
Universal Static Hedging of Contingent Claims
Using Neural Networks

Shashi Jain 1

1Department of Management Studies,
Indian Institute of Science. Bangalore, India

Machine learning in quantitative finance and risk management
CWI, Amsterdam

2nd July 2020

Shashi Jain (Indian Institute of Science) CWI Workshop 1 / 27



Outline

1 Background

2 Dynamic vs Static Hedging

3 Bermudan Options

4 Regress Later With Neural Network

5 Results

Shashi Jain (Indian Institute of Science) CWI Workshop 2 / 27



Background

Motivation

1 Can we use neural networks to automate the choice of basis
functions used in the regression for American Monte Carlo ?

2 While working on (1) we stumbled on something else – in well
functioning markets, with certain assumptions, path-dependent
contingent claims can be hedged using portfolio of short maturity
options.

3 Not the first to realize (2), however, to the best of our knowledge,
our framework is the first to extend static hedging to
high-dimensional derivatives.

Shashi Jain (Indian Institute of Science) CWI Workshop 3 / 27



Background

Structure

Dynamic vs Static Hedging.
Pricing Bermudan options, with focus on the regress later
approach.
Regress later with Neural Network (RLNN)
Results

Shashi Jain (Indian Institute of Science) CWI Workshop 4 / 27



Dynamic vs Static Hedging

Dynamic Hedging

Black, Scholes and Merton showed that, under certain
assumptions, market risk of options can be eliminated by the
setting up of a dynamic hedge account.

The hedge account consists of money market account and position
in the underlyings on which the option is written.
The quantum of the positions in the underlyings is determined by
the Delta values of the option being hedged.
The position should ideally be updated within short time intervals, in
practice mostly EOD.

Dynamic hedging often breaks down when there are sharp
movements (jumps) in markets, or when the market faces liquidity
issues.
Unfortunately these are the precise moments where an effective
hedge is highly desired.

Shashi Jain (Indian Institute of Science) CWI Workshop 5 / 27



Dynamic vs Static Hedging

Static Hedging

Consider the payoff at T of a claim to be hedged (depicted in the
right hand side of the figure below).
A combination of long call and short put can replicate this payoff at
T .
If the two portfolios have the same value at T, then by no-arbitrage
argument (under appropriate assumptions), at any time prior to T ,
including t = 0, the value of the two portfolios should be exactly
the same. We have a perfect hedge, with no need for rebalancing!

Shashi Jain (Indian Institute of Science) CWI Workshop 6 / 27



Dynamic vs Static Hedging

Static Hedging

Theorem
( Carr and Wu [2013]) Under the Markovian and no-arbitrage assumptions,
the time-t value of a European option maturing at a fixed time T ≥ t relates to
the time-t value of a continuum of European call options at a shorter maturity
u ∈ [t ,T ] , by

V T
t (St ,K ) =

∫ ∞
0

w(Su)V u
t (St ,Su) dSu, u ∈ [t ,T ], (1)

for any St > 0 and t ≤ u. The weights w(Su) do not vary with St or t , and are
given by

w(Su) =
∂2

∂S2
u

V T
u (Su,K ) (2)

Any payoff can then be represented by a portfolio of continuum of
options with different strikes. For practical purposes you consider finite
set of options, obtained using numerical methods like Gaussian
quadrature.

Shashi Jain (Indian Institute of Science) CWI Workshop 7 / 27



Dynamic vs Static Hedging

Proof

For a single factor Markovian process , using the results of Breeden and
Litzenberger [1978], who show the risk neutral density can be equated to
the second strike derivative of the call option using the following relation:

P (ST | St ) = er(T−t) ∂2

∂S2
T

V T
t (St ,ST ) (3)

V T
t (St ,K ) = e−r(u−t)E

[
V T

u (Su,K ) | Ft
]
, u ∈ [t ,T ]

= e−r(u−t)
∫ ∞

0
V T

u (Su,K )P(Su|St ) dSu

=

∫ ∞
0

V T
u (Su,K )

∂2

∂S2
u

V u
t (St ,Su) dSu (4)

=

∫ ∞
0

V u
t (St ,Su)

∂2

∂S2
u

V T
u (Su,K ), (5)

Shashi Jain (Indian Institute of Science) CWI Workshop 8 / 27



Bermudan Options

The problem

Bermudan option value at t0, is given by,

Vt0(St0)

Bt0
= sup

τ∈T
E
[

h(Sτ )

Bτ

]
,

where T is the set of admissible times [t0 = 0, . . . , tm, . . . , tM = T ]

h(Xtm ): payoff in tm.

