj =
S
[k]
A (j|x, y)

S
[k]
A (j − 1|x, y)

NA
j , (27)

where we have assumed that our processes are discrete with jumps of size one, and thus p(A ≥ j) = p(A > j − 1).
Naturally this can be easily generalized to jumps of different sizes.

Going back to the urn representation of Subsection 3.1, the ratio WA
j /N

A
j is defined as the probability of picking a

green ball in the j-th urn, conditioned on the fact that we have reached that urn. In probabilistic terms this can be
expressed as

GAj
NA
j

= pA(A > j|A ≥ j) =
SA(j)

SA(j − 1)
. (28)

Comparing Equations (28) and (27), we can see that the intuition of the ball ratio is preserved through the EM iterations,
but now we condition on the incomplete observations (x, y) and on the results of the previous iteration. Finally, if
instead of one observation, we have a sample of size n, Equation (27) becomes:

GAj =

∑n
i=1 S

[k]
A (j|xi, yi)∑n

i=1 S
[k]
A (j − 1|xi, yi)

NA
j . (29)

The solutions for GBj and GCj are completely analogous.
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4.3 The general model for left-truncated and right-censored (LTRC) data

We can now extend the results of previous sections to account for bivariate LTRC data. Following the steps of Subsection
4.1, this means computing the parameters for the target and truncation variables simultaneously. We start deriving
the expressions for the target variables A, B and C, then we move to the truncation variables T and ε. For the target
variables, the log-likelihood will be a combination of the censoring and truncation components. In the case of bivariate
right-censoring, we further distinguish 3 different cases: a) both X and Y are uncensored, b) one of them is observed
and the other is censored, and c) both of them are censored.

Situation a) is trivial to compute, so we move to case b). We will attach the superscript ∗ to the censored variable, so
that the observation (x∗, y) means that Y is observed with value y and X is censored with value x. We also define
analogously (x, y∗). Below we only show the distribution for (x∗, y), since (x, y∗) is solved similarly. The conditional
probabilities for A, B and C are:

pA(a|x∗, y) = pA(a)SB(x− a)pC(y − a), if a ≤ y, (30)

pB(b|x∗, y) = pB(b)

y∑
a=x−b

pA(a)pC(y − a), if b ≥ x− y, (31)

pC(c|x∗, y) = pC(c)pA(y − c)SB(x− y + c), if c ≤ y. (32)
Contrary to the setting of Subsection 4.2, now we can observe asymmetries arise in the formulas of B and C. The
reason is that, even if X is censored, A cannot be bigger than Y if it is an exact observation, and vice versa.

When both X and Y are censored, i.e. under case c), we consider the couple (x∗, y∗). The conditional probabilities are

pA(a|x∗, y∗) = pA(a)SB(x− a)SC(y − a), if a ≥ 0, (33)

pB(b|x∗, y∗) = pB(b)

∞∑
a=x−b

pA(a)SC(y − a), if b ≥ 0, (34)

pC(c|x∗, y∗) = pC(c)

∞∑
a=x−c

pA(a)SB(x− a), if c ≥ 0. (35)

Let us know consider truncation. First we define the truncation event as

A = (T ≤ X,T + ε ≤ Y + ε0). (36)

The unobserved region is that for which A c, the complement of A , is true. Since A c actually consists of three different
events–i.e. (T ≤ X,T + ε > Y + ε0), (T > X, T + ε ≤ Y + ε0) and (T > X, T + ε > Y + ε0)–and

p(·) = p(·|A )p(A ) + p(·|A c)p(A c), (37)

it is easier to compute all quantities conditioned on A and then use Equation (37) to condition on its complement. For
that we also need the probability of the truncation event, which can be computed as

p(A ) =

∞∑
x=0

∞∑
y=0

pXY (x, y)p(T ≤ x, T + ε ≤ y + ε0), (38)

with

p(T ≤ x, T + ε ≤ y + ε0) =

x∑
t=0

pT (t)pε(ε ≤ y + ε0 − t). (39)

Furthermore, the probabilities of each variable, conditioned on the truncation event, are

pA(a|A ) =
pA(a)

p(A )

∞∑
x=a

∞∑
y=a

pB(x− a)pC(y − a)p(T ≤ x, T + ε ≤ y + ε0), (40)

pB(b|A ) =
pB(b)

p(A )

∞∑
x=b

∞∑
y=x−b

pC(y − x+ b)pA(x− b)p(T ≤ x, T + ε ≤ y + ε0), (41)

9
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pC(c|A ) =
pC(c)

p(A )

∞∑
y=c

∞∑
x=y−c

pB(x− y + c)pA(y − c)p(T ≤ x, T + ε ≤ y + ε0), (42)

pT (t|A ) =
pT (t)

p(A )

∞∑
x=t

∞∑
y=(t−ε0)+

pXY (x, y)pε(ε ≤ y + ε0 − t), (43)

pε(e|A ) =
pε(e)

p(A )

∞∑
x=0

∞∑
y=(e−ε0)+

pXY (x, y)pT (T ≤ x ∧ (y + ε0 − e)). (44)

Now we have all the ingredients to compute the optimal parameters of the current iteration. Without loss of generality,
assume we arrange our n observations so that the first n0 observations are uncensored. In the next nX − n0, censoring
only affects X and, in the following nY − nX couples, censoring only occurs for Y . Finally, in the last n − nY
observations, censoring affects both variables. As in Subsection 4.2, we arrive at the following expression for the
parameters of A:

