Deep learning for large time-step simulations of stochastic differential equations

Shuaiqiang Liu*, Lech A. Grzelak*, Cornelis W. Oosterlee*&

*Delft University of Technology, the Netherlands & Centrum Wiskunde & Informatica, the Netherlands

July 2, 2020

- 2 Stochastic collocation method
- 3 Data-driven numerical schemes
- 4 Numerical experiments
- 5 Summary and Outlook

July 2, 2020

- Stochastic differential equations (SDEs) describe uncertainty in finance, physics, epidemics, etc.
- Accurate numerical schemes are needed to carry out large time step Monte Carlo simulations, but difficult to develop.
- Deep learning techniques have been used to solve PDEs, especially with a physics-informed neural network(Raissi 2017, Yohai 2019, etc) .
- Can deep neural networks learn high-order numerical schemes to solve SDEs?

A (1) > A (2) > A

• Considering a generic scalar Itô SDE,

$$dY_t = a(Y_t, t)dt + b(Y_t, t)dW_t, 0 \le t \le T,$$
(1)

where Y_t is the random variable with drift $a(Y_t, t)$, variance $b(Y_t, t)$, Wiener process W_t , given initial value $Y_0 := Y_{t=0}$.

 The real-valued random variable Y is defined on the probability space (Ω, Σ, ℙ), with sample space Ω, σ-algebra Σ and probability measure ℙ.

Solution in the integral form

$$Y_{t+\Delta t} = Y_t + \int_t^{t+\Delta t} a(Y_s, s)ds + \int_t^{t+\Delta t} b(Y_s, s)dW_s$$

Definition

Let the exact solution of an SDE at time t_i be given by Y_{t_i} , its discrete approximation \hat{Y}_i with time step Δt converges in the strong sense, with order $\beta_s \in \mathbb{R}^+$, if there exists a constant C such that

$$E|Y_{t_i} - \hat{Y}_i| \le C(\Delta t)^{\beta_s}.$$
(2)

Classical Numerical schemes

Euler-Maruyama (strong order $\beta_s = 0.5$):

$$Y_{t+\Delta t} = Y_t + a(Y_t)\Delta t + b(Y_t)\sqrt{\Delta t}Z$$

Milstein (strong order $\beta_s = 1.0$):

$$Y_{t+\Delta t} = Y_t + a(Y_t)\Delta t + b(Y_t)\sqrt{\Delta t}Z + \frac{1}{2}b'(Y_t)b(Y_t)\Delta t(Z^2 - 1),$$

where b'(Y) is the first derivative of b(Y), $Z \sim N(0, 1)$.

How to improve numerical accuracy?

• Include higher-order terms¹: ODE Runge-Kutta schemes plus high-order random terms of Itô calculus. There are 8 terms when $\beta_s = 1.5$, and 12 terms when $\beta_s = 2.0$.

$$Y_{t+\Delta t} = \underbrace{Y_t + a(Y_t)\Delta t + b(Y_t)\sqrt{\Delta t}Z + \frac{1}{2}b'(Y_t)b(Y_t)\Delta t(Z^2 - 1) + \dots}_{12 \text{ terms}}$$

High-order schemes are expensive to develop and implement.

Reduce time step Δt, e.g., finer time grid.
 The computational cost grows rapidly with more time points.

Shuaiqiang Liu, TU Delft

¹Eckhard Platen (1999). An introduction to numerical methods for stochastic differential equations. Acta Numerica.

1.5 Coefficients of numerical schemes

• Euler-Maruyama,
$$Y_{t+\Delta t} = \underbrace{Y_t + a(Y_t)\Delta t}_{\alpha_0} + \underbrace{b(Y_t)\sqrt{\Delta t}}_{\alpha_1} Z$$
, where,

$$\begin{cases} \alpha_0 := Y_t + a(Y_t, t)\Delta t, \\ \alpha_1 := b(Y_t, t)\sqrt{\Delta t}, \end{cases}$$
(3)

The coefficients are a function of model parameters and time.

$$\alpha_j = \bar{H}_j \left(Y_t, a(Y_t, t), b(Y_t, t), t, \Delta t \right).$$
(4)

 \Rightarrow Is it possible to learn these functions using machine learning?

2. Stochastic collocation method

Stochastic collocation Monte Carlo sampler (SCMC)²:

• Two scalar random variables, Y and X, are connected by,

$$F_Y(Y) \stackrel{d}{=} U \stackrel{d}{=} F_X(X),\tag{5}$$

where $U \sim \mathcal{U}([0,1])$ uniform distribution, cumulative distribution functions (CDF) $F_Y(\bar{y}) := P(Y \leq \bar{y})$ and $F_X(\bar{x}) := P(X \leq \bar{x})$.

