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Optimal Stochastic Dynamic Dynamic Allocation

Allocate to a set of assets at 0 = t0 < t1 < · · · < tN = T

Future asset returns are random ~R(tn), n = 0, · · · ,N − 1

Assume shorting and leverage are not allowed

Determine optimal allocate strategy (weights) ~ρ0, ..., ~ρN−1

min
{~ρ0,...,~ρN−1}

g(W (T )) (Opt∗)

subject to 0 ≤ ~ρn ≤ 1, 1T ~ρn = 1, n = 0, 1, ...,N − 1,
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Example: Pension Investment to Achieve Retirement Goals

Pension funding shortfall increasingly shifts pensions from Defined
Benefit to Defined Contribution

Individual investors and wealth managers need high performance
allocation strategies to meet retirement goals

Example:

Yearly contributions {q(tn)} to the retirement account

Optimally rebalance stock and bond yearly for 30 years to achieve
retirement goals
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Nested nonlinear dependence on controls

Given cash injection {q(tn)} and allocation {~ρ0, ..., ~ρN−1}, wealth W (tn):

for n = 1, 2, ...,N − 1

W (t+n ) = W (t−n ) + q(tn)

W (t−n+1) = ~ρTn
~R(tn)W (t+n )

=
(
~ρTn
~R(tn)

)
(W (t−n ) + q(tn))

end

Note. W (T ) becomes more nonlinear as N increases
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Modelling and Computational Challenges

:

Data scarcity:
Only a single market return path realization is available, e.g., US
stock and bond monthly returns in the last since since 1926

a typical characteristics in financial ML

High dimensionality:
Potentially many assets, stochastic benchmark

Additional complexity:
Shaping distribution, tax

:
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Traditional Approach

Parametric model for asset returns

e.g., double exponential jump diffusion model, regime switching model,
etc

Dynamic programming, e.g., HJB, converts multi-step optimization to
single-step optimization

Compute strategy backwards in time
Computing strategy at rebalancing time for every possible state

Pain:

Erroneous model assumption

Difficult to estimate model

Curse of dimensionality
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How can we determine optimal strategies with less pain?

Is it possible to learn an optimal long term allocation strategy directly
from market?

Is it possible to avoid curse of dimensionality?

Can it be done robustly?

How does solution compare to benchmark strategies in industry?

How do we optimally outperforming a stochastic benchmark?
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Nonparametric Return Data Augmentation

We use Stationary Block Resampling to augment the single market path.

Steps

Randomly sample blocks
of random size from
observation sequence
and concatenate blocks

Blocksize follows a
geometric distribution

Observation sequence is
assumed to be circular
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Training and Testing

Augments supporting training using block resampled data:

strategy is trained from random permutations of market running
sessions of random lengths

What about testing data?

In typical ML,

Training data instances and testing data instances are sampled from
the same distribution

Testing instances are not seen in the training data set
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Conduct out–of-sample and out-of-distribution testing

Out-of-sample test: randomly block resample using the same
expected blocksize

Out-of-distribution test: randomly block resample using different
expected blocksizes

Training data and testing data from non-overlap-observation segments

Year

1926 1985 2015

Training

Testing

When assessing accuracy, we also use simulations from a parametric
model for training/testing
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Properties of block resampling out-of-sample test

Does block resampling leads to sound out-of-sample testing?

THEOREM. Let P1 and P2 be two paths of N data points generated
from a sequence of Ntot distinct observations using the stationary block
bootstrap resampling with the expected blocksizes of b̂1 and b̂2
respectively. The probability of P1 and P2 being identical is

1

Ntot

((
1− 1

b̂1

)(
1− 1

b̂2

)
+

1
b̂1

+ 1
b̂1
− 1

b̂1b̂2

Ntot

)N−1
.

Remark. Let Ntot = 90× 12, N = 30× 12, b̂1 = b̂2 = 2× 12 . For
training set with 100,000 paths and testing set with 10,000 paths, the
probability of existing a pair of identical training and testing paths is
bounded by

100, 000× 10, 000× 8.737× 10−39 < 10−29.
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Scenario Optimal Control Formulation

Recall that we want to solve the original problem (Opt∗) directly.

