Asset allocation without pain: learning dynamic strategies directly from market data

Yuying Li

University of Waterloo

yuying@uwaterloo.ca

Collaborators: Chendi Ni and Peter Forsyth at UW and R. Carroll at Neuberger

Workshop: Machine Learning in Quantitative Finance and Risk Management

July 2, 2020

Yuying Li (University of Waterloo)

Learning Allocation from Market Data

July 2, 2020 1 / 35

Outline

(Long Term) Optimal Dynamic Asset Allocation Problem

- 2 Direct: Learning from Nonparametric Augmented Market Data
- 3 Efficient: A NN Single Training Optimization for Dynamic Allocation
- Objectives, Outperforming Stochastic Target, Distribution Shaping
- 5 Empirical Assessment: Accuracy, Robustness, and Characteristics

Concluding Remarks

Optimal Stochastic Dynamic Dynamic Allocation

• Allocate to a set of assets at 0 = $t_0 < t_1 < \cdots < t_N = T$

- Future asset returns are random $\vec{R}(t_n)$, $n = 0, \cdots, N-1$
- Assume shorting and leverage are not allowed
- Determine optimal allocate strategy (weights) $\vec{\rho_0}, ..., \vec{\rho_{N-1}}$

 $\min_{\{\vec{\rho}_0,...,\vec{\rho}_{N-1}\}} g(W(T))$ (Opt*) subject to $0 \le \vec{\rho}_n \le 1, \ 1^T \vec{\rho}_n = 1, n = 0, 1, ..., N - 1,$

Example: Pension Investment to Achieve Retirement Goals

- Pension funding shortfall increasingly shifts pensions from **Defined Benefit** to **Defined Contribution**
- Individual investors and wealth managers need high performance allocation strategies to meet retirement goals

Example:

- Yearly contributions $\{q(t_n)\}$ to the retirement account
- Optimally rebalance stock and bond yearly for 30 years to achieve retirement goals

Nested nonlinear dependence on controls

Given cash injection $\{q(t_n)\}$ and allocation $\{\vec{\rho_0}, ..., \vec{\rho_{N-1}}\}$, wealth $W(t_n)$:

for
$$n = 1, 2, ..., N - 1$$

 $W(t_n^+) = W(t_n^-) + q(t_n)$
 $W(t_{n+1}^-) = \vec{\rho}_n^T \vec{R}(t_n) W(t_n^+)$
 $= (\vec{\rho}_n^T \vec{R}(t_n)) (W(t_n^-) + q(t_n))$
end

Note. W(T) becomes more nonlinear as N increases

< 回 ト < 三 ト < 三 ト

Modelling and Computational Challenges

• Data scarcity:

Only a single market return path realization is available, e.g., US stock and bond monthly returns in the last since since 1926

• a typical characteristics in financial ML

• High dimensionality:

Potentially many assets, stochastic benchmark

• Additional complexity: Shaping distribution, tax

Traditional Approach

- Parametric model for asset returns
 - e.g., double exponential jump diffusion model, regime switching model, etc
- Dynamic programming, e.g., HJB, converts multi-step optimization to single-step optimization
 - Compute strategy backwards in time
 - Computing strategy at rebalancing time for every possible state

Pain:

- Erroneous model assumption
- Difficult to estimate model
- Curse of dimensionality

How can we determine optimal strategies with less pain?

- Is it possible to learn an optimal long term allocation strategy directly from market?
- Is it possible to avoid curse of dimensionality?
- Can it be done robustly?
- How does solution compare to benchmark strategies in industry?
- How do we optimally outperforming a stochastic benchmark?

Nonparametric Return Data Augmentation

We use Stationary Block Resampling to augment the single market path.

Steps

- Randomly sample blocks of random size from observation sequence and concatenate blocks
- Blocksize follows a geometric distribution
- Observation sequence is assumed to be circular

Training and Testing

Augments supporting training using block resampled data:

 strategy is trained from random permutations of market running sessions of random lengths

What about testing data?

In typical ML,

- Training data instances and testing data instances are sampled from the same distribution
- Testing instances are not seen in the training data set

Conduct out-of-sample and out-of-distribution testing

- **Out-of-sample test**: randomly block resample using the same expected blocksize
- **Out-of-distribution test**: randomly block resample using different expected blocksizes
- Training data and testing data from non-overlap-observation segments

• When assessing accuracy, we also use simulations from a parametric model for training/testing

Does block resampling leads to sound out-of-sample testing?