GAj =
n0
0S

[k]
A (j) + nX

n0
S
[k]
A (j) + nY

nXS
[k]
A (j) + nY

nS
[k]
A (j) + (M [k] − n)S

[k]
A (j|A c)

n0
0S

[k]
A (j − 1) + nX

n0
S
[k]
A (j − 1|) + nY

nXS
[k]
A (j − 1) + nY

nS
[k]
A (j − 1) + (M [k] − n)S

[k]
A (j − 1|A c)

NA
j , (45)

where n2
n1
S
[k]
A (j) =

∑n2

i=n1+1 S
[k]
A (j|xi, yi), and M [k] is the estimated sample size at the current iteration via Equation

(14). As before, the expressions for GBj and GCj are completely analogous and therefore omitted.

For the truncation variables T and ε, expressions are simpler, since we do not have to account for any censoring. We
show here the solution for GTj only, for Gεj is obtained in a similar way:

GTj =

∑n
i=1 1{ti>j} + (M [k] − n)S

[k]
T (j|A c)∑n

i=1 1{ti≥j} + (M [k] − n)S
[k]
T (j − 1|A c)

NT
j , (46)

where T = (t1, ..., tn) is the observed sample of T . It is worth stressing that, in the absence of truncation, Equation
(46) returns the standard KM estimator. Therefore, Equation (46) can be interpreted as the expected value of the KM
estimator given the missing data and our current estimator of pT .

Equation (45) can also be interpreted as the KM estimator for A given the observations of (x, y) and its censored
counterparts. Thus, by “breaking" the bivariate joint distribution into one-dimensional distributions, we can use the EM
algorithm to compute separately the expected KM estimates of the relevant variables given the incomplete observations.

4.4 The Expectation-Reinforcement algorithm and experts’ judgements

The last result of Subsection 4.3 combined with Equation (4) inspired us to consider the inclusion of the reinforcement
mechanism of RUPs into the EM algorithm, offering the possibility of embedding prior knowledge and experts’
judgements into the estimates. Due to the combination of EM and RUPs, we call the new algorithm Expectation-
Reinforcement (ER) algorithm.

The idea is to combine a prior distribution, given by the pairs {βj , ωj} defined in Equation (6), with the expected
values of the KM estimates at each EM iteration, so to obtain a posterior distribution that mixes both experts knowledge
and data. Since in many applications the amount of data is rather scarce, especially when considering phenomena
characterized by extreme risks and fat tails [Embrechts et al., 2003], or by epistemic uncertainty [Shackle, 1955, Taleb,
2007], the use of some experts’ intuition can be extremely useful to improve the performance of the model.

Moreover, nonparametric estimators usually suffer from overfitting [James et al., 2013]. Such a problem occurs when
the model calibrates too well to the sample data, making the whole procedure highly sensitive to small variations
in the sample properties, and thus reducing its predictive power out-of-sample. Of course, the magnitude of this
variation diminishes for large and reliable data sets [Wasserman, 2006], but in many applications such a thing is simply
unavailable. For example, in credit risk one requires information about the default event of other companies for a proper
model calibration. However, these events are rare by nature, and thus one only has access to a few observations [McNeil
et al., 2015].

From the bias-variance trade-off point of view, nonparametric estimators have the smallest possible bias, as they capture
all the features of the data set, but their variance can be considerably large since their parameters are very sensitive
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to small changes in the observations. By embedding the reinforcement mechanism of RUPs into the EM algorithm
we can control for this trade-off as follows: for extremely high strengths of belief (and/or a very small reinforcement),
the posterior distribution will not be affected by the observations and will therefore tend to coincide with the prior
distribution; while in the opposite case, with almost zero strength of belief (and/or strong reinforcement), the posterior
will adapt completely to the data. In the first scenario, the variance of the model with respect to different data sets is
zero, but the bias will be arbitrarily high if our initial guesses are wrong. In the second scenario, the bias will be as
small as possible but the model will be very sensitive to small changes in the data, and therefore the variance will likely
be high. Thus the trade-off can be somehow balanced by choosing intermediate values of the strength of belief and
reinforcement parameters.

To illustrate how the algorithm works, we show an example where the estimates of the ER algorithm are computed for
variables A and T from the EM estimators in Equations (45) and (46). Since, given the EM estimator, the procedure is
the same for the other variables considered, their explicit ER derivation is omitted for the sake of space.

Let us assume that A is a RUP with prior distribution given by the pairs {βAj , ωAj }, for j = 0, ...,M , through Equation
(6). Now we follow the steps described in Subsection 4.3 to obtain the EM estimates at each iteration, but instead
of using Equation (45) to update the number of balls in each urn, the updating mechanism under the ER algorithm
becomes

GAj = ωAj + r
[
n0
0S

[k]
A (j) + nX

n0
S
[k]
A (j) + nY

nXS
[k]
A (j) + nY

nS
[k]
A (j) + (M [k] − n)S

[k]
A (j|A c)

]
, (47)

NA
j = βAj +ωAj +r

[
n0
0S

[k]
A (j − 1) + nX

n0
S
[k]
A (j − 1|) + nY

nXS
[k]
A (j − 1) + nY

nS
[k]
A (j − 1) + (M [k] − n)S

[k]
A (j − 1|A c)

]
.