Given L sample paths {~R(j)(tn), n = 1, ...,N, j = 1, ..., L}, (Opt∗) becomes

min
{~p(j)(t0),...,~p(j)(tN−1),∀j}

1

2
g(W (1)(T ), ...,W (L)(T )) (SPOpt)

subject to 0 ≤ ~p(j)(tn) ≤ 1, n = 0, 1, ...,N − 1, j = 1, ..., L

1T ~p(j)(tn) = 1, n = 0, 1, ...,N − 1, j = 1, ..., L,

Challenges:

Excessively large O(MNL) variables/constraints:
~p(j)(tn), n = 0, 1, . . . ,N − 1, j = 1, . . . , L

Need a control model ~p(tn) for out-of-sample
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Optimal Control Model: a Machine Learning Approach

Ideas:

Determine a single control function ~p(F (tn)) using state variables and
time-to-go as features (parameterized by a set of weights)

Solve the single optimization directly

min
{parameters of ~p(·)}

1

2
g(W (1)(T ), ...,W (L)(T ))

subject to 0 ≤ ~p(F (j)(tn)) ≤ 1, n = 0, 1, ...,N − 1, j = 1, ..., L

1T ~p(F (j)(tn)) = 1, n = 0, 1, ...,N − 1, j = 1, ..., L,
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Neural Network Model ~p(·)

What about O(MNL) constraints?
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Neural Network Model

Logistic sigmoid outputs controls: weights for output layer x ∈ R lM :

~pm(F (tn)) =
exkmhk (F (tn))∑
i e

xkihk (F (tn))
, 1 ≤ m ≤ M.

Input Features: F (tn) ∈ Rd , weights for hidden layer z ∈ Rdl , and
sigmoid activation yields:

hj(F (tn)) = σ(Fi (tn)zij), σ(u) =
1

1 + eu
,

where double summation convention denotes

Fi (tn)zij ≡
d∑

i=1

Fizij , j = 1, ..., l .

Constraints are automatically satisfied:

0 ≤ ~pm(F (tn)) ≤ 1, 1T ~p(F (tn)) = 1.
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Training NN Optimization Problem

min
z∈Rdl ,x∈R lM

1

2
g(W (1)(T ), ...,W (L)(T )) (NNOpt)

where ~pm(F
(j)(tn)) =

exkmhk (F
(j)(tn))∑

i e
xki hk (F

(j)(tn))
,m = 1, ...,M, n = 0, ...,N − 1, j = 1, ..., L

hk (F
(j)(tn)) = σ(F

(j)
i (tn)zik ), k = 1, ..., l , n = 0, ...,N − 1, j = 1, ..., L

(SPOpt): constrained, O(MNL) variables, O(MNL) constraints

(NNOpt): unconstrained, l(d +M) variables, far smaller than O(MNL)
e.g., d = 2 (features), l = 3 (hidden nodes), M = 2 (assets)

Universal Approximation Theorem (Hornik 91): any smooth function can be represented by NN

Computational Cost:
gradient: O(l(d +M)NL)

Hessian : O(l2(d +M)2LN).
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Objective Function: reaching a wealth target level W ∗

Goal #1: minimize shortfall from the target W ∗, we set

g(W (T )) ≡ E

[
(min(W (T )−W ∗, 0))2

]

Minimize the expected quadratic shortfall with respect to the target
wealth W ∗.
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Constant Proportion Portfolio

How good is this optimal strategy?

Benchmark: constant proportion 50/50 (Couch Potato) portfolio,
50% stocks and 50% bonds, annual rebalance.

Why not beat the benchmark Wb(t) directly?
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Shaping Distribution

Goal #2: formulate an optimization problem to optimally beat the
benchmark portfolio. Use the asymmetric objective function:

g(W (T )) ≡ E
[

min
(
W (T )− esT ·Wb(T ), 0

)2
+ max

(
W (T )− esT ·Wb(T ), 0

)]

Outperforming by a spread s in rate of return over the benchmark

Quadratic-underperformance and linear outperformance objective
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wealth of the stochastic target,
Wb(tn), becomes a state
variable

Yuying Li (University of Waterloo) Learning Allocation from Market Data July 2, 2020 20 / 35



Empirical Assessment Using Market Data

The US historical market data from 1926 - 2015 from the Center for
Research in Security Prices (CRSP).

We consider allocations:

Cap-weighted CRSP index and 3-month T-bill (2 assets)

Equal-weighted CRSP index and 10-year treasury (2 assets)

Index, 3-month and 10-year treasury (3 assets)

Data augmentation:

Bootstrap market data: Bootstrap resampled paths from historical
market path.

Parametric (synthetic) market data: parameters a double exponential
jump diffusion model is estimated from historical path
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Accuracy comparison with ground truth (HJB), two assets

Wealth target W ∗ = 705, expected terminal wealth of 50/50

Training Performance on Parametric Model: Market Cap Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT < 500) Pr(WT < 600)
constant proportion (p = .5) 705 350 630 0.28 0.45
NN adaptive 705 159 782 0.13 0.18
HJB Optimal 705 153 782 0.12 0.17

Parametric model results from 160,000 Monte Carlo simulation runs

Accuracy: NN training optimization achieves accuracy comparable to
HJB (ground truth)

Performance: optimal strategy achieves higher median, significantly
lower shortfall probability for wealth level slightly below the target
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Comparison with Ground Truth: CDF (2 assets)