THEOREM. Let \mathcal{P}_1 and \mathcal{P}_2 be two paths of N data points generated from a sequence of N_{tot} distinct observations using the stationary block bootstrap resampling with the expected blocksizes of \hat{b}_1 and \hat{b}_2 respectively. The probability of \mathcal{P}_1 and \mathcal{P}_2 being identical is

$$\frac{1}{N_{tot}} \Big(\big(1 - \frac{1}{\hat{b}_1}\big) \big(1 - \frac{1}{\hat{b}_2}\big) + \frac{\frac{1}{\hat{b}_1} + \frac{1}{\hat{b}_1} - \frac{1}{\hat{b}_1 \hat{b}_2}}{N_{tot}} \Big)^{N-1}$$

Remark. Let $N_{tot} = 90 \times 12$, $N = 30 \times 12$, $\hat{b}_1 = \hat{b}_2 = 2 \times 12$. For training set with 100,000 paths and testing set with 10,000 paths, the probability of existing a pair of identical training and testing paths is bounded by

 $100,000 \times 10,000 \times 8.737 \times 10^{-39} < 10^{-29}.$

Scenario Optimal Control Formulation

Recall that we want to solve the original problem (Opt*) directly.

Given L sample paths $\{\vec{R}^{(j)}(t_n), n = 1, ..., N, j = 1, ..., L\}$, (Opt^{*}) becomes

$$\min_{\{\vec{p}^{(j)}(t_0),...,\vec{p}^{(j)}(t_{N-1}),\forall j\}} \frac{1}{2} g(W^{(1)}(T),...,W^{(L)}(T))$$
(SPOpt)
subject to $0 \le \vec{p}^{(j)}(t_n) \le 1, n = 0, 1, ..., N - 1, j = 1, ..., L$ $1^T \vec{p}^{(j)}(t_n) = 1, n = 0, 1, ..., N - 1, j = 1, ..., L,$

Challenges:

- Excessively large O(MNL) variables/constraints: $\vec{p}^{(j)}(t_n), n = 0, 1, \dots, N - 1, j = 1, \dots, L$
- Need a control model $\vec{p}(t_n)$ for out-of-sample

Optimal Control Model: a Machine Learning Approach

Ideas:

- Solve the single optimization directly

$$\min_{\{\text{parameters of } \vec{p}(\cdot)\}} \quad \frac{1}{2}g(W^{(1)}(T), ..., W^{(L)}(T))$$

subject to $0 \le \vec{p}(F^{(j)}(t_n)) \le 1, n = 0, 1, ..., N - 1, j = 1, ..., L$
 $1^T \vec{p}(F^{(j)}(t_n)) = 1, n = 0, 1, ..., N - 1, j = 1, ..., L,$

Yuying Li (University of Waterloo)

Learning Allocation from Market Data

July 2, 2020 14 / 35

Neural Network Model $\vec{p}(\cdot)$

FIGURE 1: A 2-layer NN representing control functions

What about O(MNL) constraints?

15 / 35

Neural Network Model

Logistic sigmoid outputs controls: weights for output layer $x \in R^{IM}$:

$$\vec{p}_m(F(t_n)) = rac{e^{x_{km}h_k(F(t_n))}}{\sum_j e^{x_{ki}h_k(F(t_n))}}, \ 1 \le m \le M.$$

Input Features: $F(t_n) \in \mathbb{R}^d$, weights for **hidden layer** $z \in \mathbb{R}^{dl}$, and sigmoid activation yields:

$$h_j(F(t_n)) = \sigma(F_i(t_n)z_{ij}), \quad \sigma(u) = \frac{1}{1+e^u},$$

where double summation convention denotes

$$F_i(t_n)z_{ij} \equiv \sum_{i=1}^d F_i z_{ij}, \ j = 1, ..., l.$$

Constraints are automatically satisfied:

$$0 \leq \vec{p}_m(F(t_n)) \leq 1, \quad \mathbf{1}^T \vec{p}(F(t_n)) = 1.$$

Training NN Optimization Problem

$$\min_{z \in R^{dl}, x \in R^{IM}} \quad \frac{1}{2}g(W^{(1)}(T), ..., W^{(L)}(T))$$
(NNOpt)

where
$$\vec{p}_m(F^{(j)}(t_n)) = \frac{e^{x_{km}h_k(F^{(j)}(t_n))}}{\sum_i e^{x_{ki}h_k(F^{(j)}(t_n))}}, m = 1, ..., M, n = 0, ..., N - 1, j = 1, ..., L$$

$$h_k(F^{(j)}(t_n)) = \sigma(F_i^{(j)}(t_n)z_{ik}), k = 1, ..., l, n = 0, ..., N - 1, j = 1, ..., L$$