• When $F_Y(\bar{y})$ and $F_X(\bar{x})$ are strictly monotonic, we have

$$\bar{y} = F_Y^{-1}(F_X(\bar{x})) := g(\bar{x}).$$
 (6)

where the function $g(\cdot)$ maps sample \bar{x} from X to sample \bar{y} from Y, in the sense of both distribution and element-wise.

Shuaiqiang Liu, TU Delft

2 Stochastic collocation method

²L. A. Grzelak, etc (2019). The stochastic collocation Monte Carlo sampler. Quantitative Finance.

2.1 Stochastic collocation method

• Choosing optimal collocation points (\hat{x}_j, \hat{y}_j) to approximate,

$$\bar{y} = g(\bar{x}) \approx \hat{g}_m(\bar{x}) = \sum_{j=1}^m \hat{y}_j \ell_j(\bar{x}),$$

where $\hat{y}_j = F_Y^{-1}(F_X(\hat{x}_j)), \ell_j(\bar{x})$ interpolation basis functions. • The polynomial chaos expansion reads

$$Y = \sum_{j=1}^{m} \alpha_{j-1} X^{j-1} = \alpha_0 + \alpha_1 X + \dots + \alpha_{m-1} X^{m-1}, \quad (7)$$

where the coefficients are computed by

$$\begin{aligned} \mathbf{A}\boldsymbol{\alpha} &= \hat{\mathbf{y}} \\ \begin{pmatrix} 1 & \hat{x}_{1}^{1} & \hat{x}_{1}^{2} & \dots & \hat{x}_{1}^{m-1} \\ 1 & \hat{x}_{2}^{1} & \hat{x}_{2}^{2} & \dots & \hat{x}_{2}^{m-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \hat{x}_{m}^{1} & \hat{x}_{m}^{2} & \dots & \hat{x}_{m}^{m-1} \\ \end{pmatrix} \begin{pmatrix} \hat{\alpha}_{0} \\ \hat{\alpha}_{1} \\ \vdots \\ \hat{\alpha}_{m-1} \end{pmatrix} = \begin{pmatrix} \hat{y}_{1} \\ \hat{y}_{2} \\ \vdots \\ \hat{y}_{m} \end{pmatrix} \in \{\mathbb{R}^{n}, \mathbb{R}^{n} \in \mathbb{R}^{n} \}$$

Shuaiqiang Liu, TU Delft

2 Stochastic collocation method

- The Cameron-Martin Theorem (1947) states that polynomial chaos approximations based on the normal distribution converge to any distribution.
- An increasing polynomial order in SCMC leads to exponential convergence.

SCMC algorithm

- Calculate the CDF $F_X(\hat{x}_j)$ on *m* collocation points $(\hat{x}_1, \hat{x}_2, ..., \hat{x}_m)$ to obtain *m* pairs $(\hat{x}_j, F_X(\hat{x}_j))$;
- 2 Invert the CDF by $\hat{y}_j = F_Y^{-1}(F_X(\hat{x}_j))$ to form *m* triples $(\hat{x}_i, F_X(\hat{x}_i), \hat{y}_i)$;
- Sompute the interpolation function $\bar{y} = \hat{g}(\bar{x})$ on *m* pairs (\hat{x}_j, \hat{y}_j) .

Cheap distribution $X \sim \mathcal{N}(0, 1)$, Gauss quadrature points \hat{x}_i ; expensive distribution $Y \sim \Gamma(5, 2)$, optimal collocation points $\hat{y}_i = F_Y^{-1}(F_X(\hat{x}_i))$, m=5 collocation points.

	\hat{x}_1	\hat{x}_2	\hat{x}_3	\hat{x}_4	\hat{x}_5
\hat{x}_i	-2.8570	-1.3556	0.0	1.3556	2.8570
$F_X(\hat{x}_i)$	0.0021	0.0876	0.50	0.9124	0.9979
$F_Y^{-1}(F_X(\hat{x}_i))$	1.7543	4.6651	9.3418	16.4443	27.5888

Stochastic collocation points parameterize the CDFs.

