A Stochastic Asset Liability Management Model for Life Insurance Companies

Roberta Simonella

Joint work with: Marco Di Francesco, UnipolSai

October 22, 2021

Roberta Simonella

ALM model for a life insurance company's portfolio

< □ > < □ > < □ > < □ > < □ >

October 22, 2021

1/14

- 1. The Model
- 2. Cash Flows
- 3. Mortality, Surrender and New Production Models
- 4. Portfolio Rebalancing Strategy
- 5. Numerical Results

< □ > < □ > < □ > < □ > < □ >

E

October 22, 2021

DQC

2/14

The Model

Stochastic Asset Liability Management

We build a scenario-based stochastic ALM model with dynamic reinvestment strategy.

Portfolio rebalancing

- Matching between asset duration and liability duration;
- Achievement of a target portfolio return;
- Subject to real world constraints.

Asset Portfolio

- Bonds, divided into buckets of duration
- Equity
- Cash

Liability Portfolio

With-profit life policies

Roberta Simonella

ALM model for a life insurance company's portfolio

• • • • • • • • • • • • •

.⊒ →

3/14

October 22, 2021

With-profit life policies

- Single or periodic premiums
- Saving account growth rate: $\max(g, \beta R^P)$
- Surrender option
- New production

Model points

Policies are gathered together according to:

- minimum guaranteed rate of return;
- maturity;
- age of policyholder.

Э

DQC

With-profit life policies

- Single or periodic premiums
- Saving account growth rate: $\max(g, \beta R^P)$
- Surrender option
- New production

Model points

Policies are gathered together according to:

- minimum guaranteed rate of return;
- maturity;
- age of policyholder.

(a)

Э

4/14

October 22, 2021

Cash Flows

$\Pi_{k,i} = n_{k-1,i} I_{k,i}^{\Pi}$
$P_{k,i} = n_{k,i}^P l_{k,i}^P$
$D_{k,i} = \boldsymbol{n}_{k,i}^D \cdot \boldsymbol{I}_{k,i}^D$
$\Gamma_{k,i} = \boldsymbol{n}_{k,i}^{S} \cdot \boldsymbol{I}_{k,i}^{S}$
$M_{k,i} = oldsymbol{n}_{k,i}^M \cdot oldsymbol{I}_{k,i}^M$

Cash outflows

$$cf_{k,i} = \begin{cases} \Gamma_{k,i} + D_{k,i} & \text{if } t_k < T_i, \\ M_{k,i} + D_{k,i} & \text{if } t_k = T_i, \\ 0 & \text{otherwise} \end{cases}$$
$$cf_k = \sum_{i=1}^{N_M} cf_{k,i}$$

Roberta Simonella

ALM model for a life insurance company's portfolio

October 22, 2021 5/14

996

<ロ> (四) (四) (三) (三) (三) (三)

Mortality Model

Number of policyholders who entered into the contract at time s and die at period k:

 $sn_{k,i}^{D,\mathcal{M}} \sim Bin(sn_{k-1,i}^{\mathcal{M}}, p_{k,i}^{D,\mathcal{M}}),$

$$sn_{k,i}^{D,\mathcal{F}} \sim Bin(sn_{k-1,i}^{\mathcal{F}}, p_{k,i}^{D,\mathcal{F}}),$$

where $p_{k,i}^{D,\mathcal{M}}$ and $p_{k,i}^{D,\mathcal{F}}$ are given by specific life tables, depending only on age.

Surrender Model

Number of policyholders who entered into the contract at time s and surrender at period k:

$$sn_{k,i}^S \sim Bin(sn_{k-1,i}, p_{k,i}^S).$$

New Production Model

Number of policyholders who entered into the contract at time k:

$$n_{k,i}^P \sim Bin(n_{k-1,i}, p_{k,i}^P).$$

Roberta Simonella

ALM model for a life insurance company's portfolio

イロン イロン イヨン イヨン

3

October 22, 2021

DQC

6/14

For each model point m_i , we define

 $\delta r_{k,i}^{\mathcal{S}} = (R_k^I - \max(g_{k,i}, \beta_{k,i} R_k^P))^+ \quad \text{and} \quad \delta r_{k,i}^P = (\max(g_{k,i}, \beta_{k,i} R_k^P) - R_k^I)^+,$

where R_k^l is a benchmark rate of return at period k.

- If $\delta r_{k,i}^S$ is in the threshold interval I^q , then the surrender probability at period k is given by $p_{k,i}^S = p_{qk}^S$;
- If $\delta r_{k,i}^P$ is in the threshold interval I^q , then the new prod probability at period k is given by $p_{k,i}^P = p_{qk}^P$.