(48)

Following a similar procedure for the truncation variable T , we arrive at

GTj = ωTj + r

[
n∑
i=1

1{ti>j} + (M [k] − n)S
[k]
T (j|A c)

]
, (49)

NT
j = βTj + ωTj + r

[
n∑
i=1

1{ti≥j} + (M [k] − n)S
[k]
T (j − 1|A c)

]
, (50)

where r is the reinforcement parameter and the other quantities are defined as usual, with the superscript [k] indicating
that those quantities are computed using the estimators of the k-th iteration of the algorithm.

By giving different values to the reinforcement and belief parameters8, we can control which component dominates.
Similarly to the behaviour shown in Section 3, when the strength of belief tends to zero, we simply recover the estimates
of the EM algorithm, while if we make the reinforcement tend to zero instead, the posterior distribution will equal the
prior distribution.

Interestingly, Equations (49) and (50) can be interpreted as the estimation of two different data sets combined: 1)the
actual observations T (multiplied r times), which correspond to the last term at the right-hand side of Equations (49)
and (50); and 2) a fictitious data set T̂ , chosen in a way such that

ωj =

n̂∑
i=1

1{t̂i>j}, (51)

and

βj =

n̂∑
i=1

1{t̂i=j}, (52)

where n̂ is the size of the fictitious data, which coincides with the strength of belief cj , if cj = c for all j. Notice that,
while T may be subject to censoring and truncation, this is not the case for T̂ .

The ER algorithm can therefore be considered as an instance of the EM algorithm, where one tries to find the parameters
that maximize the incomplete likelihood of the new data set T ∪ T̂ , where ∪ is to be interpreted as the combination of
both data sets (a reasonable assumption in the case of i.i.d samples). This implies that all convergence results derived
for the EM algorithm equally apply to the ER algorithm, in the context of the "new" data set.

An Expectation-Reinforcement pseudocode can be found in Algorithm 1.
8By Equation (6) the strength of belief is already implicit in ω and β.
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Algorithm 1 ER algorithm pseudocode.

Set the belief and reinforcement parameters.
Set a prior via the pairs {β, ω} according to Equation (6).
Choose initial estimates for the first iteration of the EM algorithm. . E.g. the prior itself.
while stop_criteria = False do

Compute the unconditional distributions using Equation (11) with the estimates from the previous iteration.
Compute M [k] via Equation (14).
Compute the conditional probabilities from Equations (30)-(32), (33)- (35) or (40)-(44) depending on the type of

censoring and truncation.
Compute the estimates for this iteration using Equations (47)-(48) for the target variables and (49)-(50) for the

truncation variables.
end while

5 The algorithms at work

Let us test the performance of our algorithms in different settings. We do this first in a controlled environment in
Subsection 5.1 using an analytical example for which we know the underlying distribution. Then, in Subsection 5.2, we
analyze a Canadian data set of coupled lifetimes, widely used by scholars in actuarial sciences in the context of joint
annuity evaluation [Frees et al., 1996, Souto Arias and Cirillo, 2021]. This data set is known for its complexity, due to
the strong presence of censoring and truncation. Since we do not know the true underlying distribution for this problem,
we compare the results of the ER algorithm with the Frank copula of Frees et al. [1996], which has already shown to
give highly satisfactory results.

5.1 Analytical example

We start with a bivariate example where the ER estimator is compared with the KM estimator of Cox and Oakes [1984]
for the marginals, and with the true solution. Although we have verified the performance of the ER algorithm for several
examples, here we only show one of the most representative cases, based on Poisson distributions (also recalling a
similar experiment in Bulla [2005]). In Appendix C we include another bivariate example in which distributions of
different nature are combined, while a basic univariate example is given for completeness in Appendix B.

We assume the following: A ∼ Poi(40), B ∼ Poi(20), C ∼ Poi(25), T ∼ Poi(70), ε ∼ Poi(7), ε0 = 5 and
∆ ∼ Poi(2). Thus, in the one-factor construction, the marginal distributions are X ∼ Poi(60) and Y ∼ Poi(65),
respectively, and the true correlation is ρ = 0.64. The sample consists of 104 pairs of observations.

Since we also want to study the impact of the a priori on the posterior, we distinguish between two scenarios: low
strength of belief and high strength of belief. In the remaining of this work, we will denote the ER estimator obtained in
these scenarios by ERl and ERh, respectively. The values for the belief and reinforcement parameters for each case can
be found in Table 1. We chose these settings because, here, we are interested in observing how the posterior deviates
from the prior for different beliefs. However, in practice, it could be more interesting to attach different strengths of
belief to each urn. For example, for the urns associated with the bulk of the data we could use low strengths of belief,
and higher values for areas were observations are sparse, if we have some evidence that the data set is biased in those
areas due to the lack of observations.

EM ERl ERh

r – 104 2 · 101

c1 0 1 103

c2 0 1 103

Table 1: Proposed scenarios defined by the ratio between the belief and reinforcement parameters. The values are
used throughout Section 5. The superscripts in the ER columns denote “low” and “high”, respectively, referring to
the weight of the belief parameters. Here r is the reinforcement parameter—which, we assume, is the same for every
variable—and c1 and c2 are the belief parameters associated to the target and truncation variables, respectively.

