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Overview

Overall goal and philosophy for machine learning in risk management:
@ Only use machine learning when we can truly benefit from it;

o If possible, divide the problem into sub-problems, identify computational
bottlenecks, and attack them with machine learning;

@ Use as much mathematical structure as possible;

@ Example: Stochastic control problems.

What have been done so far?

@ Two papers related to CVA of high-dimensional derivatives with early exercise
features. The first for a single derivative®, and the second for a portfolio of
derivatives?.

What are the current topics?

o Algorithmic trading (main subject of this presentation);

@ Accurate computations of derivative sensitivities in a BSDE setting (Together with a
former MSc student supervised by Prof. Oosterlee and myself);

@ Hedging by proxy of non-tradeable asset together with Dr. Koerber and Belfius
(discussion phase).

IKristoffer Andersson and Cornelis Qosterlee. “A deep learning approach for computations of exposure
profiles for high-dimensional Bermudan options”. In: (Mar. 2020).
2Kristoffer Andersson and Cornelis W Oosterlee. “Deep learning for CVA computations of large
portfolios of financial derivatives”. In: arXiv preprint arXiv:2010.13843 (2020).
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Background - algorithmic trading

Algorithmic trading

Different types of algorithmic trading (High Frequency Trading a subset of all types):

@ Statistical arbitrage
Look for anomalies in the market, e.g., pairs trading;
@ Market making
Provides liquidity and earns the spread (buy low - sell high and earn the difference);
© Optimal execution (subject of this talk)
How to optimally execute a large order? e.g., a pension fund who wants to liquidate
a large position of stocks.

Aim to find optimal balance between:
Sell fast — bad price low market risk
Sell slowly — good price high market risk.
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Background - algorithmic trading

Market impact - motivation

Why not execute the trade immediately at the spot price?
Answer: Large trades affect the market, often in an unfavorable direction.

Two kinds of market impact:

o Temporary Market Impact (TMI)
Liquidity dries out. Short term effect since the market re-balance quickly. Always in
unfavorable direction.

o Permanent Market Impact (PMI)
Signaling effect. For instance, if Warren Buffet increases his position in Apple, the
stock price is likely to increase.

Active field of research, building upon®

3Robert Almgren and Neil Chriss. “Optimal execution of portfolio transactions”. In: Journal of Risk 3
(2001), pp. 5—-40.
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Limit Order Book (LOB)
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Figure: A time snapshot of Left: The LOB, and Right: Temporary Market Impact (TMI) for

different trade volumes.
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kground - algorithmic trading

Temporary Market Impact (TMI)
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Figure: A time snapshot of Left: 20 different time snap shots of TMI, and Right: Average and

10/90-percentiles of TMI on a specific day.
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Modelling

Notation and setup

Assume a liquidation scheme, aiming to optimally sell Qo shares on the time interval
[0, T].

Notation:
o Asset inventory - (Q:)icio, 7] (number of assets in possession);
o Asset process - (St):cpo,7] (observable asset price);

o Instantaneous execution rate - (out):cpo, 7);

Asset process (including PMI) given by
dSt = M(t, St,ozt)dt + 6’(t, 5t70[t)dBf, te [07 T], S() = S0.
Trading rate, time derivative of inventory

dQ:
dt

= —t.

Due to TMI, we only receive

§t = St — ¢(t, St, at).
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Modelling

Optimization problem

Implementation shortfall given by

Initial value
~ =~ T ~
= @S - [ addi- Qrsy
0 SN——
N——~~—" Terminal value

Realized value

Typical objective function: Mean-Variance

J(a) = E[nr] + AVar[nr]

Straight forward economic interpretation, close to how performance is measured in
practice;

Analytical solutions, rarely available;

i@ Optimal strategy time-inconsistent — No natural way to formulate the dynamic
programming principle — No natural way to construct an HJB-equation and
associated system of FBSDEs.

9/18



Strategy

Our approach:
© Reformulate the problem. Want to have a state equation of the form
X=(QSm"

- Trading decisions based on: i) size of inventory, ii) current asset prize, and Jif)
previous performance.

@ Use the stochastic version of Pontryagin's maximum principle to formulate the
adjoint equation (which gives sufficient conditions for optimality of the original
problem);

- Adjoint equation is a coupled FBSDE of McKean-Vlasov (or Mean-field) type.
© Use modern machine learning techniques to solve the adjoint equation.
- Make use of recently developed machine learning algorithms for FBSDEs.*3

4Jiequn Han, Arnulf Jentzen, and Weinan E. “Solving high-dimensional partial differential equations
using deep learning”. In: Proceedings of the National Academy of Sciences 115.34 (2018), pp. 8505-8510.

5René Carmona and Mathieu Lauriére. “Convergence Analysis of Machine Learning Algorithms for the
Numerical Solution of Mean Field Control and Games: II-The Finite Horizon Case”. In: arXiv preprint
arXiv:1908.01613 (2019).
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Stochastic control

Reformulation of state equation

Dynamics of underlying inventory and asset given by:

d@: = —axdt; Qo = qo,
dSt :[l,(t, Sf,&t)dt-’_&(t, St,at)dBt; So = S0.

