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1. Introduction

Stochastic differential equations (SDEs) describe uncertainty in
finance, physics, epidemics, etc.
Accurate numerical schemes are needed to carry out large time
step Monte Carlo simulations, but difficult to develop.
Deep learning techniques have been used to solve PDEs,
especially with a physics-informed neural network(Raissi 2017,
Yohai 2019, etc) .
Can deep neural networks learn high-order numerical schemes
to solve SDEs?
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1.1 Stochastic differential equations

Considering a generic scalar Itô SDE,

dYt = a(Yt, t)dt+ b(Yt, t)dWt, 0 ≤ t ≤ T, (1)

where Yt is the random variable with drift a(Yt, t), variance
b(Yt, t), Wiener process Wt, given initial value Y0 := Yt=0.

The real-valued random variable Y is defined on the probability
space (Ω,Σ,P), with sample space Ω, σ-algebra Σ and
probability measure P.
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1.2 Strong convergence of numerical solution

Solution in the integral form

Yt+∆t = Yt +

∫ t+∆t

t
a(Ys, s)ds+

∫ t+∆t

t
b(Ys, s)dWs

Definition
Let the exact solution of an SDE at time ti be given by Yti , its
discrete approximation Ŷi with time step ∆t converges in the
strong sense, with order βs ∈ R+, if there exists a constant C
such that

E|Yti − Ŷi| ≤ C(∆t)βs . (2)

Shuaiqiang Liu, TU Delft 1 Introduction July 2, 2020 5 / 31



1.3 Numerical discretization

Classical Numerical schemes
Euler-Maruyama (strong order βs = 0.5):

Yt+∆t = Yt + a(Yt)∆t+ b(Yt)
√

∆tZ

Milstein (strong order βs = 1.0):

Yt+∆t = Yt + a(Yt)∆t+ b(Yt)
√

∆tZ +
1

2
b′(Yt)b(Yt)∆t(Z

2 − 1),

where b′(Y ) is the first derivative of b(Y ), Z ∼ N(0, 1).
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1.4 Higher-order numerical approximation

How to improve numerical accuracy?
Include higher-order terms1: ODE Runge-Kutta schemes plus
high-order random terms of Itô calculus. There are 8 terms
when βs = 1.5, and 12 terms when βs = 2.0.

Yt+∆t = Yt + a(Yt)∆t+ b(Yt)
√

∆tZ +
1

2
b′(Yt)b(Yt)∆t(Z

2 − 1) + ...︸ ︷︷ ︸
12 terms

High-order schemes are expensive to develop and implement.
Reduce time step ∆t, e.g., finer time grid.
The computational cost grows rapidly with more time points.

1Eckhard Platen (1999). An introduction to numerical methods for stochastic
differential equations. Acta Numerica.
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1.5 Coefficients of numerical schemes

Euler-Maruyama, Yt+∆t = Yt + a(Yt)∆t︸ ︷︷ ︸
α0

+ b(Yt)
√

∆t︸ ︷︷ ︸
α1

Z, where,

{
α0 := Yt + a(Yt, t)∆t,

α1 := b(Yt, t)
√

∆t,
(3)

The coefficients are a function of model parameters and time.

αj = H̄j (Yt, a(Yt, t), b(Yt, t), t,∆t) . (4)

⇒Is it possible to learn these functions using machine learning?
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2. Stochastic collocation method

Stochastic collocation Monte Carlo sampler (SCMC)2:
Two scalar random variables, Y and X, are connected by,

FY (Y )
d
= U

d
= FX(X), (5)

where U ∼ U([0, 1]) uniform distribution, cumulative distribution
functions (CDF) FY (ȳ) := P (Y ≤ ȳ) and FX(x̄) := P (X ≤ x̄).
When FY (ȳ) and FX(x̄) are strictly monotonic, we have

ȳ = F−1
Y (FX(x̄)) := g(x̄). (6)

where the function g(·) maps sample x̄ from X to sample ȳ
from Y , in the sense of both distribution and element-wise.

2L. A. Grzelak, etc (2019). The stochastic collocation Monte Carlo
sampler. Quantitative Finance.
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2.1 Stochastic collocation method

Choosing optimal collocation points (x̂j ,ŷj) to approximate,

ȳ = g(x̄) ≈ ĝm(x̄) =

m∑
j=1

ŷj`j(x̄),

where ŷj = F−1
Y (FX(x̂j)), `j(x̄) interpolation basis functions.

