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Motivation from stochastic control

Stochastic control problem

Dynamical system described by an SDE referred to as the State equation
t t
X! = xo +/ E(t,Xt”,ut)dt—i—/ a(t, X¢', ur)dW.
0 0

X = (Xt)tcpo, 1) state of the system, u = (u):cqo, 7] control of the system, taking on
values in RY and U C RY, respectively.

To measure performance of the control, a cost functional is used

;
J(t, x) :]Et,x{/ f(t,Xt",ut)dt+g(X7”—)}
t

The control problem is to find a control u € Ujp 77(:= set of admissible controls) such
that the cost functional is minimized.
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Motivation from stochastic control

Value function and HJB equation

If infimum is attainable, the value function, V/, satisfies

V(t,x) € inf J(t,x).

ueUy 1)

Under mild conditions, the value function satisfies a Hamilton—Jacobi—Bellman equation,
which is a non-linear parabolic PDE given by

Y (t,x) + H(t,x,DxV(t,x),D2V(t,x)) =0, (t,x)€[0,T)xR",
V(t,x) = g(x), (t,x) € {T} xR",

where the Hamiltonian, 7, is given by

1 - _
H(t,x, p,q) = [Etr{&ET(t,x, v)q} + b(t, x,v) " p+ F(t,x, v)],

inf
velU
forall pc RY and g € $9.

By inspection, feedback control on the form uf = u*(t, XY, DV(t, XE), D2V(t, X~ ))-
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Motivation from stochastic control

Quasi-linear HJB equation

Assuming no control in the diffusion coefficient, the HJB-equation becomes quasi-linear

{i%,‘{(t, x) + 2tr{55 "' DZV}(t,x) + H(t,x,DxV(t,x)) =0, (t,x)€[0,T)xR", 1)

V(t,x) = g(x), (t,x) € {T} xR",

where the reduced Hamiltonian, %, is given by
’)’-_l(t7x7 p) = |21L [13(1“7 X, v)Tp + f(t,x7 v)]7
for all p € RY.
Feedback control takes on reduced form u; = u*(t, X", D V(t, X" ))).

Assumption: From now on, assume (1) has a solution V/, with sufficiently many bounded
derivatives.
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FBSDE

Assuming & is uniformly invertible, It6's lemma gives the FBSDE

{xt =xo+ i b(s Xs, Zs)ds + [} o(s, xs)dws, @

Yi=g XT)—|—f f(s, X, Zs)ds — f ZdWs,
where

Z: =D V(t, Xe) " o(t, X)),
Yf = V(t7 Xt)7

where b(t, X;, Z;) = b(t, X¢, u™), f(t,Xs, Z¢) = F(t, X¢, ™) and 0 := 5.

The solution to (2) is the triple (X, Y, Z) of adapted, square integrable processes.
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Reformulation for deep BSDE solver

The Deep BSDE solver! uses the follwing reformulation of a FBSDE

inf  E|Yr —g(X7)]?, subject to

¥0,(2t)te(o, 7]
Xe = xo + [§ b(s, Xs, z:)ds + [ o(s, Xs)d W, (3)
Ye=yo— [y f(5,Xs,2:)ds + [ z:d W,

compared to

4
Yo =g(X7) + [ (s, Xs, Z)ds — [T Z.dW, )

{xt =x0+ [} b(s X, Z5)ds + [} (s, Xs)d W,
Motivation:
@ A solution to (4) solves (3);

@ By wellposedness of the FBSDE, the solution is unique.

LA. Jentzen et. al. Solving high-dimensional partial differential equations using deep learning.
Proceedings of the National Academy of Sciences 115.34 (2018): 8505-8510.
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Reformulation of continuous problem

Our first reformulation

When there is a one-to-one mapping between v and Z; (usually when ¢ =

inf  E[jo(z)], subject to

(zt)eefo, 7]

Jo(z) = g(Xr) + [, F(t, X, Zt)dt — [ 2dWs, Yo = E[yo(2)],

Xe = x0+ [y b(s, Xs, z:)ds + [; (s, Xs)d W,
=Yo — [, f(5,Xs, z5)ds + [ zedW.

compared to
Xe = xo + [y b(s, X, Zs)ds + [5 o(s, Xs)dWs,
Yi=g XT)—i—f f(s,Xs, Zs)ds — f Zd W,

Motivation:

d) we use

(5)

(6)

@ There is a one-to-one map between uf and Z; implying that we can optimize z

instead of u. Therefore, a solution to (6) solves (5);

@ By wellposedness of the FBSDE, the solution is unique.
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Reformulation of continuous problem

Our second reformulation

When there is not a one-to-one mapping between ui and Z; (usually when ¢ < d).