		Period					
		0	1	2		T-1	
Intervals	<i>I</i> ¹	p_{10}^S, p_{10}^P	p_{11}^S, p_{11}^P	p_{12}^S, p_{12}^P		$p_{1T-1}^{S}, p_{1T-1}^{P}$	
	÷					•••	
	I ^Q	p_{Q0}^{S}, p_{Q0}^{P}	p_{Q1}^{S}, p_{Q1}^{P}	$p_{Q2}^{S}, \ p_{Q2}^{P}$		p_{QT-1}^S, p_{QT-1}^P	

3

DQC

(日) (四) (三) (三)

Nonlinearly constrained optimization problem

- Objective function: distance between asset duration and liability duration;
- Constraint on portfolio performance: portfolio return is near a benchmark return;
- Typical constraints on portfolio composition.

$$\begin{array}{ll} \text{Minimize} & (A^{D}(\alpha_{k}) - L_{k}^{D})^{+}, \quad \alpha_{k} = (\alpha_{k}^{B1}, \alpha_{k}^{B2}, \alpha_{k}^{B3}, \alpha_{k}^{B4}, \alpha_{k}^{E}, \alpha_{k}^{C});\\ \\ \text{Subject to} & \begin{cases} \beta^{L}R_{k+1}^{l} \leq R_{k+1}^{P} \leq \beta^{U}R_{k+1}^{l}, & \text{with constant } \beta^{L}, \beta^{U}, \\ \sum_{i \in I_{\alpha}} \alpha_{k}^{i} = 1 \text{ (budget constraint)} \\ \alpha_{k}^{i} \geq 0, \quad \forall i \in I_{\alpha} \text{ (no short selling constraint)} \\ \sum_{n=1}^{4} \alpha_{k}^{Bn} \geq 0.70, \quad \alpha_{k}^{E} \leq 0.20 \text{ (investement policy constraints)} \\ \left| \alpha_{k}^{i} - \alpha_{k-1}^{i} \right| \leq 0.05, \quad \forall i \in I_{\alpha} \text{ (turnover constraint)} \\ \sum_{i \in I_{\alpha}} \left| \alpha_{k}^{i} - \alpha_{k-1}^{i} \right| \leq 0.30 \text{ (turnover constraint)} \end{array} \right. \end{array}$$

Macaulay's Formula

$$L_{k}^{D} = \frac{\sum\limits_{j>k} jd_{j|k}cf_{j|k}}{\sum\limits_{j>k} d_{j|k}cf_{j|k}}$$

d_{j|k}: price at period k of a zero-coupon bond with tenor j (G1 + + model)
cf_{j|k}: expected cash outflows at period j evaluated at period k

At each time k, for each model point i and for j > k, we have to compute:

- $E[\max(g_{j,i},\beta_{j,i}R_i^P)|\mathcal{F}_k]$
- $E[\delta r_{j,i}^S | \mathcal{F}_k] = E[(R_j^I \max(g_{j,i}, \beta_{j,i} R_j^P))^+ | \mathcal{F}_k]$
- $E[\delta r_{j,i}^{P} | \mathcal{F}_{k}] = E[(\max(g_{j,i}, \beta_{j,i} R_{j}^{P}) R_{j}^{I})^{+} | \mathcal{F}_{k}]$

 \Rightarrow Least Squares Monte Carlo method

< □ > < □ > < □ > < □ > < □ >

3

9/14

October 22, 2021

Numerical Results Assumptions

- All contracts have the same value, say €10 000, in the moment they are signed.
- All policies expire at the same future date, say at time T = 10 years.
- At time 0 policies are equally distributed between male and female policyholders (gender equality).
- Portfolio is rebalanced at each time step (one year).
- Policyholders pay a single premium at the beginning of the contract.
- The participation rate is the same for all model points and is constant over time ($\beta = 95\%$).
- $L_0 = 88.7\% A_0$.

Initial scenario

Ass	et class	Weight
B1	bonds, maturity 1-3	21.09%
B2	bonds, maturity 3-5	22.91%
B3	bonds, maturity 5-10	35.79%
B4	bonds, maturity >10	15.38%
Ε	equity	3.74%
С	cash	1.09%

Table: Portfolio composition

	Mi	nimum	guarantee
Age	0%	1%	2%
[40, 44]	50	5	1
[45, 49]	55	5	3
[50, 54]	55	10	3
[55, 59]	60	25	15
[60, 64]	70	80	23
[65, 69]	60	100	50

Table: Number of policies for each model point

October 22, 2021 11/14

Э

DQC

Roberta Simonella

ALM model for a life insurance company's portfolio

October 22, 2021 12/14

Э

DQC

< □ > < □ > < □ > < □ > < □ >

October 22, 2021 13/14

E

590

October 22, 2021 13/14

E 990

イロト イヨト イヨト イヨト

Numerical Results Participation Rate Sensitivity

October 22, 2021 14/14

E

DQC

イロン イロン イヨン イヨン

October 22, 2021 14/14

E

DQC