# Stochastic Modelling of the Collateral Choice Option and its Practical Implications

#### Felix Wolf<sup>1</sup> Joint work with Griselda Deelstra<sup>1</sup> and Lech Grzelak<sup>2,3</sup>

 $^1 \rm Department$  of Mathematics, Université libre de Bruxelles  $^2 \rm FEng, Rabobank$   $^3 \rm Mathematical Institute, Universiteit Utrecht$ 

#### October 22, 2021







Rabobank

#### The collateral choice option



- Assets are perfectly collateralized: no frictions, entire asset is covered at all times.
- No default risk, discounting with time value of money.
- Single curve framework based on *collateral rate r*.
- Asset valuation becomes

$$V_0 = \mathbb{E}^{\mathbb{Q}} \big[ \mathrm{e}^{-\int_0^T r(t) \mathrm{d}t} V_T \big].$$

### The collateral choice option



$$V_0 = \mathbb{E}^{\mathbb{Q}} \left[ e^{-\int_0^T \cdot ? \, \mathrm{d}t} V_T \right]$$

3/20

### The collateral choice option



$$V_0 = \mathbb{E}^{\mathbb{Q}} \left[ e^{-\int_0^T \max(r_0(t), \dots, r_N(t)) dt} V_T \right]$$

Goal: Express the option without path and asset dependence.

$$\mathbb{E}^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}\max(r_{0}(t),\ldots,r_{N}(t))\mathrm{d}t\right)V_{T}\right]$$

$$=\mathbb{E}^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}r_{0}(t)+\max(0,(r_{1}-r_{0})(t),\ldots,(r_{N}-r_{0})(t))\mathrm{d}t\right)V_{T}\right]$$

$$= \mathbb{E}^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T} \max(0, q_{1}(t), \dots, q_{N}(t))dt\right) \exp\left(-\int_{0}^{T} r_{0}(t)dt\right) V_{T}\right]$$

4/20

$$V_0 = \mathbb{E}^{\mathbb{Q}} \left[ e^{-\int_0^T \max(0, q_1(t), \dots, q_N(t)) dt} e^{-\int_0^T r_0(t) dt} V_T \right]$$

Strong independence (all  $q_i$  from  $r_0$  and V):

$$= \mathbb{E}^{\mathbb{Q}} \left[ \mathrm{e}^{-\int_0^T \max(0, q_1(t), \dots, q_N(t)) \mathrm{d}t} \right] \mathbb{E}^{\mathbb{Q}} \left[ \mathrm{e}^{-\int_0^T r_0(t) \mathrm{d}t} V_T \right].$$

$$V_0 = \mathbb{E}^{\mathbb{Q}} \left[ e^{-\int_0^T \max(0, q_1(t), \dots, q_N(t)) dt} e^{-\int_0^T r_0(t) dt} V_T \right]$$

Strong independence (all  $q_i$  from  $r_0$  and V):

$$= \mathbb{E}^{\mathbb{Q}} \left[ \mathrm{e}^{-\int_0^T \max(0, q_1(t), \dots, q_N(t)) \mathrm{d}t} \right] \mathbb{E}^{\mathbb{Q}} \left[ \mathrm{e}^{-\int_0^T r_0(t) \mathrm{d}t} V_T \right].$$

Weak independence (all  $q_i$  from V):

$$=\mathbb{E}^{\mathbb{Q}^{T}}\left[\mathrm{e}^{-\int_{0}^{T}\max(0,q_{1}(t),\ldots,q_{N}(t))\mathrm{d}t}\right]\mathbb{E}^{\mathbb{Q}}\left[\mathrm{e}^{-\int_{0}^{T}r_{0}(t)\mathrm{d}t}V_{T}\right].$$

For either measure in  $\{\mathbb{Q}, \mathbb{Q}^T\}$ :

$$\operatorname{CTD}(0, T) = \mathbb{E}\left[e^{-\int_0^T \max(0, q_1(t), \dots, q_N(t)) \mathrm{d}t}\right].$$

Hard to evaluate (in general)!

For either measure in  $\{\mathbb{Q}, \mathbb{Q}^T\}$ :

$$\operatorname{CTD}(0, T) = \mathbb{E}\left[e^{-\int_0^T \max(0, q_1(t), \dots, q_N(t))dt}\right].$$

Hard to evaluate (in general)!