Bt = exp(
∫ t

0 rs ds), is risk-less saving accounts process, where rt
denotes the instantaneous risk-free rate of return.

Shashi Jain (Indian Institute of Science) CWI Workshop 9 / 27



Bermudan Options

Dynamic Programming Formulation

In order to compute the option value, it is necessary to compute the
early-exercise policy.

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

����������������

s

T

0

0
s

K

Mm+1m

t

0

At the terminal time the option value is given by,

VT (ST ) = max(h(ST ),0). (6)

The Bermudan option value at time tm−1 and state Stm−1 is given by

Vtm−1 (Stm−1 ) = max(h(Stm−1 ),Qtm−1 (Stm−1 )). (7)

The continuation value Qtm−1 , is :

Qtm−1 (Stm−1 ) = Btm−1E
[

Vtm (Stm )

Btm
| Stm−1

]
. (8)

Shashi Jain (Indian Institute of Science) CWI Workshop 10 / 27



Regress Later With Neural Network

Regress Later With Neural Network (RLNN)

The algorithm begins by generating N independent copies of
sample paths, {St0 , . . . ,StM}.
The method then computes the value of the contingent claim at
terminal time as VtM (StM ) = max(h(StM ),0).
The following steps are then employed for each monitoring date,
tm, m ≤ M, recursively moving backwards in time, starting from tM :
Assume that Ṽtm (Stm (n)), n = 1, . . . ,N, our estimates for
Vtm (Stm (n)), are known.

Shashi Jain (Indian Institute of Science) CWI Workshop 11 / 27



Regress Later With Neural Network

RLNN continued

Regress Later: In this step a parametrized value function
G̃ : Rd × RNp 7→ R, is computed, where βtm ∈ RNp is a vector of
free parameters.
The objective is to choose for each tm, a parameter vector βtm , so
that

G̃(Stm , βtm ) = Ṽtm (Stm ).

Compute Continuation Value: The continuation values for the
sample points Xtm−1(n), n = 1, . . . ,N are then approximated by,

Q̂tm−1

(
Xtm−1(n)

)
= Btm−1E

[
Ṽtm (Stm )

Btm
| Stm−1(n)

]

≈ Btm−1E

[
G̃βtm (Stm )

Btm
| Stm−1(n)

]
(9)

Shashi Jain (Indian Institute of Science) CWI Workshop 12 / 27



Regress Later With Neural Network

RLNN continued

We need to ensure that G̃(Stm , βtm )

a Is flexible enough to approximate Ṽtm (Stm ) to arbitrary accuracy

b A closed form conditional expectation E
[

G̃βtm (Stm )
Btm

| Stm−1 (n)
]

can be
obtained.

By the universal approximation theorem, a neural network with a
single hidden layer and sufficiently large number of neurons can
approximate any continuous function over a compact set arbitrarily
well (see Hornik et al. [1989]). We therefore choose as our
approximation architecture at tm a feed-forward network
G̃β : Rd → R with single hidden layer.
While the single hidden layered neural network satisfies the
criterion (a), (b) is ensured by a specific choice of the activation
function.

Shashi Jain (Indian Institute of Science) CWI Workshop 13 / 27



Regress Later With Neural Network

The network architecture

We choose as our approximation architecture at tm a feed-forward
network G̃β : Rd → R of the form

G̃βtm := ψ ◦ A2 ◦ ϕ ◦ A1

where A1 : Rd → Rp and A2 : Rp → R are affine functions of the form,

A1(x) = W1x + b1 for x ∈ Rd , W1 ∈ Rp×d ,b1 ∈ Rp,

and
A2(x) = W2x + b2 for x ∈ Rp, W2 ∈ R1×p,b2 ∈ R.

p is the number of neurons used in the hidden layer.

Shashi Jain (Indian Institute of Science) CWI Workshop 14 / 27



Regress Later With Neural Network

Architecture continued

ϕ : Rj → Rj , j ∈ N is the component-wise ReLU activation function
given by:

ϕ(x1, . . . , xj) :=
(
max(x1,0), . . . ,max(xj ,0)

)
,

while ψ : Rj → Rj , j ∈ N is the component-wise linear activation
function given by:

ψ(x1, . . . , xj) :=
(
x1, . . . , xj

)
.

βtm ∈ RNp is chosen to minimize the following mean squared error.

βtm = argmin
βtm

(
1
N

N∑
n=1

(
Ṽtm (Stm (n))− G̃βtm (Stm (n))

)2
)
, (10)

where Stm (n), n = 1, . . . ,N now constitute the set of training
points.

