Industry Problem

Lech A. Grzelak

Department of Financial Engineering at Rabobank Mathematical Institute at Utrecht University

Lech.Grzelak@Rabobank.com

э

1/12

イロト イポト イヨト イヨト

1 Implied Volatilities and Interpolations

2 Model Calibration

Types of Arbitrage in Volatilities

4 Research Questions

3

Implied Volatilities and Parametrizarions

- When handling many market volatility quotes, it is natural to express them in terms of some parametric form so that only a few parameters can explain a whole range of strikes. Moreover, once the parametric equation is given, one can instantly obtain volatilities by evaluating the parametric function.
- A market standard for volatility parameterization for several years, the well-known SABR model-based formula [4] originates from a short-maturity heat kernel expansion.

Implied Volatilities

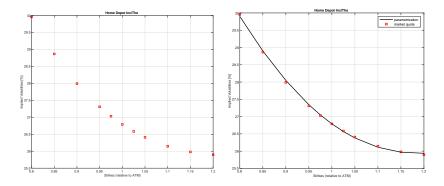


Figure: Left: Market Quotes; Right: Parameterization

3

イロン イ理 とく ヨン イ ヨン

The SABR model vs. the Heston model

The Heston model:

$$dS(t) = \sqrt{v(t)}S(t)dW_1(t),$$

$$dv(t) = \kappa (\bar{v} - v(t))dt + \gamma \sqrt{v(t)}dW_2(t).$$

- Model \rightarrow FFT (COS method) \rightarrow Option Price \rightarrow Implied Volatilities
- The SABR model:

$$dS(t) = v(t)S^{\beta}(t)dW_{1}(t),$$

$$dv(t) = \gamma v(t)dW_{2}(t), \quad v(t_{0}) = \alpha.$$

 $\bullet \ \mathsf{Model} \to \mathsf{Implied} \ \mathsf{Volatilities}$

Image: A matrix and a matrix

Volatility Parametrizartions

The approximating implied volatility derived in [4] reads:

$$\sigma(T,K) = A(K)\frac{z(K)}{\chi(z(K))} + B(T,K),$$

where

$$\begin{split} z(K) &= \frac{\gamma}{\alpha} (S_0 K)^{(1-\beta)/2} \log(S_0/K), \\ \chi(z(K)) &= \log\left(\frac{\sqrt{1-2\rho z(K)+z^2(K)}+z(K)-\rho}{1-\rho}\right), \\ A(K) &= \alpha \left(S_0 K^{(1-\beta)/2} \left(1+\frac{(1-\beta)^2}{24} \log^2(S_0/K)+\frac{(1-\beta)^4}{1920} \log^4(S_0/K)+\epsilon\right)\right)^{-1}, \\ B(T,K) &= \left\{1+\left(\frac{(1-\beta)^2}{24} \frac{\alpha^2}{(S_0 K)^{1-\beta}}+\frac{1}{4} \frac{\rho \beta \gamma \alpha}{(S_0 K)^{(1-\beta)/2}}+\frac{2-3\rho^2}{24} \gamma^2\right)\right\} T, \\ \epsilon &= ??? \end{split}$$

Can $\overline{\epsilon}$ be calibrated? By taking, e.g., $\epsilon=a_0+a_1S_0/K+a_2S_0^2/K^2+...$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Calibration

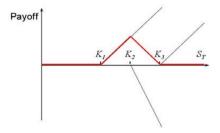
- When expressing the implied volatilities in terms of parametrized form, it is crucial to calibrate the parametric form to given market implied volatilities.
- In essence we need to determine the model parameters for which the distance of the model vs. market implied volatilities is the smallest.
- The calibration procedure typically requires many iterations over many possible parameter configurations. This is considered to be an expensive task.
- The calibration of the SABR formula is always performed in two steps:
 - Model parameters are chosen, except for α .
 - α is chosen such that ATM volatilities are perfectly matched.

イロト 不得 トイヨト イヨト

Types of arbitrage in the volatility objects

We distinguish two types of arbitrage in the volatility objects

- Calendar arbitrage: $C(T_1, K) > C(T_2, K)$, for $T_1 < T_2$ and where C is a call option and K is a strike.
- Butterfly arbitrage $C(T, K_1) 2C(T, K_2) + C(T, K_3) < 0$ for $K_1 < K_2 < K_3$.



Butterfly Arbitrage

• Without loss of generality we can assume that $K_3 - K_2 = K_2 - K_1 =: \delta_K$ thus since $\delta_K > 0$ we have:

• A call price is given by:

$$C(K) = \int_{\mathbb{R}} \max(x - K, 0) f_S(x) dx,$$

so by differentiation we find the following relation:

$$\frac{\partial^2 C(K)}{\partial K^2} = f_S(K) \, .$$

- So the presence of the butterfly arbitrage is equivalent with assigning negative probabilities to stock's movements.
- The elimination of the butterfly arbitrage is equivalent with ensuring that probability density is nonnegative and it integrates to unit.

Lech A. Grzelak (Rabobank)

Industry Problem

Arbitrage in the SABR's formula

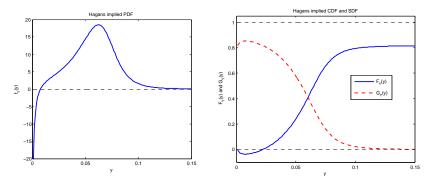


Figure: $\beta = 0.5$, $\alpha = 0.05$, $\rho = -0.7$, $\gamma = 0.4$, $F(t_0) = 0.05$ and T = 7. Left: probability density, with deterioration near zero; right: corresponding CDF and SDF (survival distribution function).

19/04/2022

< □ > < □ > < □ > < □ > < □ > < □ >

Research Questions

The objectives of this project are as follows:

- 1. Develop a two stage ANN calibration algorithm for the calibration of the SABR model formula.
- Investigate "fixes", *€*, for the formula to mitigate the arbitrage opportunities [1, 5, 3, 2].

(日)

Bibliography

- J. Andreasen and B. Huge. Expanded forward volatility. *Risk*, pages 101–107, 2013.
- P. Balland and Q. Tran. SABR goes normal. *Risk*, pages 76–81, 2013.
- P. Doust.
 - No-arbitrage SABR.

The Journal of Computational Finance, 15(3):3-31, 2012.

P.S. Hagan, D. Kumar, A.S. Leśniewski, and D.E Woodward. Managing smile risk. Wilmott Magazine, pages 84–108, 2002.

P.S. Hagan, D. Kumar, A.S. Leśniewski, and D.E. Woodward. Arbitrage-free SABR.

Lech A. Grzelak (Rabobank)