Pragmatic solution: deterministic model

$$\mathrm{CTD}_{\mathrm{det}}(0, T) = \mathrm{e}^{-\int_0^T \max(0, \mathbb{E}[q_1(t)], \dots, \mathbb{E}[q_N(t)]) \mathrm{d}t}.$$

The deterministic price is easily obtained with a composite curve.



The deterministic price is easily obtained with a composite curve.



With stochastic dynamics...



#### With stochastic dynamics the maximum gets bigger!



Jensen's inequality:  $\max(0, \mathbb{E}[q_{\mathsf{EUR}}], \mathbb{E}[q_{\mathsf{GBP}}]) \leq \mathbb{E}[\max(0, q_{\mathsf{EUR}}, q_{\mathsf{GBP}})]$ 



Spreads  $q_i$  behave similar to interest rates.

Modelling them with stochastic interest rate models (Gaussian processes) gives rise to the maximum process  $M(t) = \max(0, q_1(t), \dots, q_N(t))$ .

- No closed form marginal distributions  $M(t) = \max(0, q_1(t), \dots, q_N(t)).$
- No closed form process distribution  $(M(t))_{t \in [0,T]}$ .

• CTD(0, 
$$T$$
) =  $\mathbb{E}\left[\exp\left(-\int_0^T M(t) dt\right)\right] = \mathbb{E}\left[\sum_{k=0}^\infty \frac{\left(-\int_0^T M(t) dt\right)^k}{k!}\right].$ 

### Stochastic model: Taylor approximation

$$\operatorname{CTD}(0, T) = \mathbb{E}\Big[\sum_{k=0}^{\infty} \frac{\left(-\int_{0}^{T} M(t) \mathrm{d}t\right)^{k}}{k!}\Big].$$

First-order approximation is not precise enough, second-order approximation appears suitable:

$$\operatorname{CTD}(0, T) \approx \exp\left(-\mathbb{E}\left[\int_{0}^{T} M(t) \mathrm{d}t\right]\right) \left(1 + \frac{1}{2} \mathbb{V}\operatorname{ar}\left[\int_{0}^{T} M(t) \mathrm{d}t\right]\right),$$

but is still dependent on the marginal distributions M(t) and covariances  $\mathbb{C}ov[M(t), M(s)]!$ 

#### Stochastic model: process approximation



- Obtain marginal distribution from conditional independence assumption (common factor model)
- Obtain process dynamics by approximation with similar processes for which it is known (Itô or mean-reverting diffusion)

Finally, we have three quantities:

• True value: 
$$\operatorname{CTD}(0, T) = \mathbb{E}\left[\exp(-\int_0^T M(t) dt\right].$$

- Deterministic model:  $CTD_{det}(0, T)$ .
- Stochastic model:  $CTD_{CF}(0, T)$ .

### Stochastic and deterministic CTD models in practise

Consider an interest rate swap with the collateral choice option:

$$\begin{aligned} \mathcal{V}^{c}(t) &= \sum_{k=1}^{m} \operatorname{CTD}(t, T_{k}) U_{k}(t) \\ &= \bar{N} \sum_{k=1}^{m} \operatorname{CTD}(t, T_{k}) \Big( \tau_{k} P(t, T_{k}) \big( \ell(t, T_{k-1}, T_{k}) - \mathcal{K} \big) \Big). \end{aligned}$$

"True values"  $CTD(t, T_k)$  are unknown but we can approximate the discount factors with our models  $CTD_{det}$  and  $CTD_{CF}$ .

### Stochastic and deterministic CTD models in practise

Consider an interest rate swap with the collateral choice option:

$$\begin{aligned} \mathcal{V}^{c}(t) &= \sum_{k=1}^{m} \operatorname{CTD}(t, T_{k}) U_{k}(t) \\ &= \bar{N} \sum_{k=1}^{m} \operatorname{CTD}(t, T_{k}) \Big( \tau_{k} P(t, T_{k}) \big( \ell(t, T_{k-1}, T_{k}) - \mathcal{K} \big) \Big). \end{aligned}$$

"True values"  $CTD(t, T_k)$  are unknown but we can approximate the discount factors with our models  $CTD_{det}$  and  $CTD_{CF}$ .

