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Overview

Overall goal and philosophy for machine learning in risk management:
Only use machine learning when we can truly benefit from it;
If possible, divide the problem into sub-problems, identify computational
bottlenecks, and attack them with machine learning;
Use as much mathematical structure as possible;
Example: Stochastic control problems.

What have been done so far?
Two papers related to CVA of high-dimensional derivatives with early exercise
features. The first for a single derivative1, and the second for a portfolio of
derivatives2.

What are the current topics?
Algorithmic trading (main subject of this presentation);
Accurate computations of derivative sensitivities in a BSDE setting (Together with a
former MSc student supervised by Prof. Oosterlee and myself);
Hedging by proxy of non-tradeable asset together with Dr. Koerber and Belfius
(discussion phase).

1Kristoffer Andersson and Cornelis Oosterlee. “A deep learning approach for computations of exposure
profiles for high-dimensional Bermudan options”. In: (Mar. 2020).

2Kristoffer Andersson and Cornelis W Oosterlee. “Deep learning for CVA computations of large
portfolios of financial derivatives”. In: arXiv preprint arXiv:2010.13843 (2020).
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Background - algorithmic trading

Algorithmic trading

Different types of algorithmic trading (High Frequency Trading a subset of all types):
1 Statistical arbitrage

Look for anomalies in the market, e.g., pairs trading;
2 Market making

Provides liquidity and earns the spread (buy low - sell high and earn the difference);
3 Optimal execution (subject of this talk)

How to optimally execute a large order? e.g., a pension fund who wants to liquidate
a large position of stocks.

Aim to find optimal balance between:
Sell fast → bad price low market risk
Sell slowly → good price high market risk.
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Background - algorithmic trading

Market impact - motivation

Why not execute the trade immediately at the spot price?

Answer: Large trades affect the market, often in an unfavorable direction.

Two kinds of market impact:

Temporary Market Impact (TMI)
Liquidity dries out. Short term effect since the market re-balance quickly. Always in
unfavorable direction.

Permanent Market Impact (PMI)
Signaling effect. For instance, if Warren Buffet increases his position in Apple, the
stock price is likely to increase.

Active field of research, building upon3

3Robert Almgren and Neil Chriss. “Optimal execution of portfolio transactions”. In: Journal of Risk 3
(2001), pp. 5–40.
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Background - algorithmic trading

Limit Order Book (LOB)

Figure: A time snapshot of Left: The LOB, and Right: Temporary Market Impact (TMI) for
different trade volumes.
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Background - algorithmic trading

Temporary Market Impact (TMI)

Figure: A time snapshot of Left: 20 different time snap shots of TMI, and Right: Average and
10/90-percentiles of TMI on a specific day.
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Modelling

Notation and setup

Assume a liquidation scheme, aiming to optimally sell Q0 shares on the time interval
[0,T ].

Notation:

Asset inventory - (Qt)t∈[0,T ] (number of assets in possession);

Asset process - (St)t∈[0,T ] (observable asset price);

Instantaneous execution rate - (αt)t∈[0,T ];

Asset process (including PMI) given by

dSt = µ(t, St , αt)dt + σ̄(t, St , αt)dBt , t ∈ [0,T ]; S0 = s0.

Trading rate, time derivative of inventory

dQt

dt
= −αt .

Due to TMI, we only receive
S̃t = St − φ(t, St , αt).
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Modelling

Optimization problem

Implementation shortfall given by

ηT =

Initial value︷ ︸︸ ︷
Q0S0 −

∫ T

0
αt S̃tdt︸ ︷︷ ︸

Realized value

− QTST︸ ︷︷ ︸
Terminal value

.

Typical objective function: Mean-Variance

J(α) = E[ηT ] + λVar[ηT ]

� Straight forward economic interpretation, close to how performance is measured in
practice;

� Analytical solutions, rarely available;

� Optimal strategy time-inconsistent → No natural way to formulate the dynamic
programming principle → No natural way to construct an HJB-equation and
associated system of FBSDEs.
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Stochastic control

Strategy

Our approach:
1 Reformulate the problem. Want to have a state equation of the form

X = (Q, S , η)T ;
- Trading decisions based on: i) size of inventory, ii) current asset prize, and iii)
previous performance.

2 Use the stochastic version of Pontryagin’s maximum principle to formulate the
adjoint equation (which gives sufficient conditions for optimality of the original
problem);

- Adjoint equation is a coupled FBSDE of McKean-Vlasov (or Mean-field) type.
3 Use modern machine learning techniques to solve the adjoint equation.

- Make use of recently developed machine learning algorithms for FBSDEs.4,5

4Jiequn Han, Arnulf Jentzen, and Weinan E. “Solving high-dimensional partial differential equations
using deep learning”. In: Proceedings of the National Academy of Sciences 115.34 (2018), pp. 8505–8510.

5René Carmona and Mathieu Laurière. “Convergence Analysis of Machine Learning Algorithms for the
Numerical Solution of Mean Field Control and Games: II–The Finite Horizon Case”. In: arXiv preprint
arXiv:1908.01613 (2019).
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Stochastic control

Reformulation of state equation

Dynamics of underlying inventory and asset given by:

dQt = −αtdt; Q0 = q0,

dSt = µ(t, St , αt)dt + σ̄(t, St , αt)dBt ; S0 = s0.

