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ABSTRACT

Using a Bivariate Reinforced Urn Process (B-RUP), a novel way of modeling the dependence of
coupled lifetimes is introduced, with application to the pricing of joint and survivor annuities.
In line with the machine learning paradigm, the model is able to improve its performances over
time, but it also allows for the use of a priori information, like for example experts’ judgements, to
complement the empirical data.
Using a well-known Canadian dataset, the performances of the B-RUP are studied and compared
with the existing literature.
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1 Introduction

We propose a novel nonparametric approach to the modeling of joint and survivor annuities, particularly useful in the
case of right-censored observations. We build on previous results by Bulla et al. [2007], Muliere et al. [2000], Walker
and Muliere [1997]. The goal is to propose an alternative to copulas and other parametric constructions already used for
the modeling of coupled lifetimes in insurance, for example in Frees et al. [1996], Carriere [2000] and Luciano et al.
[2008] to cite a few important ones.

The basic ingredients of our approach are Pólya urns [Mahmoud, 2008], probabilistic objects with the ability of
intuitively representing the idea of learning via a reinforcement mechanism, so that the model here presented can
actually be seen as an unusual machine learning algorithm [Murphy, 2012].

Differently from the great majority of machine learning algorithms, the Bivariate Reinforced Urn Process (B-RUP) here
discussed belongs to a particular class of models [Muliere et al., 2000, Walker and Muliere, 1997] with the extremely
useful ability of combining some a priori knowledge–possibly referring to experts’ judgements–with the information
coming from actual data, perfectly in line with the Bayesian paradigm. This possibility allows for the incorporation of
trends, tail events or other aspects that can be rarely observed in a dataset–hence invisible to standard machine learning
approaches, yet possible and with dramatic consequences [Taleb, 2007]. For instance, if an expert thinks that their data
under-represent a given phenomenon, like for example some unusual lifetime combinations in the modeling of survivor
annuities, they could solve the problem by eliciting an a priori assigning a higher mass to those combinations, to oblige
their model to always take into account their possibility, at least remotely, even if rarely (or not) present in the data. In a
sense, a clever use of the priors can thus be an elegant way of dealing with sampling and historical biases [Derbyshire,
2017, Shackle, 1955].

Clearly, nothing guarantees the ability of eliciting a sound and reliable a priori: experts could naturally be wrong. The
answer to such a relevant observation–we shall see–is that the bivariate urn model learns over time, at every interaction
with actual data. A sufficient amount of data can therefore compensate for judgements one does not trust completely,
∗Corresponding author.
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for unrealistic beliefs, or for no belief at all. Furthermore, as recently observed [Cirillo et al., 2013, Cheng and Cirillo,
2018], reinforced urn processes are able to learn hidden patterns in the data, discovering previously ignored features.
In any case, as it shall be clearer later, the elicitation of an a priori is not compulsory–it is only a relevant plus–and a
B-RUP can also be used in an “objective" empirically-based way.

Another interesting feature of reinforced urn processes, when seen through statistical learning glasses, is that they are
somehow immune to the “black box" argument [Knight, 2017] commonly used to criticize machine/deep learning. In
fact, differently from other approaches, a B-RUP can be controlled and studied in its probabilistic details, controlling its
features and allowing for fine tuning.

The paper is organized as follows. In Section 2 we briefly recall joint and last-survivor annuities, while in Section
3 we shortly deal with the problem of right-censoring. In Section 4, we describe the B-RUP model, focusing on its
ability of dealing with censored observations. In Section 5, we discuss our results, using artificial and real data, and
providing suggestions on how to use the B-RUP in practice, in terms of prior elicitation and parameter tuning. The real
data are the same used by Frees et al. [1996], that we thank for sharing them with us, and that will be a benchmark for
us. Interestingly, as we shall see, the B-RUP is able to obtain the same results of Frees et al. [1996], while guaranteeing
more flexibility. Finally, Section 6 concludes the work and looks at future research.

2 Joint and survivor annuities

An annuity is a financial contract between two counterparties: an individual, called the annuitant, and a financial
institution, like an insurance company. In such a contract, the former pays a given amount of money (in full or
periodically) to the latter and, in return, they receive periodic payments, usually starting from a given time point in
the future, and commonly until death. The goal of annuities is therefore to provide the annuitant with a steady stream
of income, typically during retirement, and to offer insurance against lifetime uncertainty. It goes without saying that
annuities are strictly connected to private pensions and other similar products [Sheshinski, 2007].

A simple and quite popular extension of the single annuitant case we have just described is given by annuities involving
more annuitants, most of the times just two. These are often the members of a married couple or of a partnership, but
parent-child and relative-relative combinations are also common [Frees et al., 1996, Brown and Poterba, 2000]. An
example is offered by joint and last-survivor annuities, in which the insurance company pays as long as at least one
of the two annuitants is alive. In this kind of contracts, the death of one of the annuitants may have an impact on the
stream of payments that the survivor receives. For instance, for p ∈ [0, 1], in a 100p% (e.g. 50%) joint and survivor
annuity contract, payments are made in full while both annuitants are alive, but if one of the two dies, only 100p% (e.g.
50%) of the original amount is paid to the survivor [Sheshinski, 2007, Winklevoss, 1977]. A popular version is the
contingent joint and survivor annuity, which pays the full benefit as long as the first annuitant (plan member) is alive,
and then changes the benefit to a portion which is usually one-half or two-thirds.

From an actuarial point of view, to evaluate a joint and survivor annuity, one needs the marginal and joint survival
functions of both annuitants. Let X and Y be two random variables representing the lifetimes of two annuitants in a
joint and survivor annuity. Assume that today the age (say in years) of the first annuitant is observed to be x, while for
the second we have y. The joint probability of survival for another k years, given the current ages, is

S
(x,y)
XY (k, k) := P(X > x+ k, Y > y + k|X > x, Y > y), (1)

where k = 0, 1, ...,K.

We can then look at the probability that at least one of the two annuitants survives another k years, i.e.

P(x,y)
LS (k) := P[(X > x+ k) ∪ (Y > y + k)|X > x, Y > y] = S

(x,y)
X (k) + S

(x,y)
Y (k)− S(x,y)

XY (k, k), (2)

where the subscript LS is the acronym of "last survivor", with S(x,y)
Y (k) = P(Y > y+k|X > x, Y > y) indicating the

marginal survival probability of the second annuitant given the present situation of the couple, and similarly S(x,y)
X (k)

for the first annuitant. It is important to stress that, in Equation (2), both marginal probabilities are conditioned on
the ages of both annuitants. This is because, in the general situation where the lifetimes X and Y share some kind of
dependence, we have that S(x,y)

X (k) 6= S
(x,0)
X (k) [Youn et al., 2002].

If we assume a constant interest rate r, the basic one-unit pricing formula for a 100% joint and last-survivor annuity is
given by

C(x, y) =

∞∑
k=0

P(x,y)
LS (k)

(1 + r)k
. (3)
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In the 100p% situation, with 0 < p < 1, this formula is easily adjusted [Winklevoss, 1977].

Equations (2) and (3) imply that, in order to evaluate joint and survivor annuities, one needs to specify the dependence
between the lifetimes of the annuitants. If we assume that their lifetimes are independent, then S

(x,y)
XY (k, k) =

S
(x)
X (k)S

(y)
Y (k), and the estimation of the marginal probabilities of survival is all that is needed. Since the estimation of

univariate survival functions is a widely studied and well-known topic (e.g. Cox and Oakes [1984]), pricing annuities
under independence makes both modelling and computations considerably easier [Winklevoss, 1977], but not necessarily
realistic.