Now we initialize the ER algorithm. There are five processes we need to model with RUPs: A, B, C, T and ε.
We start by giving values to the pairs {βj , ωj} so that the RUPs center on specific a prioris. Our choices for this
example are GA = Poi(25), GB = Poi(25), GC = Poi(25), GT = Poi(50), Gε = Poi(10), ε0 = 10. With this
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choice we are basically underestimating the mean values of all processes, including the correlation and the truncation
levels. Furthermore, the first uncensored observation occurs for X = Y = 47, and therefore every distribution
we present will be conditioned accordingly. Finally, regarding the belief and reinforcement parameters, we assume
cA = cB = cC = c1 and cT = cε = c2, with c1 and c2 as per Table 1. For example, in the ERl scenario we would have
cA = cB = cC = cε = cT = 1, and r = 104 (to make the data speak quickly and loudly).

In Table 2, we show for some urns affecting the A process, the comparisons between the initial composition (as per
the elicited prior) and the results after the ER estimation, under the l and the h scenario. For the sake of space9, we
only show a small subset of all the urns forming the RUP behind A, and for the same reason we omit those of B and C.
Even with a few urns, it is possible to observe the impact of the strengths of belief in estimation.

Urn
%

Prior ERl ERh

0 100.00 100.00 100.00

20 94.01 98.62 96.41

40 59.11 75.23 92.97

60 40.55 17.93 99.99

Table 2: Comparison of some urn compositions for process A before and after estimation (results of B and C are
comparable). The table shows the percentage of green balls in each urn under the prior, and after the ER estimation
for the two scenarios l and h. Given the large number of urns, we only show the composition for a few selected cases.
Notice that, by construction, Urn 0 will stay untouched, as it only contains green balls.
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(a) Marginal of X .
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(b) Marginal of Y .

Figure 2: Fitting of the marginal distributions of X (a) and Y (b). Initial estimates are represented by the green line,
KM estimates are in red, our ER solution in blue and the underlying distributions in black. Note that the bivariate
truncation causes the KM estimators to be biased with respect to the true marginals.

In Figure 2 we show the ERl estimate for the marginals of X and Y compared to the KM estimator and the true
distribution, while in Table 3 we compare the first two moments as well as the correlation. The results clearly show
that the KM estimators are biased with respect to the underlying distribution, while our results appropriately capture
both curves and moments. Also notice how computing the correlation coefficient from the data (“Raw Data"), while
ignoring censoring and truncation, definitely overestimates dependence (0.88 against a true value of 0.64). A further
analysis on how good this fit is can be found in Figure 4, where we show the QQ-plots for the ERl marginals, and Table
4, where we perform permutation tests for the means and the variances. The QQ-plots were created by generating two
samples of size 103 from each marginal of the ERl solution, and comparing them with a sample of the same size from
the analytical solution. The same samples are also used to perform permutation tests for the means and variances. We
use the difference in means as test statistic for the means, while to compare the variances we use Good’s test (see Good
[1994], and Baker [1995] for a generalization with unequal sample sizes).

Finally, in Figures 3a and 3b, we give the contour plots of the bivariate ER distribution and the analytical solution,
for low and high strengths of belief, respectively. Notice that, as expected, increasing the strength of belief in our a

9If needed, all urns compositions are available upon request, also for the other applications discussed in the present paper.
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priori makes it more difficult for the data to influence the posterior distribution: since the initial prior does not fit the
observations, increasing the strength of belief necessarily worsens the posterior10.

Raw Data KM ERl ERh Analytical
Mean(X) 65.447 61.699 60.642 59.780 60.661
Mean(Y) 67.689 67.937 65.310 63.960 65.509

Var(X) 31.169 59.799 50.294 57.834 51.358
Var(Y) 34.610 88.299 65.098 70.479 59.619

Corr(X,Y) 0.876 – 0.562 0.661 0.608

Table 3: Comparison of the means, variances and correlation of X and Y using: the data as they are ignoring censoring
and truncation, the KM estimator, the ER estimator and the analytical solution, respectively. Note how omitting
truncation and censoring greatly underestimates the variance. Moreover, because of the bivariate truncation, the KM
estimates present a high bias and overestimate the means of both variables, especially in the case of Y , where truncation
has a bigger impact. The ER estimator, on the contrary, manages to capture both marginal and joint behaviours better.
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(a) ERl scenario.
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Figure 3: Contour plots for low and high strengths of belief. On the left plot, initial prior, final estimate (posterior) and
true distribution are represented to show the transition from the wrong initial prior to capturing the behaviour of the
true solution. On the right plot, only the analytical solution and the posterior distribution are presented for readability
purposes (the prior is the same).

Value p (%) H0

mean(X l) -0.229 46.46 Do not reject
mean(Y l) -0.409 25.20 Do not reject
var(X l) -5529 94.86 Do not reject
var(Y l) -6588 16.86 Do not reject

Table 4: Permutation test for samples from the ER marginal estimators. The first column gives the value of the test
statistic, the second is the p-value, and the last column tells whether we accept or reject the null hypothesis. The number
of permutations is 105.

5.2 Empirical case: coupled lifetimes

We now apply the same methodology to a Canadian data set of coupled lifetimes widely used in the field of joint annuity
modeling [Frees et al., 1996, Luciano et al., 2008].

10Once again, this should be seen as a plus of RUPs, as it allows for the correction of data problems, under the existence of reliable
expert judgements. If no strong a priori is available, it is sufficient to set a very feeble strength of belief and let the data speak for
themselves instead.
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(a) QQ-plot: X.
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(b) QQ-plot: Y.

