Implied volatility surfaces in time, learned by a neural network

For traders and market makers in financial markets, the implied volatility surface is a very useful
tool. Traders, for example, use implied volatilities in option pricing to determine if they believe a
financial product is under or overpriced. From the well-known Black-Scholes model, which takes
as input the volatility, strike and maturity of an option contract to compute the option value, it
is possible to calculate the implied volatility by inversion if we know the option value, but not the
volatility. This way, it is possible to define a volatility surface, thus creating a 3-dimensional plot.
However, the question then arises as to how such a volatility surface moves over time and when a
recalibration of the chosen model would be required.

In recent years, a wide range of techniques has been proposed to calibrate implied volatility
surfaces. Nowadays, traditional methods such as Surface Stochastic Volatility Inspired (SSVI) and
simple spline-based algorithms are the ones that are widely used in practice. However, the demand
for more accurate and robust techniques is increasing as implied volatility shape tend to differ much
over time and among different companies. As a result, scholars tend to investigate the applicability
of different types of neural networks.

The aim of this research is to compare different learning techniques with respect to their ability
to fit the market while adhering to financial conditions such as no-arbitrage conditions. One can
also think of limit conditions that such a surface must meet. At the same time, the models need to
be be linked to criteria that are important for a trader to use (or not use) a particular model, like
the accuracy of the model at certain areas of a volatility curve. It is important to bring in financial
conditions that have to be met in practice into a neural network to make sure that they are taken
into account, while, at the same time, we require a flexible technique to represent many different
implied volatility surface shapes.

The focus of this project will be how to implement these neural networks, understand them,
adjust them according to investor’s desires and find good metrics to compare the output of these
models.

In practice, we can distinguish two types of models for an implied volatility surface: the indirect
models and the direct models. The indirect models are those that depend on other dynamic models,
including stochastic volatility models and L “evy models. This type of model is not always usable.
The methods we will be concerned with are the direct models, where implied volatility will be
explicitly defined. Here again we can distinguish between static direct methods and dynamic direct
methods. Dynamic direct methods make certain assumptions about the course of the surface over
time, while static direct methods use a parametric approach.

A model that is used extensively in the industry today is one that takes the form of the so-called
Stochastic Volatility Inspired (SVI) model. For a predetermined expiration, a slice is constructed
using a parametric formula, the underlying parameters of which must in turn be optimized using an
optimization method. A simplification of this method has been sought regarding the incorporation
of no-arbitrage conditions, which led to the revelation of the Surface Stochastic Volatility Inspired,
also abbreviated as SSVI, which is popular among practitioners. Non-parametric methods that
use polynomials of sigmoid functions have also been used, however, these models are typically not



sufficently flexible to represent the implied volatility shapes that we currently see in the market.
Recently, several Machine Learning models have also been applied in the field of volatility surfaces.

To develop a robust and flexible neural network model, option data from the SP 500 index of October
2nd 2020 will be used to investigate the ability of the different models to construct volatility smiles
and volatility surfaces. The SP 500 is a stock market index that tracks 500 large-cap firms in the
United States. It reflects the stock market’s success by monitoring the biggest corporations’ risks
and returns. Initially, the intention is to apply neural networks for one specific trading day in order
to understand the models before expanding to a data set that covers multiple days. The original
data set contains the following features: the bid price, the ask price, the strike price, the expiration
and whether an option is a call or put option. A very important aspect is that we do not have
a large number of strike price and maturity dates avaialbew, and, moreover, they are not ev enly
distributed among the strike and time axis. We have more quotes for strike prices at the money
(ATM), for example, and for short time to maturity options. The data is thus unevenly distributed,
which may hamper the successful use of of-the-shelve neural networks.

Before using the data, some operations may be applied on it. First of all, the option contracts whose
bid price is less than a specific value may be removed. The reason for this is that such a price comes
close to the minimum price change between the bid and ask price of an option. Moreover, some
inaccurate quotes may be filtered out, as they may relate to noisy data. Subsequently, a number
of features, such as the log-moneyness and the mid-price, the price that lies in the middle of the
bid and the ask price, are calculated and added to the data set.

We lack two main input values needed to use the Black-Scholes formula to obtain implied
volatilities. These are the interest rate and the index’s price. There is, however, the possibility of
providing an approximation for these values by using the put-call parity. This relationship can be
used to calibrate the forward price of the index, by considering call and put options with the same
expiration and strike price. Since for every combination of a put option and a call option with the
same expiration and strike, we not only possess the mid-price for both the put and call, but also
the bid and ask prices, we could obtain different put-call differences from our data set by combining
bid prices and ask prices. We will then use these put-call differences to obtain a forward price and
an interest rate for each of the expirations separately. A linear regression model may be utilized to
achieve this.

Certain neural network configurations which work well for one data set belonging to a trading
day may not necessarily guarantee the performance of a data set belonging to another trading day.
This is a robustness issue that forms an important criterion for the success of this project.

As mentioned earlier, traders may have a specific opinion of what a fit should look like to be
used in practice. The part for which the log-moneyness values are around 0, should be close to
perfect.
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and let n(-) be the standard normal density, N(-) the corresponding distribution. Note that T’
represents the time to expiration, m stands for the log-moneyness and opg is the implied volatility.
The following conditions for the implied volatility surface should hold:

1. Positivity: For (m,T) € R x R*, ogg(m,T) > 0;
2. Twice differentiability: For T' > 0, the function m — opg(m,T) is twice differentiable on R.

3. Monotonicity: For m € R, T — v/Tops(m,T) is increasing on RT, then
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5. Limit condition: If T" > 0, then
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6. Right boundary: If m > 0, then
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7. Left boundary: If m < 0, then

N(=d_(m, T)) + ﬁWm(d(m,T)) >0

8. Asymptotic slope: For T'> 0, 2|m| — 6%4(m,T) - T >0

The main question in this problem is can we define a neural network that can guarantee that
these conditions will be satisfied, plus the fact that the ATM implied volatility is close to perfect?
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