That of independence is indeed always a strong assumption. As Frees et al. [1996], Carriere [2000], Luciano et al.
[2008], Sanders and Melenberd [2016] and others have shown, the lifetimes of several couples in annuity contracts
present a non-negligible positive dependence. Moreover, some studies suggest that annuitants tend to have higher
individual survival probabilities with respect to people who do not buy annuities [Mitchell et al., 1999]. Such a result
opens to the possibility that also the dependence structure among couples that buy annuities, and couples that do
not, differs. Although there is no conclusive study about differences in the coupled lifetimes of annuitants versus
non-annuitants, Sanders and Melenberd [2016] observe that the magnitude of the positive dependence for a random
subset of 50, 000 couples–not necessarily annuitants–sampled from the whole Dutch population is significantly smaller
than what Frees et al. [1996] and Luciano et al. [2008] find for about 15000 couples of annuitants in Canada2.

Regardless of its magnitude, there are several reasons that explain, at least qualitatively, why the dependence in the
lifetimes of couples (especially married couples and partnerships) is positive. Some of them are rather intuitive, like the
possibility of both individuals dying at the same time because of an accident or a contagious disease, or the common
habits they might share as a consequence of living together, like the food they eat or the environment they live in. Others
are more linked to emotional, psychological and medical aspects, like the “broken heart syndrome”, a well-known
phenomenon in medicine, in which the sudden passing of one spouse greatly increases (at least temporarily) the
probability of death of the surviving one because of bereavement and sadness [Jagger and Sutton, 1991].

A question that naturally arises, when we consider the several possibilities for the modelling of joint mortality, is
how these affect the annuity price in Equation (3). This question is well-addressed in Frees et al. [1996], where they
compute the ratio between the annuity price under positive dependence and the price under independence (we shall call
it annuity ration from now on). To model dependence, they make use of copula models with Gompertz and Weibull
marginals, and they find out that the annuity ratio varies between approximately 0.95 and 1.05, depending on the initial
ages of the annuitants at contract initiation. This means that, if one assumes independence to simplify modelling, they
may end up with the underestimation or the overestimation of the annuity price by as much as a 5%. Compatible
results are more recently obtained by Sanders and Melenberd [2016], even if the error they find is smaller than 5% on
average, in absolute terms, for different types of contracts. Furthermore, the same authors underline that the error can
be particularly larger and relevant for specific types of annuities, in which the joint survival distribution plays a major
role, like for instance joint annuities.

3 Right-censoring

In survival analysis, right-censoring is a well-known problem one has to deal with in estimation [Kaplan and Meier,
1958].

When an observation is right-censored, it means that we only have reliable information until a certain point in time, and
that, from that point onwards, we actually lose precision. In other words, we end up in a situation in which the quantity
of interest is at least equal to x, but we do not known if the real value is actually x+ 1, x+ 2 or x+ n, because, for
several reasons, our observation is censored. For example we may know that an individual reached an age of 60 years,
but then the observation is stopped, because this person exits our sample and we lose track of the actual age of death (is
it 61 or 78?), a fundamental information for us.

The concept of censoring can also be defined on the left-side of a random variable, but it is less relevant here. For more
details we refer for instance to Klein and Moeschberger [2003].

Mathematically, if X is our age variable, when right censoring occurs we only observe the minimum between X and
the random censoring time TX , that is, we observe X∗ = min(X,TX). The indicator δX is used to indicate if a given
observation is censored (δX = 0) or not (δX = 1), so that E[δX ] represents the probability of no censoring. Every
potentially censored observation is therefore represented by the couple (X∗, δX). A common assumption [Gribkova
and Lopez, 2015] is that the support of the distribution of X is included in the support of the censoring variable TX .

2Naturally an analysis taking into consideration the differences in the two countries and the related markets would be necessary
to clean the effects, but the idea of some selection mechanism does not seem ludicrous.
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While univariate censoring has been extensively studied in the literature, e.g. in Kaplan and Meier [1958], Elandt-
Johnson and Johnson [1980] or Cox and Oakes [1984], far less progress has been made in the bivariate case. One of the
first works to study this problem is that of Dabrowska [1988], in which the Kaplan-Meier estimator is extended to the
two-dimensional framework. However, this estimator is known to produce negative masses when a large amount of
censoring is present [Pruitt, 1991]. In Wang and Wells [1997] or Gribkova and Lopez [2015], the censoring conditions
are relaxed to obtain better estimators. For example, in the context of coupled lifetimes, Gribkova and Lopez [2015]
assume that the age difference between individuals is known and related to the censoring variables; in Lin [1993],
conversely, the censoring variable is taken to be the same for both lifetimes. Other recent articles on nonparametric
estimators under bivariate censoring are those of Lopez [2012] and Shen and Yan [2008]. In all these works, censoring
is assumed to be independent from the variables of interest, an assumption we will also make in our construction.

Similarly to the univariate case, what one observes in the presence of bivariate censoring is the quartet (X∗, δX , Y
∗, δY ),

where X∗, δX , Y ∗ and δY are defined as before. Once again, (X,Y ) are assumed independent from (TX , TY ).

4 The Bivariate Reinforced Urn Process

The Bivariate Reinforced Urn Process (B-RUP) is our proposal for the modeling of joint and survivor annuities. It
is a model originally introduced by Bulla [2005], Bulla et al. [2007], and here extended and adapted to the annuity
framework.

We will show that this model is not only able to replicate the results one can obtain with other existing methodologies,
like copulas, but it also allows for a more flexible modeling, it improves its performances over time, and it allows for
the exploitation of experts’ judgements.

To describe the model, we start by defining its main building blocks: the beta-Stacy process [Walker and Muliere,
1997] and the the Reinforced Urn Process (RUP) [Muliere et al., 2000]. We then show how several RUPs can be easily
combined into a one-factor construction to give birth to a very flexible and powerful model, the B-RUP.

4.1 Reinforced Urn Processes and beta-Stacy processes

The Reinforced Urn Process was first described in Walker and Muliere [1997], where the results of Blackwell and
MacQueen [1973] and Ferguson [1973] are extended to right-censored data, thus defining the so-called beta-Stacy
process, a neutral-to-the-right [Doksum, 1974] generalization of the Dirichlet process [Ferguson, 1973].

The RUP is a combinatorial stochastic process, and it can be seen as a reinforced random walk over a state space of
urns. Depending on how its parameters are specified, it can generate a large number of interesting models. Essential
references on the topic are Muliere et al. [2000, 2003] and Fortini and Petrone [2012]. Examples of applications can be
found for example in Peluso et al. [2015] and Cheng and Cirillo [2018].

In this paper we specify a reinforced urn process able to generate a discrete beta-Stacy process, a particular random
distribution over the space of discrete distributions.
Definition 4.1 (Walker and Muliere [1997]). A random distribution function F is a discrete beta-Stacy process with
jumps at j ∈ N and parameters {βj , ωj ∈ R+, j ∈ N}, if there exist mutually independent random variables {Vj}j∈N,
each beta distributed with parameters (βj , ωj), such that the random mass assigned by F to {j}, written F ({j}), is
given by Vj

∏
i<j(1− Vi).