Shashi Jain (Indian Institute of Science) CWI Workshop 15 / 27



Regress Later With Neural Network

Interpretation of the first layer

The outcome of the first hidden layer with a choice of p neurons
can be represented as

o = ϕ (W1x + b1) , x ∈ Rd , W1 ∈ Rp×d ,b1 ∈ Rp,

where ϕ : Rp → Rp,p ∈ N is the component-wise ReLU activation
function.
Each of the p elements of o := {o1, . . . ,op} therefore has the form,

oi = max

 d∑
j=1

wijxj + bi1,0

 ,

the i th neuron, where i = 1, . . . ,p, has the form of the payoff of an
arithmetic basket option with weights wij , j = 1, . . . ,d and strike
bi1, written on the underlying x := {x1, . . . , xd}.

Shashi Jain (Indian Institute of Science) CWI Workshop 16 / 27



Regress Later With Neural Network

Interpretation of the second layer

The second hidden layer performs the following operation:

y =

( p∑
i=1

ωioi

)
+ b2, where, W2 := {ω1, . . . , ωp}, (11)

which can be seen as determining the weights of the p basket
options you need to hold in your portfolio.
The amount you need to invest in the risk free asset is given by
the bias of the second hidden layer, i.e. b2.

Shashi Jain (Indian Institute of Science) CWI Workshop 17 / 27



Regress Later With Neural Network

Continuation Value

Once G̃βtm (Stm ), has been estimated the continuation value at any
time t between [tm−1, tm], can be approximated as the expectation
of G̃βtm (Stm ), give Ft .

As G̃βtm (Stm ), is the aggregated payoff of portfolio of arithmetic
basket options, its conditional expectation at t is the corresponding
aggregated value of the corresponding European basket options.
In the case of GBM process, if the objective is pricing (rather than
hedging), a neat closed form solution for the continuation value is
obtained if we work with G̃βtm (log(Stm )), rather than G̃βtm (Stm ).

Shashi Jain (Indian Institute of Science) CWI Workshop 18 / 27



Regress Later With Neural Network

Universal Static Hedging

G̃(Stm , βtm ), is the aggregated payoff of portfolio of p arithmetic
basket options that mature at tm.
By universal approximation theorem, for sufficiently large value of
p, G̃(Stm , βtm ), can fit any continuous compact function in Rd ,
including Ṽtm (Stm ).

As G̃(Stm , βtm ), can replicate the option value at Vtm , under
Markovian and no-arbirtage assumption, G should replicate V any
time between (tm−1, tm].

The convergence of the method is discussed in detail in
Lokeshwar et al. [2019].

Shashi Jain (Indian Institute of Science) CWI Workshop 19 / 27



Regress Later With Neural Network

Upper Bounds

Haugh and Kogan Haugh and Kogan [2004] proposed the dual
formulation for pricing Bermudan options. For an arbitrary adapted
super-martingale processMt , it follows that,

Vt0 (Xt0 ) = sup
τ

E
[

hτ

Bτ

]
= sup

τ
E
[

hτ

Bτ
+Mτ −Mτ

]
≤ Mt0 + sup

τ
E
[

hτ

Bτ
−Mτ

]
≤ Mt0 + E

[
max

t

(
ht

Bt
−Mt

)]
.

The dual problem is to minimize the upper bound with respect to all
adapted super-martingale processes, i.e.,

V t0 (Xt0 ) = inf
M∈Π

(
Mt0 + E

[
max

t

(
ht

Bt
−Mt

)])
, (12)

where Π is the set of all adapted super-martingale processes.Shashi Jain (Indian Institute of Science) CWI Workshop 20 / 27



Regress Later With Neural Network

Upper bound continued

With,Mt0 = 0, we construct a martingale process as:

Mtm (n) =
m−1∑
i=0

[
G̃βti+1

(
Sti+1 (n)

)
Bti+1

− Q̂ti (Xti (n))

Bti

]
(13)

The upper bound, V t0 , is then given by

V t0 (Xt0 ) = E
[

max
t

(
ht

Bt
−Mt

)]
=

1
NL

NL∑
n=1

max
tm

(
h(Xtm (n))

Btm
−Mtm (n)

)
, tm ∈ [t0, . . . , tM ]

Unlike regress now schemes, we don’t need sub-simulation to estimate
Q̂ti , as we know the closed form conditional expectation of G̃βti+1 is Q̂ti .