Figure 4: QQ-plot comparing our ER solution with the analytical solution for X (a) and Y (b). The solid vertical lines,
from left to right, correspond to the minimum and the maximum uncensored values of i∗, respectively, for i = X,Y .
The dashed lines correspond to the mean (µ) and one standard deviation (σ) of each variable.

The data consists of almost 15,000 couple of clients of a Canadian insurance company. Each couple has a joint annuity
contract with the insurer. For each couple several pieces of information are available: date of contract, date of birth of
the two annuitants, date of death if observed, or age at the end of the observation window, incomes, etc.

Following Luciano et al. [2008], we remove same-sex contracts in order to define X as the lifetime of males (most
of the first annuitants are male) and Y as the lifetime of females in the couple. In the same paper, they also mention
that the same couple may have entered into more contracts, and thus they may appear several times on the data sheet.
Therefore we remove all repeated entries so that each couple is considered only once. Finally, as in Frees et al. [1996],
we condition on couples that are at least 40 years old. This leaves us with a total of 11,421 male-female couples, of
which only 197 are completely uncensored. Since the period of observation is 5 years, truncation will also play a
significant role when determining the underlying distribution. For an extended analysis of this data set we refer to Frees
et al. [1996] and Luciano et al. [2008].

Since the performance of the B-RUP on this data set has already been extensively analyzed in Souto Arias and Cirillo
[2021], even if without left-truncation and only using Markov Chain Monte Carlo techniques, here we do not focus
on the impact that the B-RUP parameters have on the posterior. Rather, we compare the ER estimator with a popular
parametric model which also can capture bivariate right-censoring and left-truncation: the Frank copula model defined
in Frees et al. [1996].

As usual, we start by defining the initial behaviour of our processes through the pairs {βj , ωj}. For the first example
we chose: GA = Poi(35), GB = Poi(40), GC = Poi(40), GT = Poi(80), Gε = Poi(40), ε0 = 40, where ε0 was
inferred from the maximum difference in ages in the data set. With this a priori, males and females have the same
average lifetime, which is around 75 years, with a standard deviation of almost 9 years. We also assume that the average
difference in their ages is 0, with a standard deviation of 6 years. Moreover, we consider the same strength of belief
scenarios as in the previous example (Table 1), apart from the reinforcement of ERh, for which we now set to r = 10.

Regarding the copula model, we select the model from Frees et al. [1996], where the authors use Gompertz distributions
for the individual lifetimes, and the Frank copula to model the dependence. The Gompertz distribution is given by

Gomp(x;µ, σ) = 1− exp
(
e−

µ
σ (1− e xσ )

)
, (53)

where µ, σ are the location and scale parameter, respectively.

The Frank copula is defined as

C(u, v;α) =
1

α
log

(
1 +

(eαu − 1)(eαv − 1)

eα − 1

)
, (54)

where u, v are the marginal distributions for the male and female annuitants, respectively, and α is the parameter
controlling the dependence. A negative value of α indicates positive dependence, while α = 0 means independence
[Nelsen, 2006].

We follow the same procedure of Frees et al. [1996] for estimating the model parameters. The interested reader can
check the original paper for the methodology, while here we jump directly to the results. In Table 5 we present the
optimal parameters obtained via MLE, where (µX , σX) are the Gompertz estimates for the male annuitants, and
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(µY , σY ) the estimates for the female annuitants. Since the value of α is highly negative, we expect a strong positive
dependence (something that also justified the use of the B-RUP construction in Souto Arias and Cirillo [2021]). In
Table 6, we see indeed a Pearson correlation of 0.5. In the same table, we observe a correlation of 0.82 for the “Raw
Data", but it is important to stress that this is due to the fact that, in that column, we are explicitly ignoring censoring
and truncation, to show how easily we can end up with overestimating correlation.

µX σX µY σY α

84.809 9.926 87.575 7.792 -4.081

Table 5: Calibration of the copula model via MLE. The subscripts X,Y refer to the marginals of the male and female
annuitants, respectively. Notice that α is negative and away from 0, so according to Equation (54) there is positive
dependence.

In Figures 5 and 6c we show the marginal and joint distributions, when the strength of belief in the a priori is low. Note
that our prior clearly underestimated the average lifetimes, especially for females, and the correlation slightly decreases
from 0.47 to 0.40. Furthermore, in Figure 6c we can observe small contours in which the age difference is particularly
large. In those cases we cannot be sure whether the observation corresponds to a married couple or a parent-child
relationship. In Figure 6d, we show the results when we assume that the a priori is strong and reliable.

Finally, we present some moments and quantiles of the different estimators in Table 6. Column ERl accounts for the
low strength of belief case, while ERh deals with the high belief situation.

Raw Data KM ERl ERh ER2l ER2h Copula
Mean(X) 74.514 81.581 81.901 81.785 81.952 82.000 79.597

Q1(X) 70.000 75.000 76.000 75.000 76.000 76.000 72.000
Median(X) 74.000 83.000 83.000 83.000 83.000 83.000 81.000

Q3(X) 79.000 90.000 89.000 89.000 89.000 89.000 87.000
Mean(Y) 74.011 86.989 85.491 84.637 85.246 85.432 83.579

Q1(Y) 69.000 82.000 80.000 79.000 80.000 80.000 77.000
Median(Y) 73.000 89.000 87.000 86.000 87.000 86.000 84.000

Q3(Y) 79.000 94.000 92.000 91.000 92.000 92.000 90.000
Var(X) 52.049 124.393 117.075 112.088 113.935 123.091 160.610
Var(Y) 61.707 99.945 76.866 85.410 77.543 89.931 99.844

Corr(X,Y) 0.820 – 0.401 0.461 0.432 0.398 0.502

Table 6: Comparison of the means, medians, first and third quartiles, variances and correlation of X and Y . Here the
column “Raw Data” refers to the data as they are, if we ignore censoring and truncation, overestimating dependence.
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(a) Marginal of X .
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(b) Marginal of Y .