Following Definition 4.1, we introduce couples {βj , ωj} ∈ R+ × R+, with j ∈ N, such that βj , ωj ≥ 0, βj + ωj > 0,
and limn→∞

∏n
j=0

ωj
βj+ωj

= 0. Next, given a discrete beta-Stacy process F with parameters {βj , ωj ∈ R+, j ∈ N},
and a sample (X∗

n , δn) of exchangeable3 and potentially censored observations, withX∗n = {X∗n, n ≥ 1}, the sequence
Xn = {Xn, n ≥ 1} is a RUP if

ŜX(x) = P(Xn+1 > x|X∗n = x∗n, δn = dn) =

x∏
j=0

[
1−

βj +m∗j (x
∗
n,dn)

βj + ωj + sj(x∗n)

]
, (4)

where m∗j (xn,dn) =
∑n
i=1 1{xi=j,di=1} is the number of exact observations at x = j and sj(xn) =

∑n
i=1 1{xi≥j} is

the number of observations at x ≥ j. As proved in Walker and Muliere [1997], the condition limn→∞
∏n
j=0

ωj
βj+ωj

= 0

is necessary to ensure that the trajectories of the discrete beta-Stacy process are indeed random probability distributions.
3Exchangeability is a common assumption in Bayesian statistics [de Finetti, 2017], and it represents a relaxation of the stronger

hypothesis of independence. A sequence of random variables is exchangeable, if their joint distribution is immune to permutations in
the order of appearance of the variables.
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Notice that, by defining β∗j = βj +m∗j (xn,dn) and ω∗j = ωj + sj(xn)−m∗j (xn,dn), we can obtain a new beta-Stacy
process F ∗ with parameters {β∗j , ω∗j ∈ R+, j ∈ N}. The beta-Stacy process is thus conjugate to right-censored data, a
property somehow expected being the beta-Stacy process a particular case of a neutral-to-the-right process [Doksum,
1974]. The importance of conjugacy is to be stressed, as it allows for continuous updating of the process over time,
every time new observations become available. In other words, the posterior one can obtain as the result of a first cycle
of Bayesian updates can then represent the a priori of a new cycle, without the necessity of restarting everything from
scratch [Muliere et al., 2000, Cirillo et al., 2013].

In the introduction we mentioned that the RUP is linked to Pólya urns, a feature that makes a complex mathematical
tool like the beta-Stacy process very intuitive to explain and to work with. Following Muliere et al. [2000], we can
easily show that Equation (4) can be obtained via a sequence of two-color Pólya urns, in the case of no censoring.

Assume we have M + 1 Pólya urns [Mahmoud, 2008], where the j-th urn Uj , j = 0, 1, ...,M , initially contains ωj > 0
white balls and βj > 0 blue balls. The only exception is urn U0, which only possesses white balls. This starting urn
composition is nothing more than a way of eliciting an a priori [Muliere et al., 2000]. We start by drawing a ball from
U0. The only color we can sample is white. We put back the sampled ball, add an extra white ball4 and move to sample
urn U1. If in U1 the sampled ball is again white, we put it back, add an extra ball of the same color, and go sampling
urn U2. If the ball sampled from U2 is also white, then we add a white ball to U2 and draw from U3, and so on. Every
sampled white ball makes us move one step further in the sequence of urns. But if the sampled ball is blue, say in urn
U2, we add an extra blue ball to U2, set X1 = 2, and we start drawing again from U0. If the next blue ball is drawn, say,
at U20, then we set X2 = 20, and start again from U0. This sampling scheme defines a reinforced random walk on the
state space of the M + 1 urns: every extraction of a blue ball determines a cycle for the process {Xn}, which is nothing
more than a RUP. Note in fact that, after n samplings of X , the probability distribution of Xn+1 will indeed be given by
Equation (4).

The urn construction just analyzed generates a RUP without right censoring. The possibility of censored observations
can, however, be easily introduced: in case of a right-censored value j, under the k-th cycle5 of the RUP, we add one
white ball to all urns up to Uj (included), but no blue ball in any of the urns, then we restart from U0.

In every cycle, the RUP learns and keeps memory of what happened before, thanks to the Pólya reinforcement,
combining the information from samplings with the initial compositions of the urns. In Muliere et al. [2000], the
properties of this urn construction, including the conditions for recurrence, are studied in detail.

The way in which actual observations are translated into urn samplings is rather intuitive. Imagine we observe the
lifetime of an individual, whose death was at the age of 83. If every urn represents a year, it means that for 82 urns,
starting from U0 (birth) we have sampled a white balls, and only in U83 a blue one, which resets the RUP to 0. Each
individual lifetime thus represents a cycle of the RUP, and we assume individuals to be exchangeable. The initial
composition of all the urns, before the first individual is observed, and their lifetime transformed into samplings, just
represents our a priori about lifetimes. The more individuals we observe, the more urns are updated, and the more we
learn about the empirical distribution of lifetimes.

One of the characteristics of the beta-Stacy process, inherited from the Dirichlet process, is that its trajectories are
centered around a certain probability distribution G(·), that is E[F ({j})] = G({j}), which—in Bayesian terms—plays
the role of the prior. As shown in Walker and Muliere [1997], a necessary condition for this is that

βj
βj + ωj

=
G(j)−G(j − 1)

1−G(j − 1)
, j ∈ N (5)

where G(j) = PG(X ≤ j) is the probability that X is at most j under the centering measure.

The prior distribution G can also be used to define the initial compositions in a RUP. Following Walker and Muliere
[1997] and Muliere et al. [2000], it is sufficient to set

βj = cjG({j}), ωj = cj(1−G(j)), cj ∈ R+, j ∈ N, (6)
with cj denoting the so-called strength of belief in the prior knowledge, and G({j}) = PG(X = j). Notice that, given
Equation (6), the necessary conditions for the couples {βj , ωj} to properly define a beta-Stacy process are automatically
verified, if G(·) is a well-defined probability distribution.

4This is the reinforcement mechanism [Mahmoud, 2008] and it can be generalized to any fixed number r > 0 of extra balls. A
high reinforcement means that the probability of picking a particular color greatly increases every time we sample it, while the
opposite occurs for small values of r. See Cirillo et al. [2010], Peluso et al. [2015] and Cheng and Cirillo [2018] for a discussion
about the impact of r in RUPs.

5Every cycle starts with U0 and ends with the extraction of a blue ball in one of the subsequent urns. Given the condition
limn→∞

∏n
j=0

ωj
βj+ωj

= 0, it is easy to verify that the RUP is recurrent. More details, also for the case of censoring, in Muliere
et al. [2000], Cirillo et al. [2013].
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By giving high values to the strength of belief cj , larger amounts of data are required in order for the posterior
distribution, obtained via sampling and given in Equation (4), to move away from the a priori. On the contrary, when
cj → 0, Equation (4) tends to the Kaplan-Meier (KM) estimator of Kaplan and Meier [1958].

4.2 Building dependence

We can extend Equation (4) to two dimensions, using a one-factor construction initially discussed in Bulla [2005], Bulla
et al. [2007], to define the Bivariate Reinforced Urn Process (B-RUP).

Assume we observe n couples of possibly censored lifetime data of the form ((X∗n, δn), (Y ∗n , εn)), whereX∗n and Y ∗n
are n-dimensional vectors of observations, and where δn and εn are the corresponding vectors of indicators for right
censoring. A simple and flexible way of modelling the dependence between the observed lifetimesXn and Yn is to
consider three independent processes: one in common betweenXn and Yn, and two idiosyncratic ones, assembled into
a one-factor construction.