Problem: No longer uniquness of a minimizer in previuos formulation.

Solution: Add an extra term to the objective function.

inf  E[§o(z)] + A Var[fo(2)], subject to

(2t)eefo, 7]
Yo(z) = g(X7) + [y f(t;Xe,z)dt — [ zdWs, Vo = E[jo(2)] )
X = xo + fot b(s, Xs, z5)ds + fot o(s, Xs)dWs,
Ye= Yo — fo (s, Xs, 25)ds + [ zdW.
Motivation:

Possible to show that Var[§o(z)] = E|g(X7) — Y7|*, implying that this formulation is a
combination of previous two.
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Discrete/fully implementable formulations

From continuous to discrete formulations

Want to approximate FBSDE with a time discrete counterpart. Have seen equivalence
between FBSDE and continuous variational problems.

Question: What happens to the reformulations in a time discrete setting?

Answer:

o (Discrete counterpart of) variational formulation used for deep BSDE solver
converges for weakly coupled FBSDEs. Not easy to show convergence in the
strongly coupled case;

@ Some empirical evidence indicates no convergence;

o (Discrete counterparts of) our reformulations converges with mild assumptions also
for strongly coupled FBSDEs in Yb.

@ Under additional assumptions proof that entire FBSDE converges;

@ Empirical convergence for all problems investigated.
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Discrete/fully implementable formulations

Equidistant time grid 7 := {0 = to, t1,...,ty = T}, with h = to41 — t, and Brownian

increments AW, = W11 — W,.
Time discrete formulation:
inf E|Yn — g(Xn)|?, subject to
¥0:{2ckefo,1,...,n—1}
)_<n :Xo—FZZ;é b(tlu)_(kyzk)h"'ZZ;; a’(tk,)_(k)AWk, (8)
Y/n = Vo — Z:;g f(tk7 )_<k, Zk)h + ZZ;O Zi A W.

To investigate convergence:
O Fix jo € R;
@ Minimize the objective in (8) (only over Z, z1, . .
@ Explore the values of the objective function for different y (one optimization per jo).

., Zn—1, Since yp fixed);

If convergence, then for small h, y = Y, should yield the smallest value of the objective

function.
Is this what we observe empirically? For nice and linear problems, yes. Otherwise, No!
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Discrete/fully implementable formulations
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Figure: Left: Simple linear problem, Yy = 1.27. Right: Non-linear problem, Yy = 0.79.
Left: Yo is close to the global minimum of the objective function — convergence!

Right: Yj is close to a local minimum of the objective function. But not close to global
minimum — No convergence!
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Discrete/fully implementable formulations
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Figure: True Yo = 1.27 Left: yp = 5. Right: yy = 2.

Conclusion:

Possible to control system to "almost satisfy” terminal condition for many different yp
Therefore, no convergence.
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Discrete/fully implementable formulations

Discussion

Why should our algorithms work better?
@ Using mathematical structure from the specific problem leads to fewer entities to
approximate;
@ Loss surface of objective function seems to be nice and monotonic — easy to

optimize;

Disdvantage of our algorithms:

@ While deep BSDE solver is (at least conceptually) applicable for all FBSDEs, our
algorithm is applicable only for FBSDEs steming from stochastic control problems.

14 /22



Setup of numerical experiments

@ All optimization problems are approximated with the help of ANNs, but any function
approximator efficient enough could be used;

In the following examples, we have analytical solutions available to compare with;

For each solution component, X, Y and Z we compare to analytical counterpart in
strong and weak sense;

One problem with control in each spatial dimension (d = ¢) — Algorithm 1;

One problem with control in each spatial dimension (d > ¢£) — Algorithm 2.
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o Ml orons |
Strong and weak approximations of X for / = d = 2
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o Ml orons |
Strong and weak approximations of Y for £ = d =2
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Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Strong and weak approximations of Z for
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Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Strong and weak approximations of X for / =2 and d = 6
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Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Strong and weak approximations of Y for { =2 and d = 6
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Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Strong and weak approximations of Z for f =2 and d = 6
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Figure: Average of solutions and a single solution path compared to their analytical counterparts.
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Thanks for your attention!
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