Shashi Jain (Indian Institute of Science) CWI Workshop 21 / 27



Results

Hyperparameters

We use Adam Kingma and Ba [2014] with initial leaning rate as
10−3, as the optimizer for the weights update in the mini-batch
gradient ascent algorithm.
The batch size is chosen as one tenth of the total training points.
For training the neural network corresponding to the monitoring
date tM = T , we initialize the weights and biases randomly with
uniform random variables .

Shashi Jain (Indian Institute of Science) CWI Workshop 22 / 27



Results

Hyper parameters continued

As Ṽtm−1 ≈ Ṽtm we transfer the final weights obtained from training
the network for monitoring date tm as the initial weights for training
the network at tm−1.

In order to avoid over-fitting, we divide the training points into
training set and validation set, in the ratio 0.7 to 0.3 respectively
and use the mean squared error of the validation set as the
early-stopping criteria with a patience of 6 epochs.
We normalize the initial asset price to 1 and appropriately adjust
the strike. This restricts the domain in which the network needs to
be trained, something we found especially beneficial while training
the network for max options.
We use 50,000 training points generated using the GBM process
under the risk-neutral measure.

Shashi Jain (Indian Institute of Science) CWI Workshop 23 / 27



Results

Max Option (GBM Process)
S0 RLNN RLNN RLNN RLNN Literature Binomial

Direct est. (s.e.) Lower Bound. (s.e.) Upper Bound (s.e.) 95% CI 95% CI
d=2 assets:
90 8.078 8.071 8.086 [8.062, 8.086] [8.053, 8.082] 8.075

(0.016) (0.025) (0.0003)
100 13.902 13.905 13.924 [ 13.894, 13.924] [13.892, 13.934] 13.902

(0.017) (0.028) (0.0004)
110 21.346 21.352 21.353 [ 21.341, 21.353] [21.316, 21.359] 21.345

(0.010) (0.029) (0.0002)
d=3 assets:
90 11.282 11.295 11.303 [11.287, 11.303] [11.265, 11.308] 11.29

(0.017) (0.030) (0.001)
100 18.702 18.688 18.715 [18.677, 18.715] [18.661, 18.728] 18.69

(0.022) (0.025) (0.001)
110 27.572 27.554 27.592 [27.545, 27.592] [27.512, 27.663] 27.58

(0.021) (0.023) (0.001)
d=5 assets:
90 16.680 16.636 16.743 [16.624, 16.744] [16.620, 16.653]

(0.063) (0.044) (0.003)
100 26.177 26.141 26.268 [26.125, 26.270] [26.115, 26.164]

(0.062) (0.034) (0.002)
110 36.815 36.760 36.909 [36.744, 36.909] [36.710, 36.798]

(0.042) (0.045) (0.003)

Table: Bermudan option values for a call on the maximum of 2, 3 and 5 assets. For
the two asset case we use 256 hidden units, for three assets 512 hidden units, while
for five assets we use 1024 hidden units. The reference confidence interval for the two
and three asset case are taken from Andersen and Broadie (2004), and for the five
asset case from Broadie and Cao (2009).Shashi Jain (Indian Institute of Science) CWI Workshop 24 / 27



Results

Convergence with neurons

50 100 150 200 250

Hidden Nodes

0.1385

0.139

0.1395

0.14

0.1405

0.141

0.1415
O

p
ti

o
n

 V
a

lu
e

RLNN Estimator

LB

UB

Reference

Figure: The upper and lower bound values for a Bermudan call on the maximum of
two assets when an increasing number of hidden units are used in the first layer of
RLNN. The reference value is obtained from a binomial tree and is equal to 13.902.
Also plotted are the corresponding direct RLNN estimator values, i.e. Ṽt0 .

Shashi Jain (Indian Institute of Science) CWI Workshop 25 / 27



Results

Questions

Details on some of the aspects covered here can be found in
Lokeshwar et al. [2019].

Shashi Jain (Indian Institute of Science) CWI Workshop 26 / 27



Results

References

Douglas T Breeden and Robert H Litzenberger. Prices of
state-contingent claims implicit in option prices. Journal of business,
pages 621–651, 1978.

Peter Carr and Liuren Wu. Static hedging of standard options. Journal
of Financial Econometrics, 12(1):3–46, 2013.

Martin B Haugh and Leonid Kogan. Pricing american options: a duality
approach. Operations Research, 52(2):258–270, 2004.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Vikranth Lokeshwar, Vikram Bhardawaj, and Shashi Jain. Neural
network for pricing and universal static hedging of contingent claims.
Available at SSRN 3491209, 2019.

Shashi Jain (Indian Institute of Science) CWI Workshop 27 / 27


	Background
	Dynamic vs Static Hedging
	Bermudan Options
	Regress Later With Neural Network
	Results
	References