Previous performance, described by ”time integrated” version of implementation shortfall

dηt = −[Qtµ(t, St , αt)− αtφ(t, St , αt)]dt − Qt σ̄(t, St , αt)dBt ; η0 = Q0S0 = q0s0.

Final version of state equation, X = (Q, S , η)T , given by

dXt = b(t,Xt , αt)dt + σ(t,Xt , αt)dWt , t ∈ [0,T ]; X0 = (q0, s0, q0s0)T ,

for appropriate b and σ and W = (B̃, B̄,B)T (dummy processes B̃, B̄).
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Stochastic control

Reformulation of objective function

Recall objective function
J(α) = E[ηT ] + λVar[ηT ].

Using Var[Y ] = E[Y 2]− (E[Y ])2 and dynamics of η gives

J(α) = E
[ ∫ T

0
f (t,Xt , αt)dt + λ(η2

t − (E[ηT ])2)

]
,

where f (t,Xt , αt) = −Qtµ(t, St , αt) + αtφ(t,St , αt).

Final adjustment:

J(α) = E
[ ∫ T

0
f (t,Xt , αt)dt + λ(η2

t − (E[ηT ])2) + γQ2
T︸︷︷︸

Penalizes terminal inventory

]
.
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Stochastic control Stochastic maximum principle

Final problem formulation

Problem formulation suitable for the Stochastic Maximum Principle (SMP)
dXt = b(t,Xt , αt)dt + σ(t,Xt , αt)dWt , t ∈ [0,T ]; X0 = x0 ∈ Rd , (State equation)

J(α) = E
[ ∫ T

0 f (t,Xt , αt)dt + λ(η2
t − (E[ηT ])2) + γQ2

T

]
, (Cost functional)

Find α ∈ A, such that J(α) is minimized. (Problem)

With A some space of admissible controls.

Hamiltonian given by

H(t, x , y , z , α) = b(t, x , α)T y + Tr(σσT (t, x , α)z) + f (t, x , α).

Adjoint equation given by

dŶt = −H ′
x(t, X̂t , Ŷt , Ẑt , α̂t)dt + ẐtdWt , t ∈ [0,T ]; ŶT =

 0
2γQ̂T

2λ(η̂T − E[η̂T ])

 .
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Stochastic control Stochastic maximum principle

Stochastic maximum principle

Theorem (necessary conditions)

Suppose some regularity conditions and that the state equation, X̂ = X α̂ is optimally
controlled by α̂ and (Ŷ , Ẑ) is a solution to the adjoint equation. Then for any ᾱ ∈ A,

H ′
α(t, X̂t , α̂t , Ŷt , Ẑt)(α̂t − ᾱt) ≥ 0, P− a.s. for all t ∈ [0,T ].

Theorem (Sufficient conditions)

Suppose some additional convexity assumptions. Then, if

H(t, X̄t , ᾱt , Ȳt , Z̄t) = inf
α∈A

H(t, X̄t , α, Ȳt , Z̄t), P− a.s. for all t ∈ [0,T ],

ᾱ is an optimal control and X̄ is the optimally controlled state equation.
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Stochastic control McKean-Vlasov FBSDEs

McKean-Vlasov FBSDE

System to solve:

dXt = b(t,Xt , αt)dt + σ(t,Xt , αt)dWt ; X0 = x0 ∈ Rd , (Forward SDE)

dYt = −H ′
x(t,Xt ,Yt ,Zt , αt)dt + ZtdWt ; YT =

 0
2γQT

2λ
(
ηT − E[ηT ]

)
 (Backward SDE)

H(t,Xt , αt ,Yt ,Zt) = infα∈A H(t,Xt , α,Yt ,Zt) (Opt. cond.);

Feedback-form of optimal control depend on forward SDE. With control in diffusion
term - (t, x , y , z) 7→ α, without control in diffusion term (t, x , y) 7→ α;

Coupled FBSDE (forward dynamics depend on Y and Z through α);

McKean-Vlasov type FBSDE (E[ηT ] in terminal condition of backward equation)
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Algorithms

Algorithms - discussion

What kinds of methods are used?
1 Analytical strategies

- Low flexibility on both asset dynamics and objective function (usually only minimizing
implementation shortfall).

2 PDE → Finite differences (elements)
- When a HJB-equation can be formulated;
- Requires the problem to be time-consistent → strong restrictions on objective function;
- More flexibility on asset dynamics, needs to be in low dimensions;

3 FBSDE → Neural networks
- High flexibility on both asset dynamics and objective function
- For time consistent problems reformulation through the dynamic programming

principle. For time inconsistent problems through the stochastic maximum principle;
- Mesh-free → scales good with dimensions;
- When SMP is used, high flexibility in the action space, e.g., can be a non-convex set,
such as the integers.
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Algorithms

Approximating FBSDEs with machine learning

Two most common types to approximate FBSDEs with neural networks:
Forward and global methods

- Euler-discretization in time, parametrization of Y0 and Z0,Z1, . . . ,ZN ;
- Loss function constructed to satisfy the terminal condition of the backward SDE.
- Global in the sense that optimization is done only once.

Backward and local methods
- No discretization-scheme in time;
- Approximates conditional expectations backwards in time using dynamic programming;
- Local in the sence that optimization is done at each time point.

Extension to MV-FBSDEs (of the type considered in this presentation):

An additional layer, since the law of the terminal state is included in the terminal
condition of the backward SDE;

Fixed point iteration until the law of the controlled terminal state converges.
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Algorithms

Thanks for your attention!
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