The polynomial chaos expansion reads

Y =

m∑
j=1

αj−1X
j−1 = α0 + α1X + ...+ αm−1X

m−1, (7)

where the coefficients are computed by

Aα = ŷ
1 x̂1

1 x̂2
1 . . . x̂m−1

1

1 x̂1
2 x̂2

2 . . . x̂m−1
2

...
...

...
...

...
1 x̂1

m x̂2
m . . . x̂m−1

m




α̂0

α̂1
...

α̂m−1

 =


ŷ1

ŷ2
...
ŷm


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2.2 SCMC algorithm

The Cameron-Martin Theorem (1947) states that polynomial
chaos approximations based on the normal distribution
converge to any distribution.
An increasing polynomial order in SCMC leads to exponential
convergence.

SCMC algorithm
1 Calculate the CDF FX(x̂j) on m collocation points

(x̂1, x̂2, ..., x̂m) to obtain m pairs (x̂j , FX(x̂j));
2 Invert the CDF by ŷj = F−1

Y (FX(x̂j)) to form m triples
(x̂j , FX(x̂j), ŷj);

3 Compute the interpolation function ȳ = ĝ(x̄) on m pairs (x̂j , ŷj).
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2.3 An example of SCMC

Cheap distribution X ∼ N (0, 1), Gauss quadrature points x̂i; expensive
distribution Y ∼ Γ(5, 2), optimal collocation points ŷi = F−1

Y (FX(x̂i)), m=5
collocation points.

x̂1 x̂2 x̂3 x̂4 x̂5

x̂i -2.8570 -1.3556 0.0 1.3556 2.8570
FX(x̂i) 0.0021 0.0876 0.50 0.9124 0.9979

F−1
Y (FX(x̂i)) 1.7543 4.6651 9.3418 16.4443 27.5888
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Stochastic collocation points parameterize the CDFs.
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2.4 Connection between classical MC and SCMC

We aim to draw a conditional sample from the distribution,

FYt+∆t
(ȳ|Yt = Yi) ∼ P (Yt+∆t < ȳ|Yt = Yi).

For example, when there are three collocation points m = 3,
SCMC reads

Yt+∆t =

3∑
j=1

αj−1X
j−1 = α0 + α1X + α2X

2,

The Milstein scheme reads,
X := Z

α0 := Yi + a(Yi, ti)∆t+ 1
2b
′(Yi, ti)b(Yi, ti),

α1 := b(Yi, ti)
√

∆t,

α2 := 1
2b
′(Yi, ti)b(Yi, ti).
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2.5 Connection between classical MC and SCMC

⇒ These coefficients vary at different time points,

αi+1 = H̄j (Yi, a(Yi, ti), b(Yi, ti), ti,∆t) . (8)
Aαi+1 = ŷi+1

1 x̂1
1 x̂2

1 . . . x̂m−1
1

1 x̂1
2 x̂2

2 . . . x̂m−1
2

...
...

...
...

...
1 x̂1

m x̂2
m . . . x̂m−1

m




α̂i+1,0

α̂i+1,1
...

α̂i+1,m

 =


ŷi+1,1

ŷi+1,2
...

ŷi+1,m

 ,

ŷi+1 = Ĥ (Yi, a(Yi, ti), b(Yi, ti), ti,∆t) . (9)

⇒ Stochastic collocation points vary at different time points.

PS: for Markov processes, ŷi+1 = Ĥ (Yi, a(Yi, ti), b(Yi, ti),∆t) does not
depend time ti.
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2.6 Learn stochastic collocation points

There are two options to determine these coefficients at time ti,
Output the coefficients inferred from SC points;

Output SC points, inferring coefficients αi+1 = A−1ŷi+1.
⇒ SC points have physical meaning and are interpretable.

ŷi+1 = Ĥ (Yi, a(Yi, ti), b(Yi, ti), ti,∆t) .
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3. Deep Neural Networks

Artificial neural networks are used as function approximators.
Fully connected neural networks are a composite function,

H(x|θ) = h(L)(...h()(h()(x; θ()); θ()); ...θ(L))

where θ = (Wi,bi), Wi weights and bi bias each hidden layer.
Supervised learning to approximate the target function,

argmin
θ

Loss(θ) := argmin
θ

∑
D(F (xi|θ), yi),

where D(·, ·) measures the difference between H(xi|θ) and yi.
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3.1 Approximation capacity

Why deep neural networks?
Universal approximation theorem.
Expressive power grows exponentially with the depth of ANN.