Formally, let An = {Ai, 1 ≤ i ≤ n}, Bn = {Bi, 1 ≤ i ≤ n} and Cn = {Ci, 1 ≤ i ≤ n} be three independent
reinforced urn processes, with respectively parameters (βAj , ω

A
j ), (βBj , ω

B
j ) and (βCj , ω

C
j ) for j ∈ N. One can easily

create a bivariate model of the form

Xi = Ai +Bi
Yi = Ai + Ci, 1 ≤ i ≤ n. (7)

The lifetime of Xi and Yi is thus composed of a common quantity Ai and two personal elements, Bi and Ci. In this
way, the dependence between Xi and Yi relies entirely on Ai, and thus, conditioned on Ai, Xi and Yi are independent.

A straightforward calculation yields

Cov(Xn+1, Yn+1|An,Bn,Cn) = Var(An+1|An) > 0, n ≥ 1, (8)

thus implying that the B-RUP construction can only model positive dependence. For the application at hand, that is the
joint modelling of lifetimes of coupled annuitants, this is not a problem, since previous studies have shown a strictly
positive dependence [Frees et al., 1996]. However, it is important to stress that the B-RUP model should not be used
when negative dependence is also possible.

In Bulla [2005], the sequence {(Xn, Yn), n ≥ 1} is shown to be exchangeable (given that the RUPS {An}, {Bn} and
{Cn} are exchangeable by construction), and therefore, by the de Finetti representation theorem [de Finetti, 2017],
there exists a joint random distribution function FXY conditionally on which the elements of (Xn,Yn) are independent
and identically distributed according to FXY . The properties of FXY have been studied in detail in Bulla et al. [2007].

Let FX and FY be the marginal distributions of X and Y , respectively. Clearly, we have

FX = FA × FB ,
FY = FA × FC ,

so that both FX and FY are convolutions of beta-Stacy processes. Furthermore, if P is the probability function
corresponding to F , one has

PXY (x, y) =

min(x,y)∑
a=0

PA(a)PB(x− a)PC(y − a), ∀x, y ∈ N2
0. (9)

Although the joint posterior distribution of Equation (9) can in principle be computed analytically6 [Bulla et al., 2007],
its complexity grows quickly with the number of observations, making it already unfeasible for a relatively small sample.
A convenient way of by-passing the problem is therefore to use a Markov Chain Monte Carlo (MCMC) approach, also
known as Gibbs sampler, to obtain the joint probability distribution from the posterior distributions ofAn,Bn and Cn,
using the one-factor construction.

The MCMC method consists of the following steps:

1. Generate a realization of A[k]
n , with the superscript referring to the iteration number, at the k-th iteration

conditioned on the available data of the previous iteration. That is, sampleA[k]
n from its conditional distribution,

6Also observe that the conjugacy of the constituent RUPs {An}, {Bn} and {Cn} allows for the continuous updating of the
B-RUP as well.
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i.e.

P[A[k]
n = an|A[k−1]

n−1 ,X
∗
n, δn,Y

∗
n , εn] ∝ (10)

P[Bn = xn − an, δn = dn|Bn−1 = X∗n−1 −A
[k−1]
n−1 , δn−1]

P[Cn = yn − an, εn = en|Cn−1 = Y ∗n−1 −A
[k−1]
n−1 , εn−1]

P[A[k]
n = an|A[k−1]

n−1 ],

where, using the fact that P[X ≥ k]− P[X > k] = P[X = k], one has

P[Bn = xn − an, δn = dn|Bn−1 = X∗n−1 −A
[k−1]
n−1 , δn−1] =

P[Bn ≥ xn − an|Bn−1 = X∗n−1 −A
[k−1]
n−1 , δn−1]−

1{δn=1}P[Bn > xn − an|Bn−1 = X∗n−1 −A
[k−1]
n−1 , δn−1],

and with the conditional distribution of Cn defined in an analogous way.

SinceA[k]
n is an exchangeable process, Equation (10) also applies for any element ofA[k]

n by simply changing
A

[k−1]
n−1 with A[k−1]

−i = {A[k]
n , 1 ≤ n < i, or A

[k−1]
n , n > i ≥ 1}. With this in mind, start simulating A[k]

1

using the values of A[k−1]
−1 and repeat this process until a new A

[k]
n has been obtained. Once this is done,

compute Bn = X∗n −A
[k]
n and Cn = Y ∗n −A

[k]
n . Note that, defined in this way, right censoring is only

applied toBn and Cn, and not7 toA[k]
n .

2. Create a new combination (Ak, Bk, Ck) from the respective conditional marginal distributions, as per Equation
(4).

3. Compute Xk = Ak +Bk and Yk = Ak + Ck. Set k = k + 1.
4. Repeat steps 1-3 until k reaches the maximum number of iterations N .

Notice that the previous algorithm requires, besides the (possibly) censored observations of (X,Y ), an initial sample
for A, that is, A[0]

n . Since A is not observed in practice, a sensible approach is to run the MCMC several times for
different, reasonable samplesA[0]

n .

In the next section, we present a detailed analysis of the results obtained by implementing this algorithm for artificial
and real datasets in the framework of annuity valuation.

5 Empirical results

In this section we apply the B-RUP model to calculate the dependence of coupled lifetimes, in order to price joint and
survivor annuities.

We first consider an analytical example, where we sample possibly censored observations from a known distribution.
Knowing the original distribution will not only allow us to estimate the difference between the original distribution and
the posterior computed through MCMC, but also to study how these differences affect the final price of the annuity.

In the second part of the section, the B-RUP is tested on a well-known Canadian dataset originally used by Frees et al.
[1996], which we will also use as a benchmark.

5.1 Analytical example

Assume that X and Y are linked through the one-factor model of Equation (7). Assume that A ∼ Poi(25), B ∼ Poi(35)
and C ∼ Poi(40). This implies that the marginals of X and Y are Poisson distributions with parameters 60 and 65,
respectively; and that Cov(X,Y ) = Var(A) = 25. The correlation between X and Y is therefore approximately 0.4.

Moreover, while not necessary true in general, we will make some assumptions about the dependence between TX and
TY , so that we can generate censored observations and better study the properties of our construction. We start from
the naive observation that the two annuitants of a joint and survivor annuity enter the contract at the same time; say that
X0 is the age of the first annuitant at the date of the signature, while Y0 is that of the second person. If we denote the

7Assuming that the joint lifetime component is not censored appears acceptable from an empirical point of view [Frees et al.,
1996, Carriere, 2000].
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observation period by ∆, it is clear that TX = X0 + ∆ and TY = Y0 + ∆. Moreover, X0 = Y0 + ε, where ε is the age
difference between the annuitants, which can be negative if Y0 > X0.

Therefore, to obtain right-censored observations, we have to choose the distributions of TX , ∆ and ε. In what follows
we take TX ∼ Poi(50) ("Poi" stands for Poisson), ∆ ∼ Poi(2) and ε = ε∗ − ε0, with ε∗ ∼ Poi(7) and ε0 = 5. We then
sample n = 104 couples of observations, of which almost 90% turn out to be at least partially censored (i.e. at least one
of the annuitants in the couple is right-censored).