Figure 5: Fitting of the marginal distributions of X and Y using the Canadian data set. Initial estimates are represented
by the green line, KM estimates are in red and our ER solution in blue.
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(d) High strength of belief.

Figure 6: Contour plot for the empirical data set. In the upper row we show a scatter plot of the uncensored samples
available in the Canadian data set, together with the distribution obtained by the Frank copula model. In the lower row
we present a comparison of the posterior distributions for the low and high belief scenarios, respectively. We can clearly
see that uncensored data is not representative enough of the total population, since the bulk of the uncensored data is
considerably shifted with respect to the higher density areas of both the copula and ER distributions.

From these experiments we can draw several conclusions. First, both the copula and the ER methodology yield
consistent results, showing that the models are similar in performances. Second, ignoring the effects of censoring and
truncation highly underestimates the marginal moments of the distribution, while it overestimates the cross moments.
This is particularly obvious from the results of Table 6, but also from Figure 6a. Third, the copula model associates a
much larger weight to the left-tail of the distribution than the ER model. This seems to be a property of the parametric
model in particular, since the data itself does not support such a result. Thus, from a purely data-driven point of view, the
ER estimator seems more accurate. However, it is also true that, due to left-truncation, there are not many observations
in that range, hinting at the possibility of some bias in the data. If that were actually the case, we could modify the ER
distribution by introducing a prior with a heavier left-tail. Finally, both models yield a similar degree of strong positive
dependence between the target variables.

Let us now consider a situation in which we use a more objective prior, elicited by looking at the data. For a Bayesian
purist, in this case we should not speak about proper prior and posterior distributions, since the a priori is contaminated
by data [de Finetti, 2017, Galavotti, 2001, Galavotti et al., 2008]. However, even in this case, the Bayesian nature of the
model can be exploited, and the strength of belief parameters can be used to obtain smoother contours.

Given that we previously underestimated the average lifetimes obtained from the data, our initial estimates this time are:
GA = Poi(40), GB = Poi(45), GC = Poi(45), GT = Poi(80), Gε = Poi(40), ε0 = 40, so that the sample means are
replicated.

In Figures 7a, 7b and 8b we show the results for low strengths of belief. We observe that there are barely any differences
with the previous example for the case of low belief in our prior, except, perhaps, for the correlation parameter–now it
is 0.43–and the areas of smaller probability. This is an expected result since, for low strengths of belief, the algorithm
tries to fit the data as good as possible. The only way the results could be different is when the initial distributions lead
to different local minima.
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In Figure 8c, conversely, the posterior distribution when assuming strong belief in our prior is shown. As before, the
first two moments are presented in the columns ER2l and ER2h of Table 6. Notice that, according to Figure 8c, the
posterior distribution has barely moved away from the prior. In the previous examples so far, the algorithm always
reached a compromise between the prior and the data when increasing the strength of belief. However, since this time
the prior was specifically chosen by taking the data into consideration, the resulting posterior is barely affected by the
data.

40 60 80 100 120
X

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Kaplan-Meier
Posterior
Prior

(a) Marginal of X .

40 60 80 100 120
Y

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Kaplan-Meier
Posterior
Prior

(b) Marginal of Y .

Figure 7: Fitting of the marginal distributions of X and Y using the Canadian data set. Initial estimates are represented
by the green line, KM estimates are in red and our ER solution in blue.
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Figure 8: Contour plot for the empirical data set. In the upper row we show a scatter plot of the uncensored samples
available in the Canadian data set. In the lower row we present a comparison with the posterior distribution with low and
high beliefs, respectively. We can clearly see that uncensored data is not representative enough of the total population,
since the bulk of the uncensored data is considerably shifted with respect to the higher density areas of the posterior.
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6 Conclusions

We have discussed estimation techniques for Reinforced Urn Processes (RUPs), a flexible class of neutral-to-the-
right models in the Bayesian nonparametric literature [Muliere et al., 2000], modifying them to deal with possibly
left-truncated observations. We have considered both the standard univariate setting, and the one-factor bivariate
construction of Bulla et al. [2007].

As the main goal of our work, for the first time in the literature, we have provided an explicit Expectation-Maximization
(EM) approach, and offered an extension which exploits the reinforcement mechanism of Polya urns, proposing the
so-called Expectation-Reinforcement (ER) algorithm. To the best of our knowledge, this is the first systematic attempt
to offer estimation algorithms for RUPs, which are generally treated via simulation-based techniques, like Markov
Chain Monte Carlo.

The performances of both the EM and the ER algorithms have been tested using artificial and actual left-truncated and
right-censored data, showing their superiority with respect to other common alternatives like the estimator of Kaplan
and Meier [1958], especially in the bivariate setting. For what concerns the ER algorithm, the possibility of playing
with priors and reinforcement can be a very important point of strength, when dealing with complex data sets, with
missing observations, problems of representativeness and fat tails.

