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Motivation from stochastic control

Stochastic control problem

Dynamical system described by an SDE referred to as the State equation

X u
t = x0 +

∫ t

0
b̄(t,X u

t , ut)dt +
∫ t

0
σ̄(t,X u

t , ut)dWt .

X = (Xt)t∈[0,T ] state of the system, u = (ut)t∈[0,T ] control of the system, taking on
values in Rd and U ⊂ Rℓ, respectively.

To measure performance of the control, a cost functional is used

Ju(t, x) = Et,x

[ ∫ T

t

f̄ (t,X u
t , ut)dt + g(X u

T )

]
.

The control problem is to find a control u ∈ U[0,T ](:= set of admissible controls) such
that the cost functional is minimized.
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Motivation from stochastic control

Value function and HJB equation

If infimum is attainable, the value function, V , satisfies

V (t, x) ∈ inf
u∈U[t,T ]

Ju(t, x).

Under mild conditions, the value function satisfies a Hamilton–Jacobi–Bellman equation,
which is a non-linear parabolic PDE given by{

∂V
∂t

(t, x) +H(t, x ,DxV (t, x),D2
xV (t, x)) = 0, (t, x) ∈ [0,T )× Rn,

V (t, x) = g(x), (t, x) ∈ {T} × Rn,

where the Hamiltonian, H, is given by

H(t, x , p, q) = inf
v∈U

[1
2
tr{σ̄σ̄⊤(t, x , v)q}+ b̄(t, x , v)⊤p + f̄ (t, x , v)

]
,

for all p ∈ Rd and q ∈ S
d
+.

By inspection, feedback control on the form u∗
t = u∗(t,X u∗

t ,DxV (t,X u∗
t ),D2

xV (t,X u∗
t )

)
.
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Motivation from stochastic control

Quasi-linear HJB equation

Assuming no control in the diffusion coefficient, the HJB-equation becomes quasi-linear{
∂V
∂t

(t, x) + 1
2 tr{σ̄σ̄⊤D2

xV }(t, x) + H̄(t, x ,DxV (t, x)) = 0, (t, x) ∈ [0,T )× Rn,

V (t, x) = g(x), (t, x) ∈ {T} × Rn,
(1)

where the reduced Hamiltonian, H̄, is given by

H̄(t, x , p) = inf
v∈U

[
b̄(t, x , v)⊤p + f̄ (t, x , v)

]
,

for all p ∈ Rd .

Feedback control takes on reduced form u∗
t = u∗(t,X u∗

t ,DxV (t,X u∗
t ))

)
.

Assumption: From now on, assume (1) has a solution V , with sufficiently many bounded
derivatives.
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Motivation from stochastic control

FBSDE

Assuming σ̄ is uniformly invertible, Itô’s lemma gives the FBSDE{
Xt = x0 +

∫ t

0 b(s,Xs ,Zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = g(XT ) +
∫ T

t
f (s,Xs ,Zs)ds −

∫ T

t
ZsdWs ,

(2)

where

Zt = DxV (t,Xt)
⊤σ(t,Xt),

Yt = V (t,Xt),

where b(t,Xt ,Zt) := b̄(t,Xt , u
∗), f (t,Xt ,Zt) := f̄ (t,Xt , u

∗) and σ := σ̄.

The solution to (2) is the triple (X ,Y ,Z) of adapted, square integrable processes.
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Reformulation of continuous problem

Reformulation for deep BSDE solver

The Deep BSDE solver1 uses the follwing reformulation of a FBSDE
inf

y0,(zt )t∈[0,T ]

E|YT − g(XT )|2, subject to

Xt = x0 +
∫ t

0 b(s,Xs , zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = y0 −
∫ t

0 f (s,Xs , zs)ds +
∫ t

0 zsdWs ,

(3)

compared to {
Xt = x0 +

∫ t

0 b(s,Xs ,Zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = g(XT ) +
∫ T

t
f (s,Xs ,Zs)ds −

∫ T

t
ZsdWs ,

(4)

Motivation:
1 A solution to (4) solves (3);
2 By wellposedness of the FBSDE, the solution is unique.

1A. Jentzen et. al. Solving high-dimensional partial differential equations using deep learning.
Proceedings of the National Academy of Sciences 115.34 (2018): 8505-8510.
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Reformulation of continuous problem

Our first reformulation

When there is a one-to-one mapping between u∗
t and Zt (usually when ℓ = d) we use

inf
(zt )t∈[0,T ]

E
[
ŷ0(z)

]
, subject to

ŷ0(z) = g(XT ) +
∫ T

0 f (t,Xt , zt)dt −
∫ T

0 ztdWt , Y0 = E[ŷ0(z)],

Xt = x0 +
∫ t

0 b(s,Xs , zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = Y0 −
∫ t

0 f (s,Xs , zs)ds +
∫ t

0 zsdWs .