(NNOpt): unconstrained,
$$I(d + M)$$
 variables, far smaller than $O(MNL)$
e.g., $d = 2$ (features), $I = 3$ (hidden nodes), $M = 2$ (assets)

Universal Approximation Theorem (Hornik 91): any smooth function can be represented by NN

Computational Cost: gradient: O(I(d + M)NL)Hessian : $O(I^2(d + M)^2LN)$. Yuying Li (University of Waterloo) Learning Allocation from Market Data July 2, 2020 17 / 35 **Goal #1**: minimize shortfall from the target W^* , we set

$$g(W(T)) \equiv \mathbf{E}\left[(\min(W(T) - W^*, 0))^2\right]$$

• Minimize the expected quadratic shortfall with respect to the target wealth W^* .

Constant Proportion Portfolio

How good is this optimal strategy?

• Benchmark: constant proportion 50/50 (Couch Potato) portfolio, 50% stocks and 50% bonds, annual rebalance.

• Why not beat the benchmark $W_b(t)$ directly?

Yuying Li (University of Waterloo)

Learning Allocation from Market Data

July 2, 2020 19 / 35

Shaping Distribution

• **Goal #2**: formulate an optimization problem to optimally beat the benchmark portfolio. Use the asymmetric objective function:

$$g(W(T)) \equiv \mathbb{E}\Big[\min\left(W(T) - e^{sT} \cdot W_b(T), 0\right)^2 + \max\left(W(T) - e^{sT} \cdot W_b(T), 0\right)\Big]$$

- Outperforming by a spread *s* in rate of return over the benchmark
- Quadratic-underperformance and linear outperformance objective

Empirical Assessment Using Market Data

The US historical market data from 1926 - 2015 from the Center for Research in Security Prices (CRSP).

We consider allocations:

- Cap-weighted CRSP index and 3-month T-bill (2 assets)
- Equal-weighted CRSP index and 10-year treasury (2 assets)
- Index, 3-month and 10-year treasury (3 assets)

Data augmentation:

- Bootstrap market data: Bootstrap resampled paths from historical market path.
- Parametric (synthetic) market data: parameters a double exponential jump diffusion model is estimated from historical path

(本語) (本語) (本語) (二語)

Accuracy comparison with ground truth (HJB), two assets

Wealth target $W^* = 705$, expected terminal wealth of 50/50

Training Performance on Parametric Model: Market Cap Weighted						
Strategy	$E(W_T)$	$std(W_T)$	$median(W_T)$	$Pr(W_T < 500)$	$Pr(W_T < 600)$	
constant proportion $(p = .5)$	705	350	630	0.28	0.45	
NN adaptive	705	159	782	0.13	0.18	
HJB Optimal	705	153	782	0.12	0.17	

Parametric model results from 160,000 Monte Carlo simulation runs

- Accuracy: NN training optimization achieves accuracy comparable to HJB (ground truth)
- **Performance**: optimal strategy achieves higher median, significantly lower shortfall probability for wealth level slightly below the target

Comparison with Ground Truth: CDF (2 assets)

Note. Lower curve \Rightarrow better performance (smaller shortfall probability)

Learning Allocation from Market Data

July 2, 2020 23 / 35

- **4 ∃ ≻** 4

Training and Out-of-Distribution Testing (3 assets)

Training with Expected Blocksize $\hat{b}=0.5$ years: Market Cap Weighted						
Strategy	$E(W_T)$	$std(W_T)$	$median(W_T)$	$Pr(W_T < 500)$	$Pr(W_T < 600)$	
Expected Blocksize $\hat{b} = 0.5$ years						
constant proportion $(p = (0.6, 0.1, 0.3))$	860	450	758	0.18	0.31	
NN adaptive	860	264	986	0.15	0.20	
Expected Blocksize $\hat{b} = 1$ years						
constant proportion $(p = (0.6, 0.1, 0.3))$	857	429	761	0.18	0.30	
NN adaptive	865	264	994	0.15	0.20	
Expected Blocksize $\hat{b} = 2$ years						
constant proportion $(p = (0.6, 0.1, 0.3))$	849	414	758	0.18	0.30	
NN adaptive	867	254	986	0.13	0.19	
Expected Blocksize $\hat{b} = 5$ years						
constant proportion $(p = (0.6, 0.1, 0.3))$	841	383	769	0.17	0.29	
NN adaptive	878	246	994	0.12	0.18	
Expected Blocksize $\hat{b} = 8$ years						
constant proportion $(p = (0.6, 0.1, 0.3))$	827	350	769	0.16	0.28	
NN adaptive	886	236	996	0.11	0.16	
Expected Blocksize $\hat{b} = 10$ years						
constant proportion $(p = (0.6, 0.1, 0.3))$	826	337	772	0.16	0.27	
NN adaptive	893	230	1002	0.10	0.15	

Cap-weighted index, 3-month T-bill and 10-year treasury. Training data: expected blocksize $\hat{b}=$ 0.5 years. Test data:

 $\hat{b} = 1, 2, 5, 10$ (years)

Stochastic Target: Terminal Wealth Distribution

Elevated target is $e^{sT}W_{50/50}(\cdot)$ with the spread s = 1%

Expected blocksize = 0.5 years for both training and testing.