Following the procedure defined in Section 4, the first step to use the B-RUP is to define prior distributions for the
target variables according to Equation (6), as well as the strength of belief parameters. The priors we choose are
GA = Poi(20), GB = Poi(20) and GC = Poi(20), respectively. For the strengths of belief, ck with k ∈ {A,B,C},
we consider two different scenarios: one where the strengths of belief are very small, so that the posterior distribution is
strongly affected by the incoming data, as if we did not trust our a priori; and another scenario where the strengths of
belief are big enough to keep memory of the a priori—which we trust—and, in particular, to influence those areas in the
data with less observations. As said, the a priori can indeed be used to complement the data with information about
rarely observed events and trends. In Table 1 the values of the strengths of belief for both scenarios8 are provided. In
the following we will refer to them as the “low belief” and the “high belief” scenarios, or with the subscripts l and h,
when referring to the results obtained with the B-RUP model. For example, when we write B-RUPl, we refer to the
B-RUP estimators in the low belief scenario. B-RUPh is defined analogously for the high belief scenario.

In order to initialize the Gibbs sampler, we also need to define an initial sample for A, which is not observable in
practice. Therefore, this sample will be “artificial”, and we need a reasonable way of generating it. Moreover, the
resulting posterior distribution will be affected by this artificial sample, and thus in practice it is recommended to
compute the posterior for several appropriate initial samples. In our case, we will sample observations from the same
distribution that we chose for the prior of A, so that, for this particular example, we generate 104 samples from a
Poi(20).

Low belief High belief
cA, cB , cC 10−6 102

Table 1: Proposed strength of belief scenarios. Notice that, since we are considering a dataset of size 104, even under
the high belief scenario, the prior will not be able to actually affect those areas where the observations are more
concentrated, but it will definitely influence the areas with fewer data points.

In Figure 1 we show the recovered marginal distribution using the B-RUP via MCMC, as well as the KM estimators
and the original distribution. Notice how, due to the lack of exact samples on the right tail of the distribution, the KM
estimator is not properly defined on the whole support of the original distribution, but only up to the maximum value of
the uncensored observations. The B-RUP model, on the contrary, is able to recover the right tail of the distribution,
although the fitting is clearly worse in that part of the curve, because of the evident lack of observations. If available, a
better a priori could here be used to improve tail fitting.

We also present the joint distribution in Figures 2a and 2b, for the low and high belief scenarios, respectively. Notice
how, in Figure 2a, the fitting is worse in the upper-right corner than in the lower-left corner, in accordance with the
right-censoring effect. For the high belief scenario, however, the prior distribution dominates in those areas of few
observations and we recover a smoother surface, as per Figure 2b.

A more quantitative comparison can be found in Table 2, where we show the means, the variances and the correlation
for both B-RUP scenarios, as well as for the KM estimator, the theoretical analytical solution, and the data. In this last
case we provide the sample estimates under two different points of view: 1) correctly using only the truly uncensored
observations ("Uncensored"), and 2) taking into consideration the entire dataset, ignoring the presence of censoring
("Whole"). While this second approach is not correct [Klein and Moeschberger, 2003], it can be heuristically useful
to better understand the impact of right-censoring in the data. For example we can clearly see that not considering
censoring can lead to a serious overestimation of the dependence in the data.

Always in Table 2, observe how the B-RUP is able to recover the correlation, under both scenarios9, something not
possible when using the KM approach. Moreover, observe how the B-RUP, in particular under the low strength of
belief, better captures the variability of both X and Y .

8Note that we could go as far as to define different strengths of belief for each urn within a RUP [Muliere et al., 2000]. In this
work, however, we will always assume a constant strength of belief for each RUP.

9Although both scenarios give reasonable results, the low belief scenario returns values closer to the actual ones, being more
data-driven, as expected.
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(a) Marginal of X .
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(b) Marginal of Y .

Figure 1: Comparison of the marginal distributions of X and Y . In green we show the prior distribution, the Kaplan-
Meier estimators in red, the B-RUP solution in blue and the original distribution in black. All distributions are
conditioned on the minimum value of the uncensored observations. For this sample those were Xmin = 34 and
Ymin = 39.

As shown in Table 3, permutation tests performed on the means and the variances, under the null hypothesis of no
difference between the obtained estimates and the true analytical values of Table 2, never reject the null for the B-RUP
estimators under the low strength of belief scenario, at a standard 5% significance level. These permutation tests where
performed simulating samples of size 103 from both the B-RUP (low and high strength of belief) and the KM marginals.
For the mean, the test statistic used is the absolute difference between the means, while for the variance the Good’s test
[Good, 1994] is employed. Looking at Table 3, we can conclude that the B-RUP with low strength of belief even beats
the KM, which is not able to correctly recover the variance of Y . If we also take into account that the KM approach
cannot estimate the correlation, as already discussed for Table 2, the B-RUPl performance is even more appreciable.

Further, observe that, since the a priori is considerably different from the analytical solution, it is no surprise that, for
the high strength of belief case, the B-RUPh performances worsen for the variances of both X and Y . As known,
the variance is in fact particularly sensitive to discrepancies in the tails, and we already said that the B-RUPh puts a
non-negligible mass on the right tail, which is never really updated by the data. Once again we want to stress that this is
actually a sign of the power and flexibility of the B-RUP, in case of a credible a priori (clearly not the case in this very
simple example).

Uncensored Whole KM B-RUPl B-RUPh Analytical
Mean(X) 52.877 50.684 59.811 59.811 59.341 60.005
Mean(Y) 56.690 53.088 64.691 64.691 64.227 65.007

Var(X) 35.498 39.524 53.486 55.755 50.886 59.905
Var(Y) 35.466 46.689 54.775 62.528 56.071 64.840

Corr(X,Y) 0.470 0.883 – 0.421 0.361 0.400

Table 2: Comparison of the means, the variances and the correlation of X and Y using the uncensored data, the whole
dataset (wrongly assuming no censoring), the KM estimator, the B-RUP estimator and the original analytical solution,
respectively.

Once we have the joint distribution of the pair (X,Y ), we can price annuities using Equation (3). Following Frees
et al. [1996], we are interested in the annuity ratio between the price when assuming dependence and the price when
assuming independence. For the independent scenario we simply use the marginals obtained in Figure 1, while for the
dependent scenario we use the joint distribution of Figure 2a. Moreover, according to Equation (3), once we know the
joint distribution, the annuity price depends on three quantities: the ages of the two annuitants at the beginning of the
contract, which we call entry/initial ages, and the interest rate. As in Frees et al. [1996], we first show the dependence
of the annuity ratio for several initial ages with a fixed interest rate, and then we vary the interest rate and assume that
both annuitants have the same age, so that we can still represent the results in a 3D plot.

In Figures 3a and 3b, we show the annuity ratio obtained with the B-RUP construction and the true (analytical)
distribution for an interest rate of r = 0.05. Notice how, in this example, when considering dependence, the price can
be up to 7% higher than in the independent scenario for some initial ages, especially when the age difference is large.
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KM B-RUPl B-RUPh
mean(X) 0.6612 0.4561 0.3254
mean(Y ) 0.6256 0.1354 0.5106
var(X) 0.0881 0.1934 0.0193
var(Y ) 0.0239 0.4859 0.0217

Table 3: Permutation test for the means and the variances of X and Y , using samples of 103 observations with 104

permutations. The sample are taken from the KM estimator and the B-RUP with low and high strength of belief. In bold
we underline the situations for which the null hypothesis of no difference between the estimates and the true values
(from the analytical model) is rejected, for a 5% significance level.
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(a) Low strength of belief.
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(b) High strength of belief.

Figure 2: Contour plot comparing the analytical distribution with the one obtained through the B-RUP model for
the low (a) and high (b) belief scenarios. All distributions are conditioned on the minimum value of the uncensored
observations: Xmin = 34 and Ymin = 39.