Deep neural networks3

Give any ε̂ ∈ (0, 1), there exists a neural network which is capable of
approximating any function from Fd,n ( d inputs, up to n-th derivatives) with
error ε̂, using the following configurations:

at least piece-wise activation functions,
at least c(ln(1/ε̂) + 1) hidden layers and cε̂−d/n(ln(1/ε̂) + 1) weights
and computation units, where c := c(d, n) is constant, depending two
parameters d and n.

⇒ An arbitrary approximation error can always be achieved
with a sufficient bounded number of hidden layers and nodes.

3Dmitry Yarotsky (2017). Error bounds for approximations with deep ReLU
networks.
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3.2 Error from SCMC

When Gauss-Hermite quadrature is used, let fX(x) represent
weight function, ωi quadrature weights, Ψ(x) = (g(x)− ĝ(x))2

the difference of distribution functions, M collocation points,∫
R

Ψ(x)fX(x) =

M∑
i=1

Ψ(xi)ωi + εM ,

where the approximation error is

εM =
M !
√
π

2M
Ψ(2M)(ξ̂1)

(2M)!
, (10)

⇒ The error of SCMC exponentially converges to zero when
the number of stochastic collocation points grows.
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3.3 Estimating strong error of ANN-SCMC

ANN-SCMC strong convergence
When the approximation errors from ANN and SCMC are zero,
ANN-SCMC has a strong convergence,

E|Yti − Ŷi| ≤ ε(∆τ) ≤ C(∆t)βs ,

where time step ∆τ is used to create (off-line) training data,
and actual time step ∆t is for prediction (on-line), ∆τ << ∆t.

During off-line training, small ∆τ guarantees small error ε(∆τ).
When using the trained ANN-SCMC to solve SDEs, strong
error ε(∆τ) stays regardless of actual time step ∆t.
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3.4 ANN-SCMC numerical solver

1 Train ANN-SCMC off-line for ŷ = Ĥ (·) based on generated
data (e.g., using any classical MC with time step ∆τ ).

2 Compute collocation points at time ti+1 = ti + ∆t, given
Yi, a(Yi, ti), b(Yi, ti) at time ti,

ŷi+1 = Ĥ (Yi, a(Yi, ti), b(Yi, ti), ti,∆t) .

3 Calculate the coefficients αi+1 through αi+1 = A−1ŷi+1.
4 Implement the polynomial expansion for all sample paths,

Yi+1 =

m∑
j=1

αi+1,j−1Z
j−1.

5 Return to Step 2 by ti+1 −→ ti, iterating until terminal time T .
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4. Numerical experiments

When a(Yt, t) = µYt and b(Yt, t) = σYt, we have Geometric
Brownian Motion (GBM),

dYt = µYtdt+ σYtdWt, 0 ≤ t ≤ T,

where drift µ and volatility σ are constant, with initial value Y0.
The Milstein scheme,

Yi+1,j = Yij

(
1 + µ∆t+

1

2
σ2∆t

)
+
(
σYij
√

∆t
)
Z+

(
1

2
σ2Yij∆t

)
Z2,

αi+1,0 := Yij + Yijµ∆t+ 1
2σ

2Yij∆t,

αi+1,1 := σYij
√

∆t,

αi+1,2 := 1
2σ

2Yij∆t.

For GBM, the conditional collocation points of ANN-SCMC,
ŷi+1 = Ĥ (µ, σ, Yi,∆t), are independent of time t.
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4.1 ANN settings and off-line training
Hyper-parameters Options

Hidden layers 4
Neurons (each layer) 50

Activation Softplus
Initialization Glorot_uniform
Optimizer Adam
Batch size 1024

Training epochs 1700
Initial Learning rate 1e-3

ANN Parameters Value range Method

input
drift, µ [0.05, 0.50] LHS

volatility, σ (0.0, 0.60] LHS
initial value, Y0 (0.0, 15.0] LHS

time horizon, τmax (0, 4.0] Equally
Ĥ0(·) output point, ŷ0 (0.0, 15.5) SCMC
Ĥ1(·) output point, ŷ1 (0.0, 15.5) SCMC
Ĥ2(·) output point, ŷ2 (0.0, 17.5) SCMC
Ĥ3(·) output point, ŷ3 (0.0, 20.0) SCMC
Ĥ4(·) output point, ŷ4 (0.0, 32.5) SCMC
Ĥ5(·) output point, ŷ5 (0.0, 55.0) SCMC

Training data, ∆τ → 0.0 means using analytic solution of GBM.
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4.2 Performance of ANN-SCMC

Approximation performance on the test dataset.