Out-of-distribution testing with other blocksize is similar.

Yuying Li (University of Waterloo)

Strategy Characteristics: Risky Asset Allocation Over Time

July 2, 2020 26 / 35

(Out-of-sample) Historical Path from 1985 - 2015

Figure: Historical and closest from training wealth paths: constant proportion

Yuying Li (University of Waterloo)

Learning Allocation from Market Data

July 2, 2020 27

27 / 35

Backtest : Historical Path from 1985 - 2015

 The cumulative wealth of the NN adaptive strategy is higher than the benchmark strategy during the entire investment period.

 A contrarian strategy

Figure: Cap-weighted CRSP index and 3-month T-bill (training on bootstrap data)

Yuying Li (University of Waterloo)

July 2, 2020 28 / 35

We propose a framework to learn dynamic optimal allocation strategy directly from market.

In the proposed framework, we

- generate raining and testing data directly from block resampling of market return path
- show that block resampling generates sound out-of-sample and out-of-distribution testing
- solve a single scenario training optimization for dynamic strategy
- demonstrate NN strategy achieves high accuracy and efficiency

Concluding Remarks

By designing suitable objectives, we determine optimal strategies to

- achieve a target wealth level
- outperform a benchmark by shaping terminal wealth distribution

Based on historical market data, we show that optimal strategies

- consistently outperform constant proportion benchmark strategy
- perform robustly out-of-sample and out-of-distribution
- outperform on the (out-of-sample) historical path

Optimal strategy is a contrarian strategy and, on average,

• risky asset allocation decreases over time

The proposed method can be applied to many financial decision problems.

References

Politis, D. and H. White (2004).

Automatic block-length selection for the dependent bootstrap.

Econometric Reviews 23, 53-70.

K. Hornik.

Approximation capabilities of multilayer feedforward networks.

Neural Networks, 4(2):251–257, 1991.

Li, Y. and P. A. Forsyth (2019).

A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans.

Insurance: Mathematics and Economics 86, 189-204.

Ni, C., Li, Y. , and P. A. Forsyth (2020).

Optimal Asset Allocation For Outperforming A Stochastic Benchmark Target *Journal of Quantitative Finance , submitted.*

July 2, 2020 31 / 35

Appendix: Shortfall Probability at Wealth W (3 assets)

(b) Equal-weighted CRSP, 3 month T-bill, 10 year Treasury.

July 2, 2020 32 / 35

Median Internal Rate of Return (IRR)

Strategy	Training	Testing
constant proportion (p $=.5$)	4.38%	4.37%
neural network (NN) adaptive	6.46%	6.45%

IRR: average annual return rate to reach the terminal wealth

$$W(T) = \sum_{t=0}^{T-1} q(t)(1 + IRR)^{T-t}.$$

Yuying Li (University of Waterloo)

Learning Allocation from Market Data

July 2, 2020 33 / 35

Bootstrap Resampling Test with Different \hat{b}

Training Results on Bootstrap Data: Expected Blocksize $\hat{b}=0.5$ years						
Strategy	$E(W_T)$	$std(W_T)$	$median(W_T)$	$Pr(W_T < median(W_T^{CP}))$	$Pr(W_T < median(W_T^{NN}))$	
constant proportion $(p = 0.5)$	678	276	624	0.50	0.84	
adaptive	963	474	913	0.27	0.50	
Testing Results on Bootstrap Data: Expected Blocksize $\hat{b} = 2$ years						
Strategy	$E(W_T)$	$std(W_T)$	median (W_T)	$Pr(W_T < median(W_T^{CP}))$	$Pr(W_T < median(W_T^{NN}))$	
constant proportion($p = 0.5$)	679	267	629	0.50	0.84	
adaptive	962	449	921	0.26	0.50	

Table: Test results on bootstrap market data with a different blocksize.

Note:

- optimal strategy achieves higher mean, median, lower probability of falling short of median wealths
- results are similar for all blocksizes.

CDF of wealth difference from 50/50 strategy

Observations

- significant probability of outperforming with large magnitude
- small probability of underperforming