For smaller age differences, conversely, the annuity ratio takes values below the unit. For low initial ages for both
annuitants, the death event is still far away with high probability, and thus the annuity ratio barely moves from the unity
in that area.

(a) B-RUP estimate. (b) Original surface.

Figure 3: Ratio between the annuity values of the joint and independent survival models. The left plot (a) shows the
surface obtained using the B-RUP construction with low strength of belief, while the right plot (b) shows the price
ratio using the actual distribution (via the known analytics). Note how the ratio differs more between the two plots
for high initial ages, since, because of the censored observations, the B-RUP fitting is worse in that area. The result is
nevertheless quite positive.

Looking at Figures 3a and 3b, it is precisely for high annuity ratios that the B-RUP estimators differ more from the
analytical ones. This, again, is a consequence of the censored observations, that do not allow for a proper estimation due
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to the lack of information about the right-tail of the distribution10. In Table 4 we present the absolute value differences
between for several initial ages and a 5% interest rate. The results observed are clearly in line with what we have just
said in terms of age differences. The performances of the B-RUP are definitely satisfactory.

Age FA
Age SA

20 30 40 50 60

20 0.0003 0.0000 0.0001 0.0001 0.0002
30 0.0000 0.0005 0.0001 0.0001 0.0005
40 0.0001 0.0000 0.0009 0.0000 0.0008
50 0.0001 0.0003 0.0001 0.0013 0.0011
60 0.0005 0.0010 0.0024 0.0034 0.0002

Table 4: Absolute value differences in the annuity ratios obtained with the B-RUP model and the analytical distribution
for several initial ages of the annuitants (Fist Annuitant - FA, Second Annuitant - SA) with an interest rate of 0.05.
Given the small differences, we can say that the B-RUP is able to recover the "truth" from the data.

Finally, in Figures 4a and 4b, one can find the annuity ratio as a function of the interest rate for the same initial age
for both annuitants. In accordance with the previous results, the annuity ratio is above one for large initial ages, and
below one for low initial ages. Furthermore, this effect seems to be more pronounced for small interest rates, since the
curves are steeper than for high interest rates. This tendency is naturally the same for both the B-RUP estimator and the
original distribution.

(a) B-RUP estimate. (b) Original surface.

Figure 4: Ratio between the annuity values of the joint and independent survival models. The left plot (a) shows the
surface obtained using the B-RUP construction with low strength of belief, while the right plot (b) shows the price ratio
using the true (analytical) distribution. A visual comparison suggests that the B-RUP definitely performs well.

5.2 Canadian dataset

Let us now consider a real-world application, using a well-known dataset, initially presented in Frees et al. [1996], and
later also studied in the relevant works of Youn and Shemaykin [1999], Carriere [2000], Youn and Shemaykin [2001]
and Luciano et al. [2008], among others.

The dataset11 contains 14,497 contracts from a large Canadian insurer, and the period of observation runs from December
29, 1988, until December 31, 1993. To simplify the interpretation of the results, and also in line with other works [Frees
et al., 1996, Luciano et al., 2008], we have removed same sex contracts and, for every couple, we have kept only one
contract, leaving a total of 11,454 contracts. Finally, we have removed contracts were the annuitants age was less than
40 at the end of the observation period, obtaining a dataset of 11,421 male-female couples.

10Note that this should be seen as an indicator of the importance of choosing a proper prior distribution. Since the data barely
contains any information about the right tail of the distribution, it is up to the expert to give a reasonable insight about tail events.

11We are grateful to Prof. Frees for sharing the data with us.
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For each couple, the following information is available: dates of birth, dates of death or ages at the end of observation
period, and date of contract initiation. Once the observation period ends, we no longer have any information about the
individuals, and thus for those who lived longer than December 31, 1993, the lifetimes are right-censored.

Only a small portion of all the lifetimes in our data are actually uncensored, i.e. fully observed. In particular: 10.87% of
the male lifetimes, 3.93% of the female lifetimes, and 1.71% of the joint (couple) lifetimes. The last 1.71% corresponds
to 195 couples, of which 24 died within a one-day period, 59 within one month, and 92 within one year. Therefore, a
considerable portion (47%) of the uncensored couple deaths are either likely due to an accident–which would explain
both spouses’ dying within a day–or to some other impactful reason like a highly contagious disease, or a strong broken
heart syndrome [Jagger and Sutton, 1991]. In these situations, it is expected that the correlation between the annuitants’
lifetimes is strongly positive, and it actually is. However, as we will see shortly, taking only into account the uncensored
observations highly overestimates said dependence for all the other couples.

To model the data with the B-RUP, we follow the exact procedure as before. We start indeed by identifying the
target variables, define their respective priors, and then apply the Gibbs sampler with predefined strengths of belief
to merge the a priori knowledge with the data. The targets are, once again, A, B and C, and the priors we chose are
GA = Poi(60), GB = Poi(15) and GC = Poi(15). With this choice, the marginals for X and Y are both Poisson
distributions with parameter µ = 75, and the correlation is approximately 0.8. This prior setting (from now on, the
Poisson scenario) takes into account the sample moments and correlation one can estimate directly from the uncensored
observations, and that are shown in the first column of Table 5. For the strengths of belief we will still use the scenarios
in Table 1. As before, for initializing the Gibbs sampler we will generate observations from the prior we chose for A.

The decision of choosing distributions whose moments are in line with (a part of) the empirical data is to show a
possible way of eliciting the a priori. Clearly, in case of experts’ judgements or other sources of knowledge, one can
also elicit completely subjective priors.

In order to analyze the impact of choosing a different a priori, we will also discuss the use of two alternative settings:

• GA = Gomp(50, 6), GB = Gomp(30, 2) and GC = Gomp(30, 3), where Gomp(µ, σ) denotes a Gompertz
distribution with the following distribution function

Gomp(x;µ, σ) = 1− exp
(
e−

µ
σ (1− e xσ )

)
. (11)

We will call this the Gompertz scenario.
• GA = Uni(85), GB = Uni(20) and GC = Uni(20), where Uni(µ) denotes a discrete uniform distribution

with support [0, µ]. This will be the uniform scenario.

In the following, when we write Poil(h), we refer to the B-RUP estimator obtained with a Poisson prior and low (high)
strength of belief. For the Gompertz and Uniform priors, we will use Gompl(h) and Unil(h), respectively.

For the Poisson scenario, Figure 5 shows the marginal distributions for both the low and high strengths of belief. We
observe that the marginal distribution for the first annuitants (males) is nicely recovered. However, the differences
are clearly bigger12 for the marginal of Y –the second annuitant (females)–since censoring seems to affect more the
right-tail.

The lack of information about the right-tail of the distribution of female lifetimes is so large that the KM cumulative
probability at the age of 97 is around 0.8, while for the age of 98 the cumulative distribution function (cdf) reaches its
maximum value of 1. Taken literally, this would mean that there is a 20% probability for females of dying between 97
and 98 years, something we know is not true. This unrealistic behaviour could be due to the fact that, as per Table 5,
female annuitants have a slightly longer life expectancy than males, while, from the initial ages at which they enter the
contract, we see that on average [Luciano et al., 2008] females are three years younger than males, when the observation
period starts. This combination of younger entry age plus higher life expectancy could be the reason why censoring
affects more the distribution of females than that of males for this particular dataset.