Shuaiqiang Liu, TU Delft

2.4 Connection between classical MC and SCMC

We aim to draw a conditional sample from the distribution,

$$F_{Y_{t+\Delta t}}(\bar{y}|Y_t=Y_i) \sim P(Y_{t+\Delta t} < \bar{y}|Y_t=Y_i).$$

For example, when there are three collocation points m = 3, • SCMC reads

$$Y_{t+\Delta t} = \sum_{j=1}^{3} \alpha_{j-1} X^{j-1} = \alpha_0 + \alpha_1 X + \alpha_2 X^2,$$

The Milstein scheme reads,

$$\begin{cases} X := Z\\ \alpha_0 := Y_i + a(Y_i, t_i)\Delta t + \frac{1}{2}b'(Y_i, t_i)b(Y_i, t_i),\\ \alpha_1 := b(Y_i, t_i)\sqrt{\Delta t},\\ \alpha_2 := \frac{1}{2}b'(Y_i, t_i)b(Y_i, t_i). \end{cases}$$

2.5 Connection between classical MC and SCMC

 \Rightarrow These coefficients vary at different time points,

$$\boldsymbol{\alpha}_{i+1} = \bar{\mathbf{H}}_{j} \left(Y_{i}, a(Y_{i}, t_{i}), b(Y_{i}, t_{i}), t_{i}, \Delta t \right).$$

$$\mathbf{A}\boldsymbol{\alpha}_{i+1} = \hat{\mathbf{y}}_{i+1}$$

$$\begin{pmatrix} 1 & \hat{x}_{1}^{1} & \hat{x}_{1}^{2} & \dots & \hat{x}_{1}^{m-1} \\ 1 & \hat{x}_{2}^{1} & \hat{x}_{2}^{2} & \dots & \hat{x}_{2}^{m-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \hat{x}_{m}^{1} & \hat{x}_{m}^{2} & \dots & \hat{x}_{m}^{m-1} \end{pmatrix} \begin{pmatrix} \hat{\alpha}_{i+1,0} \\ \hat{\alpha}_{i+1,1} \\ \vdots \\ \hat{\alpha}_{i+1,m} \end{pmatrix} = \begin{pmatrix} \hat{y}_{i+1,1} \\ \hat{y}_{i+1,2} \\ \vdots \\ \hat{y}_{i+1,m} \end{pmatrix},$$

$$(8)$$

$$\hat{\mathbf{y}}_{i+1} = \hat{\mathbf{H}}\left(Y_i, a(Y_i, t_i), b(Y_i, t_i), t_i, \Delta t\right).$$
(9)

⇒ Stochastic collocation points vary at different time points. PS: for Markov processes, $\hat{\mathbf{y}}_{i+1} = \hat{\mathbf{H}}(Y_i, a(Y_i, t_i), b(Y_i, t_i), \Delta t)$ does not depend time t_i . There are two options to determine these coefficients at time t_i ,

- Output the coefficients inferred from SC points;
- Output SC points, inferring coefficients $\alpha_{i+1} = \mathbf{A}^{-1} \hat{\mathbf{y}}_{i+1}$.
 - \Rightarrow SC points have physical meaning and are interpretable.

 $\mathbf{\hat{y}}_{i+1} = \mathbf{\hat{H}}\left(Y_i, a(Y_i, t_i), b(Y_i, t_i), t_i, \Delta t\right).$

Artificial neural networks are used as function approximators.

Fully connected neural networks are a composite function,

$$H(x|\mathbf{\theta}) = h^{(L)}(...h^{(2)}(h^{(1)}(x;\theta^{(1)});\theta^{(2)});...\theta^{(L)})$$

where $\theta = (\mathbf{W}_i, \mathbf{b}_i)$, \mathbf{W}_i weights and \mathbf{b}_i bias each hidden layer.

Supervised learning to approximate the target function,

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \operatorname{\mathsf{Loss}}(\boldsymbol{\theta}) := \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum D(F(x_i | \boldsymbol{\theta}), y_i),$$

where $D(\cdot, \cdot)$ measures the difference between $H(x_i|\theta)$ and y_i .

3.1 Approximation capacity

Why deep neural networks?

- Universal approximation theorem.
- Expressive power grows exponentially with the depth of ANN.

Deep neural networks³

Give any $\hat{\epsilon} \in (0, 1)$, there exists a neural network which is capable of approximating any function from $F_{d,n}$ (*d* inputs, up to *n*-th derivatives) with error $\hat{\epsilon}$, using the following configurations:

- at least piece-wise activation functions,
- at least $c(\ln(1/\hat{\epsilon}) + 1)$ hidden layers and $c\hat{\epsilon}^{-d/n}(\ln(1/\hat{\epsilon}) + 1)$ weights and computation units, where c := c(d, n) is constant, depending two parameters d and n.