Future lines of work involve extending the one-factor model of Bulla et al. [2007], to cope with multivariate situations.
In keeping linear dependence, this extension is straightforward in the absence of censoring and truncation (see also
Bulla [2005]), but it requires much more work in a realistic and general setting. Moreover, other forms of dependence,
far from linearity, can complicate things further.

Computationally, increasing the dimensionality of the problem may generate non-trivial questions to be solved.
Nevertheless, we believe that the computational burden can be decreased by implementing schemes that increase the
convergence of the EM algorithm, and using high performance techniques such as parallel computing.
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A Proof of Equation (4)

As mentioned before, the RUP is a generalization of the Dirichlet process, and its underlying distribution is actually the
generalized Dirichlet distribution of Connor and Mosimann [1969], i.e.

P(pX(1), pX(2), · · · , pX(M)|β,ω) ∝ (pX(M))ωM−1−1
M−1∏
i=0

[
(pX(i))βi−1(SX(i− 1))ωi−1−(βi+ωi)

]
, (55)

with pX(i) = P(X = i), SX(i) = P(X > i), (βi, ωi) defined as before11, and where we assume that there are no more
observations after time M .

Notice that now we can rewrite the log-likelihood in Equation (1) as

L(pX(1), pX(2), ..., pX(M)|Xn) ∝
M∏
i=0

(pX(i))ni
M−1∏
i=0

(SX(i))ri−li+1 , (56)

with nk the number of uncensored observations at k, rk the number of censored observations at k, and lk the number of
samples truncated at k.

Given that the posterior distribution is proportional to the product of Equations (55) and (56), i.e. the product of the
prior distribution and the likelihood, it follows immediately that, by setting qk =

∑M
i=k+1 ni +

∑M
i=k ri−

∑k
i=1 li, and

if F is a discrete beta-Stacy process with parameters {βk, ωk}, the posterior distribution of F given the left-truncated
and right-censored (LTRC) data (X∗n, δn,Tn) is also a generalized Dirichlet distribution with parameters

β∗k = βk + nk, ω∗k = ωk + qk, (57)

which completes the proof.
11Please observe that, since we work with discrete distributions with jumps of size one, P(X ≥ i) = SX(i− 1)
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Data KM ERl ERh Analytical
Mean 65.091 60.467 60.451 59.625 60.469

Variance 33.121 53.902 54.011 59.834 53.213

Table 7: Comparison of the mean and variance obtained using: the uncensored data set, the KM estimator, the ER
estimator using the scenarios of Table 1, and the analytical solution, respectively. Notice that omitting truncation and
censoring greatly underestimates the variance. As expected in this simple example, the best results are provided by the
ERl and KM solutions.

Value p (%) H0

ERl (mean) -0.508 11.09 Do not reject
KM (mean) 0.480 13.88 Do not reject

ERl (variance) 5851 18.76 Do not reject
KM (variance) 5983 6.01 Do not reject

Table 8: Permutation tests for the ERl and KM estimators. The first column gives the value of the test statistic, the
second column is the p-value, and the last column tells whether we reject or fail to reject the null hypothesis that the
distributions agree with the true one with a type-I error of 5%. The number of permutations for each test is 105.

B Univariate case

Take X , T and ∆ defined as in Section 2, then assume X ∼ Poi(60), T ∼ Poi(70) and ∆ ∼ Poi(2), where Poi(µ)
denotes a Poisson distribution with parameter µ. Clearly, P(T ≤ X) ' 0.2, so that only 20% of the whole sample is
actually observed. Furthermore, around 70% of the observations are right-censored.

In order to use the ER algorithm, first we identify our variables of interest: X and T . Then we define a RUP for each of
them with parameters {βXj , ωXj } and {βTj , ωTj }, respectively.

As explained in Section 3, via Equation (6) we can center our RUP on a particular prior distribution G. For this first
example we choose GT = Poi(40) and GX = Poi(40), thus assuming that our prior elicitation is not far from the truth,
at least from the point of view of the distributional type. However, notice that both Poissons are far from the actual
solution, and that the truncation level is underestimated. Moreover, given our discussion about censoring and truncation
in Section 2, the estimated distributions are conditioned on the minimum uncensored observation, which in this example
is Xmin = 46.

In Figure 9 we present the results obtained from a sample (X,T, δ) of size 104 for the values of the belief parameters
defined in Table 1, ranging from zero belief–which corresponds to the EM estimator–to a high belief where the posterior
distribution is highly influenced by the prior. In the figure it can be observed that, due to the high levels of truncation
in the data, the KM estimator presents a stair-case behaviour near the tails, while the EM estimate returns a smooth
curve that properly captures the underlying distribution. The same applies for the ER estimator with low strength of
belief (Figure 9b). However, as we lean towards our prior, the fit given by the ER estimators starts to worsen. This is an
expected result, since we know that our prior does not represent the true distribution. A more quantitative comparison
is given in Table 7, where we present the means and variances for several scenarios. Moreover, due to the similarity
between the results of the EM and ERl estimators—with the superscript always referring to the corresponding scenario
in Table 1—we will refer to both examples as just ERl for simplicity.

This behaviour is further emphasized in Figure 10, where QQ-plots for the ERl and KM estimators against the analytical
solution are presented. The vertical lines in the subfigures represent the range in which data were observed, i.e. the
minimum and maximum uncensored values ofX∗. Any inference beyond those lines is not possible since there is no
data to compare with.