Some additional numbers can give insight about the lack of data in the tails. Only 48 females have indeed survived until
at least 90 years. Conversely, the number of males observed in the same range is 77. While this difference may not
seem significant, notice that the life expectancy of males, according to the results in Table 5, is 3 years lower than that
of women. Therefore one would expect to observe more women at high ages than men, whereas the opposite happens
in our data. This could also be explained by the lower entry ages of females with respect to males.

The results obtained using the Gompertz scenario are in Figure 6, and they are very similar to the Poisson case. On the
other hand, the results obtained with the Uniform scenario, shown in Figure 7, are significantly different, especially

12We observe that the differences are slightly smaller for the high strength of belief. This could be due to the fact that a strong a
priori helps filling the gaps in the right tail of the marginals, which, because of censoring, are highly unrealistic.
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for high strengths of belief–see Figures 7c and 7d–where the B-RUP and KM marginals have very little in common.
Trivially, as one grows older the probability of demise increases, and therefore imposing a uniform distribution for the
lifetime of an individual is highly unrealistic, so this mismatch was actually to be expected. In this sense, the B-RUP
inherits the pros and the cons of the prior setting used, for sure under high strengths of belief. Naturally and conversely,
for low strengths of belief, the B-RUP is able to capture both marginals, except for the areas with very few observations,
so that the model is able to override a wrong prior given a sufficient amount observations.
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(a) Marginal of X . Low belief.
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(b) Marginal of Y . Low belief.
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(c) Marginal of X . High belief.
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(d) Marginal of Y . High belief.

Figure 5: Comparison of the marginals of X and Y using a Poisson prior. In green we show the prior distribution, the
Kaplan-Meier estimators in red and the B-RUP solution in blue. The upper row shows the results for the low belief
scenario and the lower row the same for the high belief scenario. All distributions are conditioned on the minimum
value of the uncensored observations. For this example those were Xmin = 51 and Ymin = 46.

Table 5 presents the means and the variances of X and Y , and their correlation, for the raw uncensored data, the KM
estimator (notice that in this case correlation is not obtained because independence is assumed), and the different
B-RUPs. For completeness, we also provide all quantities when taking all observations as uncensored ("Whole"), as we
did in the analytical example.

First notice that using only uncensored observations leads to an underestimation of the average lifetimes and to a likely
overestimation of dependence. But this is no surprise, as it is known that ignoring censoring is highly misleading in
survival analysis [Klein and Moeschberger, 2003]. Moreover, observe how, for low strengths of belief, the difference in
the B-RUP results are mainly due to the choice of the initial sample for A, which in our case is generated from its prior
distribution. Consistently with what we have already said, the uniform scenario with a high strength of belief generates
the most radical results, including a correlation close to the one (0.8) we can estimate from the uncensored observations.
All the other B-RUPs tend to suggest a less extreme correlation, in the vicinity of 0.5, in line with Frees et al. [1996]
and Luciano et al. [2008]. In any case, a correlation of 0.5 should definitely not be ignored by assuming independence,
as per the KM approach.

In Figures 8a and 8b we show the joint distributions obtained with the B-RUP model for the low and high belief
scenarios, respectively, as well as the prior distribution for comparison purposes. Notice how, although their marginals
are very similar–see Figure 5–the shape of the contours is considerably different around the areas of lower probability.
Conversely the joints are more compatible around the inner contours, for the bulk of the distribution, sign that the
strength of belief is not large enough to affect the areas where data are concentrated. In particular, for high strengths of
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(a) Marginal of X . Low belief.
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(b) Marginal of Y . Low belief.
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(c) Marginal of X . High belief.
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(d) Marginal of Y . High belief.

Figure 6: Comparison of the marginals of X and Y using a Gompertz prior. In green we show the prior distribution, the
Kaplan-Meier estimators in red and the B-RUP solution in blue. The upper row shows the results for the low belief
scenario and the lower row the same for the high belief scenario. All distributions are conditioned on the minimum
value of the uncensored observations. For this example, Xmin = 51 and Ymin = 46.

Unc. Whole KM Poil Poih Gompl Gomph Unil Unih
Mean(X) 74.514 71.710 86.769 85.183 85.801 85.907 85.865 87.457 90.819
Mean(Y) 74.011 68.871 89.625 85.509 87.108 84.950 88.208 89.696 94.295

Var(X) 52.049 42.821 75.553 57.556 74.305 65.519 67.886 106.766 208.802
Var(Y) 61.707 54.118 56.316 37.034 54.947 45.047 64.267 91.114 217.951

Corr(X,Y) 0.820 0.776 – 0.477 0.421 0.475 0.414 0.611 0.810

Table 5: Comparison of the means, variances and correlation of X and Y using: the uncensored data, the whole dataset
(wrongly assuming no censoring), the KM estimator and the B-RUP estimator for both low and high strength of belief,
respectively.

belief the contours are somewhat smoother, a phenomenon which we already observed in the analytical example. This
makes the distribution of Figure 8b easier to interpret13.

A way to improve our previous results, obtaining a more tractable joint distribution, while maintaining the desired
strength of belief, is to use a kernel bivariate density estimation. For example, we can employ a bivariate normal kernel,
with bandwidth parameters consistent with Sylverman’s rule of thumb [Sylverman, 1986]. The obtained distributions
are presented in Figures 8c and 8d, for low and high strengths of belief, respectively. Note that the contours of the high
belief kernel estimate are considerably more symmetric than those of the low belief kernel estimate, in accordance with
the results of Figures 8a and 8b.

13Nevertheless, notice that this smoothing induced by the strength of belief has a secondary role, while the main purpose of a
reliable prior is to embed behaviours that are not captured by the data. Moreover, whereas further increasing the strength of belief
would surely result in smoother distributions, we could end up giving a larger weight to the prior distribution than originally intended.
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(a) Marginal of X . Low belief.
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(b) Marginal of Y . Low belief.
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(c) Marginal of X . High belief.
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(d) Marginal of Y . High belief.

Figure 7: Comparison of the marginals of X and Y using an Uniform prior. In green we show the prior distribution, the
Kaplan-Meier estimators in red and the B-RUP solution in blue. The upper row shows the results for the low belief
scenario and the lower row the same for the high belief scenario. All distributions are conditioned on the minimum
value of the uncensored observations. Here Xmin = 51 and Ymin = 46.

Notice that, by increasing the strength of belief, the areas with fewer observations are dominated by the prior, and this
causes a decline in the correlation, which goes from 0.477 to 0.421, consistently with the findings in Table 5.

As observed in Carriere [2000] for this very same dataset–and more recently in Sanders and Melenberd [2016] for
a dataset concerning the whole Dutch population–the positive dependence between the lifetimes of married couples
increases with the ages of its members. In other words, people in their forties are expected to present a smaller positive
dependence than a couple in their eighties. To check for this phenomenon, as in Sanders and Melenberd [2016] we
compute the relative difference between the joint survival function and the product of the marginal survival distributions.
The results are in Figures 9a and 9b for the low and high belief scenarios, respectively, and they are clearly in line with
an increase of dependence with age. Moreover, from the same figures we can conclude that the relative difference is
bigger under the low belief scenario, which would explain the slight increase in the overall correlation (Table 5).

Now that we have estimated the joint probability distribution, we can calculate the annuity ratio. We will still assume a
fixed interest rate of 0.05 and show the annuity ratio for several initial ages of the annuitants. Next, when we want to
compute the annuity ratio as a function of the interest rate, we will hypothesize that annuitants enter the contract at the
same age to simplify the exposition, so that we can easily plot the results as a function of the interest rate only.

