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Motivation

● Cluster of defaults on a given portfolio

● Jumps of an asset or index due to the successive 
arrival of news.

● Claims due to accidents or catastrophes.



  

Default clustering

Source: Errais et al. (2010). Affine Point Processes and Portfolio Credit Risk. 
SIAM J. Financial Math. Vol. 1, pp. 642-665. 



  

Bitcoin returns 

Source: Chen, C. Y., Härdle, W. K., Hou, A. J., & Wang, W. 
(2018). Pricing Cryptocurrency Options: The Case of CRIX and 
Bitcoin. SSRN Electronic Journal . doi:10.2139/ssrn.3159130 



  

Arrival of claims

Source: Swishchuk et al (2021). Hawkes processes in insurance: Risk model, 
application to empirical data and optimal investment. Insurance, Mathematics 
and Economics. 



  

Urn model: the Pólya process

● At each time we select a ball from the urn.

● Each ball has the same probability of being

chosen.

● Add an extra ball of the same color as the

one selected.

● Represented by the schema:



  

Poissonization of urns

t = t1

t = t0

● The previous urn model only works in discrete times.

● To make it time-continuous we attach an exponential clock to 
every ball.



  

SDE for Poissonized Pólya

● Being Rt the number of red balls at time t, 

● The intensity is proportional to the process itself, making it 
self-exciting.



  

Analytical properties

● Characteristic function:

● Density function: 



  

The exploding Pólya
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Urns with memory kernel

We attach a memory kernel to each new ball, reducing its 
importance over time. Some properties of this kernel are:

–

–

– Non-increasing function of time.

– Examples:



  

Adapting the Pólya SDE

Given that 

we get the SDE for the Pólya process with limited memory:



  

New interarrival times
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The Hawkes process

● It turns out the Pólya process is a particular case of the 
Hawkes process

● Hopefully we can use some of its properties to efficiently 
simulate the Pólya process.

● For example, the characteristic function can be computed via 
a delayed differential equation.



  

Where does the jump go?

● Also important to analyze the direction of the next jump. Is it 
downward or upward?

● We can do this associating a color to each direction.

● The Pólya model favours jumps in the same direction.

● We can favour jumps in the opposite direction using the 
Friedman urn model: 



  

Pólya vs. Friedman
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Future work

● Study the connection between Poissonized urn models and 
the Hawkes process.

● Use of the combinatorial properties of urns to improve 
numerical algorithms for computation of moments, 
characteristic function, etc.

● Analyze the performance of the generalized Pólya-Friedman 
model in actual applications.



  

Questions?

Thanks for your attention!
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