The QQ-plots were created by generating two samples of size 103 each from the ERl and KM solutions, and comparing
them with a sample of the same size from the analytical solution. The same samples are also used to perform permutation
tests for the means and variances. We use the difference in means as test statistic for the means, while to compare the
variances we use Good’s test (see Good [1994], and Baker [1995] for a generalization with unequal sample sizes). The
results of the test are presented in Table 8, and, as expected, fail to reject the null hypothesis for both the ERl and KM
estimators.
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(a) EM.
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(b) ERl.
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(c) ERh.

Figure 9: Comparison between the Kaplan-Meier estimator (red) and our ER result (blue). The analytical solution is
represented in black and the initial estimate in green. Due to the left-truncation effect in the data, the KM estimator
presents a stair-case behaviour near the left tail of the distribution, overfitting the data in that area.
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(a) QQ-plot: EM solution.
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(b) QQ-plot: Kaplan-Meier estimator.

Figure 10: QQ-plot comparing our ERl solution (a) and the KM estimator (b) with the analytical solution. The solid
vertical lines, from left to right, correspond to the minimum and maximum uncensored values ofX∗, respectively. The
dashed lines correspond to the mean (µ) and ± one standard deviation (σ).

21



A PREPRINT - NOVEMBER 29, 2021

C Bivariate case II

Take A ∼ U(40), B ∼ Poi(35), C ∼ Gomp(40, 6), T ∼ Poi(70), ε ∼ Poi(7), ε0 = 5 and ∆ ∼ Poi(2). Here
U(x) denotes a discrete uniform distribution in the range [0, x] and Gomp(µ, σ) a discrete Gompertz distribution with
parameters µ and σ:

Gomp(x;µ, σ) = 1− exp(e−µ/σ(1− ex/σ). (58)
Note that since we are working with the discrete version, we are assuming that pX(i− 1 ≤ X < i) = fX(i− 1), where
f is the Gompertz p.d.f.

We start by defining the initial behaviour of our RUPs through the pairs {βj , ωj}. For this example we still use
the same type of distribution for A, B and C, but instead of a Poisson distribution we use Gompertz distributions:
GA = Gomp(25, 8), GB = Gomp(30, 7), GC = Gomp(30, 7), GT = Poi(50), Gε = Poi(10), ε0 = 10. Furthermore,
we assume the same relationship for the strength of belief parameters as in the previous example, so that the ERl and
ERh scenarios are defined analogously.

As usual, we condition on the minimum uncensored values for both X and Y . Since the truncation variable has the
same distribution as before we expect these values to be similar to the previous example. Indeed, this time we observe
Xmin = 44 and Ymin = 43, and thus we condition the distributions on survival up to these values.

We present the fitting of the ERl marginals in Figure 11, the contour plots for both ERl and ERh in Figure 12, and the
computed first two moments in Table 9. The conclusions are very similar to the previous example: the KM estimator is
biased with respect the analytical solution due to the presence of bivariate truncation, while the ERl estimator properly
captures both marginals.

The marginals are analyzed via QQ-plots in Figure 13, while Table 10 shows the results of the permutation test with a
sample of size 103 from both marginals.

Even if the marginals are nicely recovered, the correlation parameter is slightly underestimated, as is clear in Table 9.
This is mostly due to the convergence properties of the ER algorithm–inherited from the EM–since it converges to a
local minimum that depends on the initial estimate, and therefore running the algorithm with several reasonable prior
distributions is a practice we strongly suggest.

There is also a second reason for this mismatch: the support of the underlying distribution, which is considerably larger
than in the previous example. A large support means that more data is needed in order to obtain a representative sample.
Thus, even if our estimate fits the observations, it does not mean it will actually fit the underlying distribution. This is a
clear sign of overfitting, and it is precisely one of the two situations we mentioned in Section 4.4, where our algorithm
may improve over the original EM algorithm, by properly working with priors. For this reason we also show in Figure
12d the resulting distribution when giving a high strength belief to the a priori. In Table 9, under the column ERh, we
show the corresponding results for the moments.
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(a) Marginal of X .
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(b) Marginal of Y .

Figure 11: Fitting of the marginal distributions of X (a) and Y (b). Initial estimates are represented by the green line,
KM estimates are in red, our ER solution in blue and the underlying distributions in black. Note that the bivariate
truncation causes the KM estimators to be biased with respect to the true marginals.
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(a) QQ-plot: X.
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(b) QQ-plot: Y.

Figure 13: QQ-plot comparing our ER solution with the analytical solution for X (a) and Y (b). The solid vertical lines,
from left to right, correspond to the minimum value of T i and the maximum value of i∗, respectively, for i = X,Y .
The dashed lines correspond to the mean (µ) and one standard deviation (σ) of each variable.

Value p (%) H0

mean(X l) 0.135 76.02 Do not reject
mean(Y l) 0.743 12.58 Do not reject
var(X l) 8273 73.56 Do not reject
var(Y l) 9354 11.01 Do not reject

Table 10: Permutation test for samples from the ERl marginal estimators. The first column gives the value of the test
statistic, the second column is the p-value, and the last column is whether we accept or reject the null hypothesis H0

that the distributions agree with the analytical one. Note that test fails to reject the null hypothesis for both variables at
the 5% level. As before, the number of permutations is 105.
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