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The collateral choice option
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The collateral choice option

Assets are perfectly collateralized:
no frictions, entire asset is covered at all times.

No default risk, discounting with time value of money.

Single curve framework based on collateral rate r .

Asset valuation becomes

V0 = EQ[e− ∫ T
0 r(t)dtVT

]
.
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The collateral choice option

V0 = EQ[e− ∫ T
0 ? dtVT

]
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The collateral choice option

V0 = EQ[e− ∫ T
0 max(r0(t),...,rN(t))dtVT

]
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The CTD discount factor

Goal: Express the option without path and asset dependence.

EQ
[
exp

(
−

T∫
0

max(r0(t), . . . , rN(t))dt
)

VT
]

=EQ
[
exp

(
−

T∫
0

r0(t) +max(0, (r1 − r0)(t), . . . , (rN − r0)(t))dt
)

VT
]

=EQ
[
exp

(
−

T∫
0

max(0, q1(t), . . . , qN(t))dt
)
exp

(
−

T∫
0

r0(t)dt
)

VT
]
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The CTD discount factor

V0 = EQ[e− ∫ T
0 max(0,q1(t),...,qN(t))dt e−

∫ T
0 r0(t)dtVT

]
Strong independence (all qi from r0 and V ):

= EQ[e− ∫ T
0 max(0,q1(t),...,qN(t))dt]EQ[e− ∫ T

0 r0(t)dtVT
]
.
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The CTD discount factor

V0 = EQ[e− ∫ T
0 max(0,q1(t),...,qN(t))dt e−

∫ T
0 r0(t)dtVT

]
Strong independence (all qi from r0 and V ):

= EQ[e− ∫ T
0 max(0,q1(t),...,qN(t))dt]EQ[e− ∫ T

0 r0(t)dtVT
]
.

Weak independence (all qi from V ):

= EQT [
e−

∫ T
0 max(0,q1(t),...,qN(t))dt]EQ[e− ∫ T

0 r0(t)dtVT
]
.
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The CTD discount factor

For either measure in {Q,QT}:

CTD(0,T ) = E
[
e−

∫ T
0 max(0,q1(t),...,qN(t))dt].

Hard to evaluate (in general)!
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The CTD discount factor

For either measure in {Q,QT}:

CTD(0,T ) = E
[
e−

∫ T
0 max(0,q1(t),...,qN(t))dt].

Hard to evaluate (in general)!

Pragmatic solution: deterministic model

CTDdet(0,T ) = e−
∫ T
0 max(0,E[q1(t)],...,E[qN(t)])dt .
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The model choice matters

The deterministic price is easily obtained with a composite curve.

Jensen’s inequality: EQ0[max(r0(t), r1(t))] ≥ max(EQ0[r0(t)],EQ0[r1(t)])
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The model choice matters

With stochastic dynamics...

Jensen’s inequality: EQ0[max(r0(t), r1(t))] ≥ max(EQ0[r0(t)],EQ0[r1(t)])
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The model choice matters

With stochastic dynamics the maximum gets bigger!

Jensen’s inequality: max(EQ0[r0(t)],EQ0[r1(t)]) ≤ EQ0[max(r0(t), r1(t))]
7/20



The model choice matters

Jensen’s inequality: max(0,E[qEUR],E[qGBP]) ≤ E[max(0, qEUR, qGBP)]

Jensen’s inequality: max(0,E[qEUR],E[qGBP]) ≤ E[max(0, qEUR, qGBP)]

7/20



How to construct a stochastic model

Spreads qi behave similar to interest rates.
Modelling them with stochastic interest rate models (Gaussian processes)
gives rise to the maximum process M(t) = max(0, q1(t), . . . , qN(t)).

No closed form marginal distributions
M(t) = max(0, q1(t), . . . , qN(t)).

No closed form process distribution
(
M(t)

)
t∈[0,T ]

.

CTD(0,T ) = E
[
exp(−

∫ T
0 M(t)dt)

]
= E

[∑∞
k=0

(
−

∫ T
0 M(t)dt

)k

k!

]
.
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Stochastic model: Taylor approximation

CTD(0,T ) = E
[ ∞∑

k=0

(
−
∫ T
0 M(t)dt

)k

k!

]
.

First-order approximation is not precise enough, second-order
approximation appears suitable:

CTD(0,T ) ≈ exp
(
−E

[ T∫
0

M(t)dt
])(

1 +
1

2
Var

[ T∫
0

M(t)dt
])

,

but is still dependent on the marginal distributions M(t) and covariances
Cov[M(t),M(s)]!

9/20



Stochastic model: process approximation

1 Obtain marginal distribution from conditional independence
assumption (common factor model)

2 Obtain process dynamics by approximation with similar processes for
which it is known (Itô or mean-reverting diffusion)
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Two models for CTD

Finally, we have three quantities:

True value: CTD(0,T ) = E
[
exp(−

∫ T
0 M(t)dt

]
.