\Rightarrow An arbitrary approximation error can always be achieved with a sufficient bounded number of hidden layers and nodes.

Shuaiqiang Liu, TU Delft

³Dmitry Yarotsky (2017). Error bounds for approximations with deep ReLU networks.

When Gauss-Hermite quadrature is used, let $f_X(x)$ represent weight function, ω_i quadrature weights, $\Psi(x) = (g(x) - \hat{g}(x))^2$ the difference of distribution functions, M collocation points,

$$\int_{R} \Psi(x) f_X(x) = \sum_{i=1}^{M} \Psi(x_i) \omega_i + \epsilon_M,$$

where the approximation error is

$$\epsilon_M = \frac{M! \sqrt{\pi}}{2^M} \frac{\Psi^{(2M)}(\hat{\xi}_1)}{(2M)!},$$
(10)

 \Rightarrow The error of SCMC exponentially converges to zero when the number of stochastic collocation points grows.

ANN-SCMC strong convergence

When the approximation errors from ANN and SCMC are zero, ANN-SCMC has a strong convergence,

$$E|Y_{t_i} - \hat{Y}_i| \le \epsilon(\Delta \tau) \le C(\Delta t)^{\beta_s},$$

where time step $\Delta \tau$ is used to create (off-line) training data, and actual time step Δt is for prediction (on-line), $\Delta \tau << \Delta t$.

- During off-line training, small $\Delta \tau$ guarantees small error $\epsilon(\Delta \tau)$.
- When using the trained ANN-SCMC to solve SDEs, strong error $\epsilon(\Delta \tau)$ stays regardless of actual time step Δt .

3.4 ANN-SCMC numerical solver

- Train ANN-SCMC off-line for $\hat{\mathbf{y}} = \hat{\mathbf{H}}(\cdot)$ based on generated data (e.g., using any classical MC with time step $\Delta \tau$).
- 2 Compute collocation points at time $t_{i+1} = t_i + \Delta t$, given $Y_i, a(Y_i, t_i), b(Y_i, t_i)$ at time t_i ,

$$\hat{\mathbf{y}}_{i+1} = \hat{\mathbf{H}} \left(Y_i, a(Y_i, t_i), b(Y_i, t_i), t_i, \Delta t \right).$$

- 3 Calculate the coefficients α_{i+1} through $\alpha_{i+1} = \mathbf{A}^{-1} \hat{\mathbf{y}}_{i+1}$.
- Implement the polynomial expansion for all sample paths,

$$Y_{i+1} = \sum_{j=1}^{m} \alpha_{i+1,j-1} Z^{j-1}.$$

Return to Step 2 by $t_{i+1} \rightarrow t_i$, iterating until terminal time T.

4. Numerical experiments

When $a(Y_t, t) = \mu Y_t$ and $b(Y_t, t) = \sigma Y_t$, we have Geometric Brownian Motion (GBM),

$$dY_t = \mu Y_t dt + \sigma Y_t dW_t, 0 \le t \le T,$$

where drift μ and volatility σ are constant, with initial value Y_0 . • The Milstein scheme,

$$Y_{i+1,j} = Y_{ij} \left(1 + \mu \Delta t + \frac{1}{2} \sigma^2 \Delta t \right) + \left(\sigma Y_{ij} \sqrt{\Delta t} \right) Z + \left(\frac{1}{2} \sigma^2 Y_{ij} \Delta t \right) Z^2,$$

$$\begin{cases} \alpha_{i+1,0} := Y_{ij} + Y_{ij} \mu \Delta t + \frac{1}{2} \sigma^2 Y_{ij} \Delta t, \\ \alpha_{i+1,1} := \sigma Y_{ij} \sqrt{\Delta t}, \\ \alpha_{i+1,2} := \frac{1}{2} \sigma^2 Y_{ij} \Delta t. \end{cases}$$

• For GBM, the conditional collocation points of ANN-SCMC, $\hat{\mathbf{y}}_{i+1} = \hat{\mathbf{H}} (\mu, \sigma, Y_i, \Delta t)$, are independent of time *t*.