ŷai = ANN-SCMC, ŷi = ground truth. x̂i independent of time.
R2(ŷi, ŷ

a
i ) goodness of fit.

x̂1 x̂2 x̂3 x̂4 x̂5

x̂i -2.8570 -1.3556 0.0 1.3556 2.8570
FX(x̂i) 0.0021 0.0876 0.50 0.9124 0.9979
R2(ŷi, ŷ

a
i ) 0.99997 0.99999 0.99997 0.99995 0.99951

Predicted vs true collocation points, for example,

(a) ŷa2 vs ŷ2 (b) ŷa3 vs ŷ3
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4.3 Path-wise error

Monte Carlo path-wise error:

(c) Monte Carlo paths (d) Comparing Euler

σ = 0.3, r = 0.1, S0 = 1.0, ∆t = 0.5.
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4.4 Convergence error

Comparing strong convergences based on the closed-form
solution of GBM.

Varying time step size, the averaged error over 1000 samples.
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4.5 Application: Option pricing

For Bermudan options, the holder has the right to exercise the
contract at pre-specified dates up to maturity.

Price Bermudan put options via Longstaff-Schwartz approach.

Setting: under the risk-neutral measure, stock price Y0 = 1.0,
risk-less interest rate r = 0.1, strike K = 1.1, terminal time
T = ∆t×MB, the number of monitoring dates MB, time step
∆t, the number of sample paths N = 100000.
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4.6 Bermudan option with big time steps

Reference value Vref=Analytic MC, from analytical paths of
GBM; Relative error |Vref−VVref

|; Time step ∆t = 0.4.

method MB=5 MB=10 MB=20

σ=0.30

Analytic MC 0.14806 (0.00%) 0.16313 (0.00%) 0.17338 (0.00%)
Milstein MC 0.14353 (3.06%) 0.15734 (3.55%) 0.16642 (4.01%)
ANN-SCMC 0.14780 (0.04%) 0.16305 (0.05%) 0.17322 (0.09%)

σ=0.40

Analytic MC 0.19716 (0.00%) 0.22464 (0.00%) 0.24454 (0.00 %)
Milstein MC 0.19069 (3.29%) 0.21616 (3.78%) 0.23448 (4.11 %)
ANN-SCMC 0.19711 (0.03%) 0.22454 (0.04%) 0.24438 (0.06%)
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5. Summary and Outlook

Conclusions:
ANN-SCMC provides a data-driven numerical solver for SDEs;
Implement large time-step simulations with a small error in
strong convergence;
More accurate than classical schemes.

Ongoing work:
Test ANN-SCMC on more complicated SDEs;
Increase the computation speed.

Shuaiqiang Liu, TU Delft 5 Summary and Outlook July 2, 2020 28 / 31



References

1 G. Cybenko, etc(1989). Approximations by superpositions of sigmoidal
functions, Mathematics of Control, Signals and Systems.

2 R. H. Cameron and W. T. Martin (1947). The Orthogonal Development of
Non-Linear Functionals in Series of Fourier-Hermite Functionals. Annals of
Mathematics.

3 Eckhard Platen (1999). An introduction to numerical methods for stochastic
differential equations. Acta Numerica.

4 L. A. Grzelak, etc (2019). The stochastic collocation Monte Carlo sampler.
Quantitative Finance.

5 Y. Bar-Sinai, etc (2019). Learning data-driven discretizations for partial
differential equations. PNAS.

6 Dmitry Yarotsky (2017). Error bounds for approximations with deep ReLU
networks. Neural Networks.

Shuaiqiang Liu, TU Delft 5 Summary and Outlook July 2, 2020 29 / 31



qatlho’

Danke谢谢
Grazie

Спасибо

ขอบคุณ

9C4#5$Ì
شكرا Merci

Gracias

நன்ற�

Obrigado

Εὐχαριστῶ

감사합니다धęयवाद

Terima kasih

Thank you

ありがとう

Tapadh leibh ཐུགས་རྗེ་ཆེ་།
Thanks in other languages

Dank u wel

Dziękuję Ci

Köszönöm

Shuaiqiang Liu, TU Delft 5 Summary and Outlook July 2, 2020 30 / 31



Backup: Stochastic collocation points

(e) Order-5
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