Deterministic model: CTDdet(0,T ).

Stochastic model: CTDCF(0,T ).
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Stochastic and deterministic CTD models in practise

Consider an interest rate swap with the collateral choice option:

V c(t) =
m∑

k=1

CTD(t,Tk)Uk(t)

= N̄
m∑

k=1

CTD(t,Tk)
(
τkP(t,Tk)

(
`(t,Tk−1,Tk)− K

))
.

“True values” CTD(t,Tk) are unknown but we can approximate the
discount factors with our models CTDdet and CTDCF.
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Stochastic and deterministic CTD models in practise

Consider an interest rate swap with the collateral choice option:

V c(t) =
m∑

k=1

CTD(t,Tk)Uk(t)

= N̄
m∑

k=1

CTD(t,Tk)
(
τkP(t,Tk)

(
`(t,Tk−1,Tk)− K

))
.

“True values” CTD(t,Tk) are unknown but we can approximate the
discount factors with our models CTDdet and CTDCF.

Consider portfolios Πj , j ∈ {det,CF}:

Πj(t) = V c(t)− N̄
∑
Tk≥t

CTDj(t,Tk)τk(`(t,Tk−1,Tk)− K)P(t,Tk).

12/20



Accumulated error

Accumulated valuation error over the lifetime of a swap.
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Hedging perspective

Πj(t) = V c(t)− N̄
∑
Tk≥t

CTDj(t,Tk)τk(`(t,Tk−1,Tk)− K)P(t,Tk).

These portfolios are comparable to a Delta hedge of the swap V c .

V c(t) =
m∑

k=1

CTD(t,Tk)Uk(t).

The linear product
∑

k Uk only requires a Delta hedge, which risk factors
are introduced by the CTD factor?
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Hedging perspective

The stochastic maximum depends on all components at all times. 15/20



Hedging perspective
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What’s in a hedge?

Risk factors are the “ingredients” of the asset price that change
stochastically.

Changes in a risk factor X move the price of the asset:

X ↑ =⇒ V = f (X) ↑

Hedges are assets that move in opposite direction under these changes:

X ↑ =⇒ W = g(X) ↓

Together, asset and hedge are neutral to the risk factor:

X ↑ =⇒ (V + W ) ↑↓ (no change).
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Call Option example (Black–Scholes market)

Consider Geometric Brownian motion stock

dSt = µ(t)Stdt + σ(t)StdWt .

A European call option C pays max(ST − K , 0), hence

S ↑ =⇒ C ↑ .
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Call Option example (Black–Scholes market)

Consider Geometric Brownian motion stock

dSt = µ(t)Stdt + σ(t)StdWt .

A European call option C pays max(ST − K , 0), hence

S ↑ =⇒ C ↑ .

Delta-Hedge: Risk factor S has hedge −S:
S ↑ =⇒ −S ↓

S ↑ =⇒ (C +∆S) ↑↓ is neutral (for some factor ∆).
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Call Option example (Black–Scholes market)

Delta-hedge portfolio Π(t) = Ct +∆(t)St
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Call Option example (Heston market)

If stock S moves with Heston dynamics

dSt = µStdt +
√

vtStdW S
t ,

dvt = κ(θ(t)− vt)dt + ξ
√

vtdW v
t ,
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Call Option example (Heston market)

If stock S moves with Heston dynamics
dSt = µStdt +

√
vtStdW S

t ,

dvt = κ(θ(t)− vt)dt + ξ
√

vtdW v
t ,

Delta-hedge portfolio
Π(t) = Ct +∆(t)St

Volatility v is another risk factor!
v ↑ =⇒ C ↑

Delta-Vega-hedge portfolio
Π(t) = Ct +∆∗(t)St + ν(t)Ct
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Hedging the collateral choice option

What are the risk factors in an asset with the collateral choice option:

V c(t) = CTD(t,T )V (t) ?

V is linear =⇒ only risk factor is its underlying =⇒ ∆V .
CTD is convex =⇒ ∆CTD, νCTD?

Collateral spreads cannot be traded, what is a hedging asset for them?
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Hedging the collateral choice option

What are the risk factors in an asset with the collateral choice option:

V c(t) = CTD(t,T )V (t) ?

V is linear =⇒ only risk factor is its underlying =⇒ ∆V .
CTD is convex =⇒ ∆CTD, νCTD?

Collateral spreads cannot be traded, what is a hedging asset for them?

1 Create artificial products “bond on collateral spreads”
Qi(t,T ) = E[exp(−

∫ T
t qi(s)ds)]

and options on it.

2 Are there liquidly traded instruments that can serve as a proxy for the
same risk factors?
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