Figure 10 shows the results for the low and high strengths of belief, and the fixed interest rate. In line with expectations,
even for the annuity ratio, the high belief scenario gives again a smoother surface.

Notice that, in both cases, the annuity ratio increases with the age difference between the annuitants. When one of
the annuitants dies at a very old age, the probability for the surviving spouse to also die at an old age is larger under
positive correlation than under independence. This effect seems to be bigger when the female is the surviving annuitant,
probably because of the larger life expectancy of females with respect to males [Carriere, 2000].

When both spouses are around the same age, the annuity ratio takes values below one, specially for very high entry ages.
If one annuitant dies at a young age, the probability of the remaining annuitant to also die in the near future is higher
when positive dependence is assumed, but in the long term the surviving annuitant will count as being independent from

15



A PREPRINT - JULY 27, 2020

50 65 80 95 110
X

50

65

80

95

110

Y

Prior
Posterior

(a) Low strength of belief.

50 65 80 95 110
X

50

65

80

95

110

Y

Prior
Posterior

(b) High strength of belief.

50 65 80 95 110
X

50

65

80

95

110

Y

Prior
Posterior

(c) Low strength of belief. Kernel estimate

50 65 80 95 110
X

50

65

80

95

110

Y

Prior
Posterior

(d) High strength of belief. Kernel estimate.

Figure 8: Contour plot showing the joint distribution obtained via the B-RUP model for the low (a) and high (b)
belief scenarios and their respective densities via bivariate kernel estimation ((c) and (d)) using a Poisson prior. All
distributions are conditioned on the minimum value of the uncensored observations, i.e. Xmin = 51 and Ymin = 46.

(a) Low strength of belief. (b) High strength of belief.

Figure 9: Surface plot showing the relative difference between the joint survival distribution and the product of the
marginal survival distributions (independence) for the low (a) and high (b) belief scenarios.

the deceased spouse, and the annuity ratio is closer to 1. Conversely, for high entry ages, the impact of the deceased
spouse upon the surviving annuitant is more relevant in the near future than in the long term—according to the meaning
of “high” entry ages, there is no long term survival to be expected in the first place—and the annuity ratio keeps on
decreasing below the unit. All these findings are in line with the results obtained in Frees et al. [1996] for the same
dataset, when using copula models with Gompertz and Weibull marginals.

Also notice the similarity of these surfaces with those of Figure 3: qualitatively the behaviour is mostly the same. This
is because in both cases we have positive dependence, and thus all the reasoning developed in this section also applies
for the analytical example. Moreover, since the correlation levels are very similar (around 0.5), we obtain annuity ratios
of comparable orders.
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(a) Low strength of belief. (b) High strength of belief.

Figure 10: Ratio between the annuity values of the joint and independent survival models using the B-RUP estimators.
The left plot (a) shows the dependency with the initial age of the annuitants an interest rate of 0.05. In the right plot we
assume that the annuitants have the same age and plot the price ratio for several values of the interest rate

The results of the annuity ratio as a function of the interest rate can be found in Figure 11. Please notice how the overall
shape is in accordance with what we already observed in Figure 4. For small interest rates and entry ages, the annuity
ratio is below one, meaning that the annuity price with independent mortality is overestimated. As we increase the entry
age, the annuity ratio decreases up to a minimum (0.9527 for and interest rate equal to 0 and an entry age of 71 years),
from where it starts to increase again, also reaching values above the unit.

(a) Low strength of belief. (b) High strength of belief.

Figure 11: Ratio between the annuity values of the joint and independent survival models using the B-RUP with
different strengths of belief.

X

Y
40 50 60 70 80

40 0.993 0.996 0.999 1.001 1.007
50 0.996 0.989 0.992 1.000 1.012
60 0.999 0.993 0.979 0.988 1.019
70 1.001 1.001 0.990 0.966 1.009
80 1.007 1.013 1.021 1.015 0.977

Table 6: Annuity ratio obtained with the B-RUP model with low strength of belief parameters for several initial ages of
the annuitants with an interest rate of 0.05. Assuming independence can definitely be a bad choice in pricing.

We would like to stress that, while annuity ratios of 1.02 or 0.98 may seem close enough to 1, and this could lead to the
conclusion that it is ok to assume independence, the nominal value for an annuity contract is usually considerably large,
and thus the final difference in the prices may not be negligible in monetary terms. In Table 6 we show some values of
the annuity ratio for particular entry ages.
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All the results above are in line with what Frees et al. [1996] and Luciano et al. [2008] found on the same data, using
different approaches like copulas. While working nicely on data, copulas do not have the same flexibility of the B-RUP.
In particular when a priori knowledge can be used to improve fitting, or to deal with specific characteristics of the
data—like a severe lack of observations in the tails—the B-RUP clearly has an edge over the other commonly used
approaches. And this without taking into consideration the model risk involved in every parametric choice behind the
use of copulas [Hull, 2015, Mikosch, 2006], and parametric methodologies in general. This is why we believe that the
nonparametric approach the B-RUP proposes, which combines a priori knowledge (when meaningful) and the ability
of learning from the data, represents a viable and powerful alternative to the existing approaches to the modeling of
coupled lifetimes.

6 Conclusions

In this paper we have proposed the bivariate reinforced urn process (B-RUP) as a way of modeling dependent mortality,
to price joint and survivor annuities.

The main advantages of the B-RUP lie in its intuitive construction, in the possibility of using experts’ judgements—also
combining them with empirical evidence—in the ability of the model to learn and improve its performances over time,
like in many machine learning approaches, but without “black boxes" [Knight, 2017], and in the successful treatment of
right-censored observations, very common in annuity modeling.

In the absence of a credible a priori, which would give a strong competitive edge to its use, the B-RUP is nevertheless
able to replicate the performances of other commonly used approaches (e.g. copulas as in Frees et al. [1996] or Luciano
et al. [2008]), thus showing an interesting flexibility. Differently from other models, however, the B-RUP can be used
on a continuous basis, as it automatically updates its parameters whenever new data become available, without the
necessity of re-estimating the model entirely. This can be extremely useful in an online learning environment. Finally,
being nonparametric, the B-RUP is less subject to model risk than copulas or similar approaches [Hull, 2015], especially
if a clever use of priors can also account for data problems and historical bias.

In terms of performances, the model provides results in a very reasonable time, spanning from a few minutes to a couple
of hours, depending on the size of the dataset and the amount of predictions required. In particular, for the Canadian
data set considered and 104 iterations of the Gibbs sampler, the algorithm took approximately 1 minute of computing
time in a C++ environment and an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz processor.

Using artificial data anda well-known Canadian dataset of annuities [Frees et al., 1996], we have discussed the perfor-
mances of the bivariate reinforced urn process, which appear definitely satisfactory. In analysing those performances,
we have also discussed how a sufficient number of data can correct a wrong a priori, but also how strong priors may try
to correct for historical bias and deal with tail events.

In the future, it would be extremely useful to go deeper into the study of credible and reliable a priori beliefs for annuity
modeling, by gathering opinions and recommendations from experts. From a computational point of view, conversely, it
could be meaningful to find ways of introducing parallelization in the simulations of the B-RUP. While not immediately
relevant to the application described in this paper, such a possibility could dramatically expand the applicability and the
performances of reinforced urn models in insurance and finance [Amerio et al., 2004, Cheng and Cirillo, 2018, 2019,
Peluso et al., 2015].
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