4.1 ANN settings and off-line training

Hyper-parameters	Options	
Hidden layers	4	
Neurons (each layer)	50	
Activation	Softplus	
Initialization	Glorot_uniform	
Optimizer	Adam	
Batch size	1024	
Training epochs	1700	
Initial Learning rate	1e-3	

ANN	Parameters	Value range	Method
	drift, μ	[0.05, 0.50]	LHS
input	volatility, σ	(0.0, 0.60]	LHS
	initial value, Y_0	(0.0, 15.0]	LHS
	time horizon, τ_{max}	(0, 4.0]	Equally
$\hat{H}_0(\cdot)$ output	point, \hat{y}_0	(0.0, 15.5)	SCMC
$\hat{H}_1(\cdot)$ output	point, \hat{y}_1	(0.0, 15.5)	SCMC
$\hat{H}_2(\cdot)$ output	point, \hat{y}_2	(0.0, 17.5)	SCMC
$\hat{H}_3(\cdot)$ output	point, \hat{y}_3	(0.0, 20.0)	SCMC
$\hat{H}_4(\cdot)$ output	point, \hat{y}_4	(0.0, 32.5)	SCMC
$\hat{H}_5(\cdot)$ output	point, \hat{y}_5	(0.0, 55.0)	SCMC

Training data, $\Delta\tau \rightarrow 0.0$ means using analytic solution of GBM.

4.2 Performance of ANN-SCMC

• Approximation performance on the test dataset.

 $\hat{y}_i^a = \text{ANN-SCMC}, \hat{y}_i = \text{ground truth.} \hat{x}_i \text{ independent of time.} R^2(\hat{y}_i, \hat{y}_i^a) \text{ goodness of fit.}$

	$\hat{x_1}$	$\hat{x_2}$	$\hat{x_3}$	$\hat{x_4}$	$\hat{x_5}$
\hat{x}_i	-2.8570	-1.3556	0.0	1.3556	2.8570
$F_X(\hat{x}_i)$	0.0021	0.0876	0.50	0.9124	0.9979
$R^2(\hat{y}_i, \hat{y}_i^a)$	0.99997	0.99999	0.99997	0.99995	0.99951

• Predicted vs true collocation points, for example,

Shuaiqiang Liu, TU Delft

4 Numerical experiments

4.3 Path-wise error

Monte Carlo path-wise error:

イロト イポト イヨト イヨト

Comparing strong convergences based on the closed-form solution of GBM.

Varying time step size, the averaged error over 1000 samples.

- For Bermudan options, the holder has the right to exercise the contract at pre-specified dates up to maturity.
- Price Bermudan put options via Longstaff-Schwartz approach.
- Setting: under the risk-neutral measure, stock price $Y_0 = 1.0$, risk-less interest rate r = 0.1, strike K = 1.1, terminal time $T = \Delta t \times M_B$, the number of monitoring dates M_B , time step Δt , the number of sample paths N = 100000.

イロト イヨト イヨト イヨト

4.6 Bermudan option with big time steps

• Reference value V_{ref} =Analytic MC, from analytical paths of GBM; Relative error $|\frac{V_{ref}-V}{V_{ref}}|$; Time step $\Delta t = 0.4$.

	method	M _B =5	$M_B=10$	M _B =20
	Analytic MC	0.14806 (0.00%)	0.16313 (0.00%)	0.17338 (0.00%)
	Milstein MC	0.14353 (3.06%)	0.15734 (3.55%)	0.16642 (4.01%)
<i>σ</i> =0.30	ANN-SCMC	0.14780 (<mark>0.04%</mark>)	0.16305 (<mark>0.05%</mark>)	0.17322 (<mark>0.09%</mark>)
	Analytic MC	0.19716 (0.00%)	0.22464 (0.00%)	0.24454 (0.00 %)
	Milstein MC	0.19069 (3.29%)	0.21616 (3.78%)	0.23448 (4.11 %)
<i>σ</i> =0.40	ANN-SCMC	0.19711 (<mark>0.03%</mark>)	0.22454 (<mark>0.04%</mark>)	0.24438 (<mark>0.06%</mark>)

Conclusions:

- ANN-SCMC provides a data-driven numerical solver for SDEs;
- Implement large time-step simulations with a small error in strong convergence;
- More accurate than classical schemes.

Ongoing work:

- Test ANN-SCMC on more complicated SDEs;
- Increase the computation speed.

- G. Cybenko, etc(1989). Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals and Systems.
- R. H. Cameron and W. T. Martin (1947). The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals. Annals of Mathematics.
- Eckhard Platen (1999). An introduction to numerical methods for stochastic differential equations. Acta Numerica.
- L. A. Grzelak, etc (2019). The stochastic collocation Monte Carlo sampler. Quantitative Finance.
- Y. Bar-Sinai, etc (2019). Learning data-driven discretizations for partial differential equations. PNAS.
- Dmitry Yarotsky (2017). Error bounds for approximations with deep ReLU networks. Neural Networks.

Backup: Stochastic collocation points

< 🗇 🕨

э.