Note. Lower curve ⇒ better performance (smaller shortfall probability)
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Training and Out-of-Distribution Testing (3 assets)

Training with Expected Blocksize b̂ = 0.5 years: Market Cap Weighted
Strategy E(WT ) std(WT ) median(WT ) Pr(WT < 500) Pr(WT < 600)

Expected Blocksize b̂ = 0.5 years
constant proportion (p = (0.6, 0.1, 0.3)) 860 450 758 0.18 0.31
NN adaptive 860 264 986 0.15 0.20

Expected Blocksize b̂ = 1 years
constant proportion (p = (0.6, 0.1, 0.3)) 857 429 761 0.18 0.30
NN adaptive 865 264 994 0.15 0.20

Expected Blocksize b̂ = 2 years
constant proportion (p = (0.6, 0.1, 0.3)) 849 414 758 0.18 0.30
NN adaptive 867 254 986 0.13 0.19

Expected Blocksize b̂ = 5 years
constant proportion (p = (0.6, 0.1, 0.3)) 841 383 769 0.17 0.29
NN adaptive 878 246 994 0.12 0.18

Expected Blocksize b̂ = 8 years
constant proportion (p = (0.6, 0.1, 0.3)) 827 350 769 0.16 0.28
NN adaptive 886 236 996 0.11 0.16

Expected Blocksize b̂ = 10 years
constant proportion (p = (0.6, 0.1, 0.3)) 826 337 772 0.16 0.27
NN adaptive 893 230 1002 0.10 0.15

Cap-weighted index, 3-month T-bill and 10-year treasury. Training data: expected blocksize b̂ = 0.5 years. Test data:

b̂ = 1, 2, 5, 10 (years)
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Stochastic Target: Terminal Wealth Distribution

Elevated target is esTW50/50(·) with the spread s = 1%

Expected blocksize = 0.5 years for both training and testing.

Out-of-distribution testing with other blocksize is similar.

Figure: Training: b̂ = 0.5
years

Figure: Testing: b̂ = 0.5
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Strategy Characteristics: Risky Asset Allocation Over Time

Risky asset allocation

decreases over
time

mostly stays
above 50%
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(Out-of-sample) Historical Path from 1985 - 2015

Figure: Historical and closest from training wealth paths:
constant proportion

The historical
path is not in the
training set
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Backtest : Historical Path from 1985 - 2015

Figure: Cap-weighted CRSP index and 3-month T-bill
(training on bootstrap data)

The cumulative
wealth of the NN
adaptive strategy
is higher than the
benchmark
strategy during
the entire
investment
period.

A contrarian
strategy
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Concluding Remarks

We propose a framework to learn dynamic optimal allocation strategy
directly from market.

In the proposed framework, we

generate raining and testing data directly from block resampling of
market return path

show that block resampling generates sound out-of-sample and
out-of-distribution testing

solve a single scenario training optimization for dynamic strategy

demonstrate NN strategy achieves high accuracy and efficiency

Yuying Li (University of Waterloo) Learning Allocation from Market Data July 2, 2020 29 / 35



Concluding Remarks

By designing suitable objectives, we determine optimal strategies to

achieve a target wealth level

outperform a benchmark by shaping terminal wealth distribution

Based on historical market data, we show that optimal strategies

consistently outperform constant proportion benchmark strategy

perform robustly out-of-sample and out-of-distribution

outperform on the (out-of-sample) historical path

Optimal strategy is a contrarian strategy and, on average,

risky asset allocation decreases over time

The proposed method can be applied to many financial decision problems.
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Appendix: Shortfall Probability at Wealth W ( 3 assets )
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Stochastic Target: 2 assets (cap weighted index)

Median Internal Rate of Return (IRR)

Strategy Training Testing

constant proportion (p =.5) 4.38% 4.37%

neural network (NN) adaptive 6.46% 6.45%

IRR: average annual return rate to reach the terminal wealth

W (T ) =
T−1∑
t=0

q(t)(1 + IRR)T−t .
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Bootstrap Resampling Test with Different b̂

Training Results on Bootstrap Data: Expected Blocksize b̂ = 0.5 years

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(W CP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 678 276 624 0.50 0.84
adaptive 963 474 913 0.27 0.50

Testing Results on Bootstrap Data: Expected Blocksize b̂ = 2 years

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(W CP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 679 267 629 0.50 0.84
adaptive 962 449 921 0.26 0.50

Table: Test results on bootstrap market data with a different blocksize.

Note:

optimal strategy achieves higher mean, median, lower probability of
falling short of median wealths

results are similar for all blocksizes.
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Comparison to 80/20 strategy

CDF of wealth difference from 50/50 strategy
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significant probability of
outperforming with large
magnitude
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