

Deep learning of implied volatility surface in time

April 22, 2022

Goal

Find an arbitrage-free interpolation of the market implied volatility surface. Arbitrage-free in our context means:

- 1 Positivity: For $m\in\mathbb{R}$, $T\in\mathbb{R}_{>0}$ $\sigma_{\mathrm{BS}}\left(m,T
 ight)>0$
- 2 Differentiability: For T> 0, $m\mapsto\sigma_{\mathrm{BS}}\left(m,T
 ight)$ is twice differentiable in $\mathbb R$
- 3 Monotonicity: For $m\in\mathbb{R}$, $au\mapsto\sqrt{T}\sigma_{\mathrm{BS}}\left(m,T
 ight)$ is increasing on $\mathbb{R}_{>0}$ and

$$\sigma_{\mathrm{BS}}(m,T) + 2T rac{\partial \sigma_{\mathrm{BS}}(m,T)}{\partial T} \geq 0$$

• Butterfly arbitrage-free: For $m\in\mathbb{R},\; T\in\mathbb{R}_{>0}$

$$\left[1-\frac{m\frac{\partial\sigma_{\rm BS}(m,T)}{\partial m}}{\sigma_{\rm BS}(m,T)}\right]^{2}-\frac{1}{4}\left[\sigma_{\rm BS}(m,T)T\frac{\partial\sigma_{\rm BS}(m,T)}{\partial m}\right]^{2}+T\sigma_{\rm BS}(m,T)\frac{\partial^{2}\sigma_{\rm BS}(m,T)}{\partial m^{2}}\geq0$$

Goal

Find an arbitrage-free interpolation of the market implied volatility surface. Arbitrage-free in our context means:

- S Limit condition: If T > 0, then $\lim_{m \to \infty} d_+(m, T) = -\infty$
- Right boundary: If $m \ge 0$, then

$$N\left(d_{-}\left(m,T
ight)
ight)-\sqrt{T}rac{\partial\sigma_{\mathrm{BS}}\left(m,T
ight)}{\partial m}n\left(d_{-}\left(m,T
ight)
ight)\geq0$$

where N denotes the standard normal cdf and n its pdf

Left boundary:

$$N\left(-d_{-}(m,T)\right)+\sqrt{T}rac{\partial\sigma_{\mathrm{BS}}(m,T)}{\partial m}n\left(d_{-}(m,T)
ight)\geq0$$

8 Asymptotic slope: For T>0, then $2|m| - \sigma_{\mathrm{BS}}^2(m,T)$ T>0

What we have

quote_date	root	expiration	strike	option_type	trade_volume	bid_size_1545	bid_1545	ask_size_1545	ask_1545	implied_volatility_1545
05.10.2020	SPXW	07.10.2020	3075	с	0	14	329.8	29	330.9	0.5305
05.10.2020	SPXW	07.10.2020	3075	Р	269	150	0.1	634	0.15	0.5045
05.10.2020	SPXW	07.10.2020	3080	С	0	14	324.8	29	325.9	0.5229
05.10.2020	SPXW	07.10.2020	3080	Р	53	986	0.05	743	0.15	0.4863
05.10.2020	SPXW	07.10.2020	3085	С	0	14	319.8	29	320.9	0.5153
05.10.2020	SPXW	07.10.2020	3085	Р	0	989	0.05	574	0.15	0.4792
05.10.2020	SPXW	07.10.2020	3090	С	42	14	314.8	29	315.9	0.5077
05.10.2020	SPXW	07.10.2020	3090	Р	13	892	0.05	532	0.15	0.472
05.10.2020	SPXW	07.10.2020	3095	С	0	14	309.8	29	310.9	0.5002
05.10.2020	SPXW	07.10.2020	3095	Р	2	946	0.05	489	0.15	0.4649
05.10.2020	SPXW	07.10.2020	3100	С	16	14	304.8	29	305.9	0.4926
05.10.2020	SPXW	07.10.2020	3100	Р	650	968	0.05	427	0.15	0.4578
05.10.2020	SPXW	07.10.2020	3105	С	0	14	299.8	29	300.9	0.485
05.10.2020	SPXW	07.10.2020	3105	Р	13	1009	0.05	70	0.15	0.4506
05.10.2020	SPXW	07.10.2020	3110	С	32	14	294.8	29	295.9	0.4774
05.10.2020	SPXW	07.10.2020	3110	Р	5	1263	0.05	51	0.15	× 10.4435
05.10.2020	SPXW	07.10.2020	3115	С	0	4	289.8	19	290.9	A 0.4699
05.10.2020	SPXW	07.10.2020	3115	Р	12	10	0.1	33	0.15	0.4464
05.10.2020	SPXW	07.10.2020	3120	С	0	14	284.8	29	285.9	χ 0.4623
05.10.2020	SPXW	07.10.2020	3120	Р	23	218	0.1	20	0.15	\star _0.4392
				-						

Pre-processing

We removed data if

- 1 the bid-price was less or equal 0.375 to reduce noise
- 2 the implied volatility is less than 0.05 % to reduce noise

Put-Call Parity

By the Put-Call parity we have

$$V^{C}-V^{P}=DF-DK,$$

where V^{C} , V^{P} are the option prices, $D = e^{-rT}$ is the discount factor and K the strike. Now, we can do a linear regression on the set

$$\left\{\left(K_i, \left(V_i^{\mathsf{C}} - V_i^{\mathsf{P}}\right)\right) : i = 1, \dots, n\right\}$$

and $n \in \mathbb{N}$ is the number of data points for time to maturity T. The linear regression is defined as

$$V_i^C - V_i^P = \alpha + \beta K_i + \epsilon_i$$

and as a result we get the discounted underlying price $S_0 = \alpha$ to compute the log-Moneyness.

Market implied volatility surface

Problem 1

Our approach

Predictions on an Extended Grid

Our approach

Data vs Predictions: Implied Volatility

Correction Andersson DNN

Regression Andersson Multiplicative DNN

Correction Andersson Multiplicative DNN

Comparison

	Zheng et al.	Zheng et al DNN	Additive correction	Multiplicative correction
ATM	7.0996e-03	4.7290e-03	7.9634e-03	1.0675e-02
constraint 3	0.0000e+00	0.0000e+00	1.9906e-03	0.0000e+00
constraint 4	0.0000e+00	4.6294e-05	0.0000e+00	2.1758e-03
constraint 6	0.0000e+00	0.0000e+00	0.0000e+00	0.0000e+00
constraint 7	0.0000e+00	0.0000e+00	5.0924e-04	0.0000e+00
constraint 8	1.9027e-02	2.4906e-02	2.4351e-02	1.3768e-01

Possibilities for improvement

- Cleaning up the market data even more/ partition into different regions
- 2 Take imbalances of the data set into account
- Hard constraints
- Condition for the perfect fit at-the-money
- Hyperparameter-tuning/ architecture

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 813261 and is part of the ABC-EU-XVA project.