Consider portfolios  $\Pi_j$ ,  $j \in \{\det, CF\}$ :

$$\Pi_j(t) = V^c(t) - \bar{N} \sum_{T_k \ge t} \operatorname{CTD}_j(t, T_k) \tau_k(\ell(t, T_{k-1}, T_k) - K) P(t, T_k).$$



Accumulated valuation error over the lifetime of a swap.

$$\Pi_j(t) = V^c(t) - \bar{N} \sum_{T_k \ge t} \operatorname{CTD}_j(t, T_k) \tau_k(\ell(t, T_{k-1}, T_k) - K) P(t, T_k).$$

These portfolios are comparable to a Delta hedge of the swap  $V^c$ .

$$V^{c}(t) = \sum_{k=1}^{m} \operatorname{CTD}(t, T_{k}) U_{k}(t).$$

The linear product  $\sum_{k} U_k$  only requires a Delta hedge, which risk factors are introduced by the CTD factor?

# Hedging perspective



The stochastic maximum depends on all components at all times.

15/20

# Hedging perspective



The stochastic maximum depends on all components at all times.

15/20

*Risk factors* are the "ingredients" of the asset price that change stochastically.

Changes in a risk factor X move the price of the asset:

$$X \uparrow \Longrightarrow V = f(X) \uparrow$$

Hedges are assets that move in opposite direction under these changes:

$$X\uparrow \Longrightarrow W = g(X)\downarrow$$

Together, asset and hedge are *neutral* to the risk factor:

$$X \uparrow \implies (V + W) \uparrow \downarrow \text{(no change)}.$$

# Call Option example (Black–Scholes market)

Consider Geometric Brownian motion stock

 $\mathrm{d}S_t = \mu(t)S_t\mathrm{d}t + \sigma(t)S_t\mathrm{d}W_t.$ 

A European call option C pays  $max(S_T - K, 0)$ , hence

 $S\uparrow \Longrightarrow C\uparrow$ .

Consider Geometric Brownian motion stock

 $\mathrm{d}S_t = \mu(t)S_t\mathrm{d}t + \sigma(t)S_t\mathrm{d}W_t.$ 

A European call option C pays  $\max(S_T - K, 0)$ , hence

$$S\uparrow \Longrightarrow C\uparrow$$
.



Delta-Hedge: Risk factor S has hedge -S:  $S \uparrow \implies -S \downarrow$  $S \uparrow \implies (C + \Delta S) \uparrow \downarrow$  is neutral (for some factor  $\Delta$ ).

## Call Option example (Black-Scholes market)

Delta-hedge portfolio  $\Pi(t) = C_t + \Delta(t)S_t$ 



18/20

# Call Option example (Heston market)

If stock S moves with Heston dynamics

$$dS_t = \mu S_t dt + \sqrt{v_t} S_t dW_t^S,$$
  
$$dv_t = \kappa(\theta(t) - v_t) dt + \xi \sqrt{v_t} dW_t^v,$$

## Call Option example (Heston market)

If stock S moves with Heston dynamics

$$dS_t = \mu S_t dt + \sqrt{v_t} S_t dW_t^S,$$
  
$$dv_t = \kappa(\theta(t) - v_t) dt + \xi \sqrt{v_t} dW_t^v,$$





### Call Option example (Heston market)

If stock S moves with Heston dynamics

$$dS_t = \mu S_t dt + \sqrt{v_t} S_t dW_t^S,$$
  
$$dv_t = \kappa(\theta(t) - v_t) dt + \xi \sqrt{v_t} dW_t^v,$$





Volatility v is another risk factor!

 $v \uparrow \Longrightarrow C \uparrow$ 



Delta-Vega-hedge portfolio $\Pi(t) = C_t + \Delta^*(t)S_t + \nu(t)C_t$ 

### Hedging the collateral choice option

What are the risk factors in an asset with the collateral choice option:

$$V^{c}(t) = \operatorname{CTD}(t, T)V(t)$$
?

- V is linear  $\implies$  only risk factor is its underlying  $\implies \Delta_V$ .
- CTD is convex  $\implies \Delta_{\text{CTD}}, \nu_{\text{CTD}}$ ?

Collateral spreads cannot be traded, what is a hedging asset for them?

### Hedging the collateral choice option

What are the risk factors in an asset with the collateral choice option:

$$V^{c}(t) = \operatorname{CTD}(t, T)V(t)$$
?

- V is linear  $\implies$  only risk factor is its underlying  $\implies \Delta_V$ .
- CTD is convex  $\implies \Delta_{\text{CTD}}, \nu_{\text{CTD}}$ ?

Collateral spreads cannot be traded, what is a hedging asset for them?

- Create artificial products "bond on collateral spreads"  $Q_i(t, T) = \mathbb{E}[\exp(-\int_t^T q_i(s) ds)]$ and options on it.
- Are there liquidly traded instruments that can serve as a proxy for the same risk factors?