(5)

compared to {
Xt = x0 +

∫ t

0 b(s,Xs ,Zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = g(XT ) +
∫ T

t
f (s,Xs ,Zs)ds −

∫ T

t
ZsdWs ,

(6)

Motivation:
1 There is a one-to-one map between u∗

t and Zt implying that we can optimize z
instead of u. Therefore, a solution to (6) solves (5);

2 By wellposedness of the FBSDE, the solution is unique.

8 / 22



Reformulation of continuous problem

Our second reformulation

When there is not a one-to-one mapping between u∗
t and Zt (usually when ℓ < d).

Problem: No longer uniquness of a minimizer in previuos formulation.

Solution: Add an extra term to the objective function.
inf

(zt )t∈[0,T ]

E[ŷ0(z)] + λVar[ŷ0(z)], subject to

ŷ0(z) = g(XT ) +
∫ T

0 f (t,Xt , zt)dt −
∫ T

0 ztdWt , Y0 = E[ŷ0(z)]

Xt = x0 +
∫ t

0 b(s,Xs , zs)ds +
∫ t

0 σ(s,Xs)dWs ,

Yt = Y0 −
∫ t

0 f (s,Xs , zs)ds +
∫ t

0 zsdWs .

(7)

Motivation:
Possible to show that Var[ŷ0(z)] = E|g(XT )− YT |2, implying that this formulation is a
combination of previous two.
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Discrete/fully implementable formulations

From continuous to discrete formulations

Want to approximate FBSDE with a time discrete counterpart. Have seen equivalence
between FBSDE and continuous variational problems.

Question: What happens to the reformulations in a time discrete setting?
Answer:

(Discrete counterpart of) variational formulation used for deep BSDE solver
converges for weakly coupled FBSDEs. Not easy to show convergence in the
strongly coupled case;

Some empirical evidence indicates no convergence;

(Discrete counterparts of) our reformulations converges with mild assumptions also
for strongly coupled FBSDEs in Y0.

Under additional assumptions proof that entire FBSDE converges;

Empirical convergence for all problems investigated.
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Discrete/fully implementable formulations

Equidistant time grid π := {0 = t0, t1, . . . , tN = T}, with h = tn+1 − tn and Brownian
increments ∆Wn = Wn+1 −Wn.
Time discrete formulation:

inf
ȳ0,{z̄k})k∈{0,1,...,n−1}

E|ȲN − g(X̄N)|2, subject to

X̄n = x0 +
∑n−1

k=0 b(tk , X̄k , z̄k)h +
∑n−1

k=0 σ(tk , X̄k)∆Wk ,

Ȳn = ȳ0 −
∑n−1

k=0 f (tk , X̄k , z̄k)h +
∑n−1

k=0 z̄k∆Wk .

(8)

To investigate convergence:
1 Fix ȳ0 ∈ R;
2 Minimize the objective in (8) (only over z̄0, z̄1, . . . , z̄N−1, since ȳ0 fixed);
3 Explore the values of the objective function for different ȳ0 (one optimization per ȳ0).

If convergence, then for small h, ȳ0 ≈ Y0 should yield the smallest value of the objective
function.

Is this what we observe empirically? For nice and linear problems, yes. Otherwise, No!
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Discrete/fully implementable formulations

Figure: Left: Simple linear problem, Y0 = 1.27. Right: Non-linear problem, Y0 = 0.79.

Left: Y0 is close to the global minimum of the objective function → convergence!

Right: Y0 is close to a local minimum of the objective function. But not close to global
minimum → No convergence!
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Discrete/fully implementable formulations

Figure: True Y0 = 1.27 Left: ȳ0 = 5. Right: ȳ0 = 2.

Conclusion:
Possible to control system to ”almost satisfy” terminal condition for many different ȳ0

Therefore, no convergence.
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Discrete/fully implementable formulations

Discussion

Why should our algorithms work better?

Using mathematical structure from the specific problem leads to fewer entities to
approximate;

Loss surface of objective function seems to be nice and monotonic → easy to
optimize;

Disdvantage of our algorithms:

While deep BSDE solver is (at least conceptually) applicable for all FBSDEs, our
algorithm is applicable only for FBSDEs steming from stochastic control problems.
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Numerical experiments

Setup of numerical experiments

All optimization problems are approximated with the help of ANNs, but any function
approximator efficient enough could be used;

In the following examples, we have analytical solutions available to compare with;

For each solution component, X ,Y and Z we compare to analytical counterpart in
strong and weak sense;

One problem with control in each spatial dimension (d = ℓ) → Algorithm 1;

One problem with control in each spatial dimension (d > ℓ) → Algorithm 2.
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Numerical experiments

Strong and weak approximations of X for ℓ = d = 2

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of Y for ℓ = d = 2

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of Z for ℓ = d = 2

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of X for ℓ = 2 and d = 6

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of Y for ℓ = 2 and d = 6

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Strong and weak approximations of Z for ℓ = 2 and d = 6

Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Numerical experiments

Thanks for your attention!
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