Previous performance, described by "time integrated” version of implementation shortfall
dne = —[Qepu(t, S, ) — aed(t, Se, ae)]dt — Qe (t, St, ar)dBe; 1m0 = QoSo = qoso.
Final version of state equation, X = (Q,S,n)", given by
dX; = b(t, X¢, ar)dt + o(t, Xe, e )dWs, t € [0, T]);  Xo = (qo, S0, Goso) "

for appropriate b and o and W = (é, B,B)" (dummy processes B, B).
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Stochastic control

Reformulation of objective function

Recall objective function
J(a) = E[nt] + AVar[nr].

Using Var[Y] = E[Y?] — (E[Y])? and dynamics of 7 gives

s =] [ (e X 0t + X — (Blnr]))]
Where f(t, Xt, at) = —Qt‘u(t, St, Oft) + C\itd)(t, St, Oft).

Final adjustment:

Jo) = E[ / " (. Xe )t + MG — (Elr)?) + 9% ]

Penalizes terminal inventory
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LT PR ll  Stochastic maximum principle

Final problem formulation

Problem formulation suitable for the Stochastic Maximum Principle (SMP)
dX; = b(t, Xe, ar)dt + o(t, Xe, a)dWs, t €0, T];  Xo = xo € RY, (State equation)
J(a)=E fOT f(t, Xe, o )dt + M2 — (E[n7])?) + 7Q2T} , (Cost functional)
Find o € A, such that J(«) is minimized. (Problem)

With A some space of admissible controls.

Hamiltonian given by
H(t,x,y,z,0) = b(t,x,a) y + Tr(co " (t,x,a)z) + f(t,x, ).

Adjoint equation given by

0
d\,\/t = —H;(t, )?t, \A’t,Z,dt)dt + 2tdW[, t e [O7 T], )A/T = 2’)/@7' ) .
2M(Ar — ElAr])
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Stochastic maximum principle

Theorem (necessary conditions)

Suppose some regularity conditions and that the state equation, X = X% is optimally
controlled by & and (Y, Z) is a solution to the adjoint equation. Then for any & € A,

H.(t, Xe, &r, Ve, Z:) (G — 3¢) >0, P —a.s. forallt €0, T].

Theorem (Sufficient conditions)

Suppose some additional convexity assumptions. Then, if

H(t, )_(t,&t, Vt,zt) = |2fA H(t, )_<t,CK7 Vt, Zt)7 P— a.s. for all t S [0, T],

& is an optimal control and X is the optimally controlled state equation.
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McKean-Vlasov FBSDE

System to solve:

dX: = b(t, Xe, a)dt 4+ o (t, Xe, e )dWi;  Xo = x0 € RY, (Forward SDE)
0
dY, = —H,(t, X, Ye, Zs, o)dt + ZedWs; Y7 = 29Qr (Backward SDE)
2X(nr — E[n7])
H(t, X¢, ar, Ye, Zt) = infaca H(t, Xe, o, Ye, Zy) (Opt. cond.);

o Feedback-form of optimal control depend on forward SDE. With control in diffusion
term - (t, x,y, z) — «, without control in diffusion term (¢, x,y) — «;

@ Coupled FBSDE (forward dynamics depend on Y and Z through «);
o McKean-Vlasov type FBSDE (E[7] in terminal condition of backward equation)

15 /18



Algorithms

Algorithms - discussion

What kinds of methods are used?
© Analytical strategies
- Low flexibility on both asset dynamics and objective function (usually only minimizing
implementation shortfall).
@ PDE — Finite differences (elements)

- When a HJB-equation can be formulated;
- Requires the problem to be time-consistent — strong restrictions on objective function;
- More flexibility on asset dynamics, needs to be in low dimensions;

© FBSDE — Neural networks
- High flexibility on both asset dynamics and objective function
- For time consistent problems reformulation through the dynamic programming
principle. For time inconsistent problems through the stochastic maximum principle;
- Mesh-free — scales good with dimensions;
- When SMP is used, high flexibility in the action space, e.g., can be a non-convex set,
such as the integers.

16 /18



Approximating FBSDEs with machine learning

Two most common types to approximate FBSDEs with neural networks:
@ Forward and global methods

- Euler-discretization in time, parametrization of Yp and 2y, Z1,...,2Zn;
- Loss function constructed to satisfy the terminal condition of the backward SDE.
- Global in the sense that optimization is done only once.

o Backward and local methods

- No discretization-scheme in time;
- Approximates conditional expectations backwards in time using dynamic programming;
- Local in the sence that optimization is done at each time point.

Extension to MV-FBSDEs (of the type considered in this presentation):

o An additional layer, since the law of the terminal state is included in the terminal
condition of the backward SDE;

o Fixed point iteration until the law of the controlled terminal state converges.
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Algorithms

Thanks for your attention!
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