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We consider the collateral choice option with free choice and substitution
from a selection of rates.

One choice: Many choices:
{Cf) {C(). Cly. .., CN}
EQ |:e_ foT c(t)dt V(T)i| EQ() o (];JT max(co(t),c1(t),...,cn(t))dt V(T)
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We consider the collateral choice option with free choice and substitution
from a selection of rates.

One choice: Many choices:
{1} {r();rla"'arN}
EQ |:€ [“T C(t)dt V(T)} EQO [e— fOTmax(r(](t),n(t),...,rN(t))dt V(T)
Each collateral rate creates its own measure: Qg, Q1, ..., Qn.

Choose one (Qp) and translate all collateral rates to the corresponding
currency.
“FX-adjusted collateral rates” r; = FX%(c;)
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Stochastic modelling always leads to a bigger discount.

— E[rg] = det. ry
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Stochastic modelling always leads to a bigger discount.
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Jensen's inequality: max(E[ry(t)], EQ[r(t)]) < EQ[max(ro(t), ri(t))]
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Instead of FX-adjusted collateral rates, we use collateral spreads:

max(ro(t), ri(t),..., rN(t)) = ro(t)—i—max(O, (n—ro)(t),..., (rN—ro)(t))

_ [e_ 5T rg(t)dti| BT [e— fOTmax(0,(r1—ro)(t),...,(rN—ro)(t))dt:|

= Py(0,T) ET[e* fonaX(Oa ql(t)a~--»QN(t))dti|

Collateral spreads have much less volatility and their maximum is well
described by a second order Taylor expansion.
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The spreads g; are modelled as correlated Hull-White processes under the
T-forward measure:

dqi(t) = ki (0i(t) — qi(t))dt + &dWi(t)

Finite Dimensional Distribution:
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The spreads g; are modelled as correlated Hull-White processes under the
T-forward measure:

dqi(t) = ki (0i(t) — qi(t))dt + &dWi(t)

Define maximum process

M(t) = max (0, qi(t), ..., qn(t))
Finite Dimensional Distribution:
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qi(ts)
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93(t5)  qs(te
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1) The marginal distribution max(0, q1(t), ..., gn(t)) is not tractable.
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0 0 0 0 0 0
ai(t) qi(t) qi(ts) qi(ts) qa(ts) qi(ts)
qQz2(t1) qa(tz) oolts) qulty) qults) gults)
qs(t1) qg3(ta) gs(ts) qs(ts) qs(ts) qs(te)

M(t) M(ty) M(ts) M(ty) M(ts) M(tg)DD

1) The marginal distribution max(0, g1(t), ..., gn(t)) is not tractable.
2) The process distribution (M(t1),..., M(tg)) is not tractable.

We need it all!

ET [exp( /OTI\/I(t)dt)]
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The problem can be simpified by order reduction.

For collateral spreads, second order approximation is sufficient.

ET{exp(/ I\/l(t)dt)}
~ exp(ET[—/ /\/I(t)dt]) <1 + ;Var[/ /\/I(t)dt])
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The problem can be simpified by order reduction.

For collateral spreads, second order approximation is sufficient.

T

ET {exp(— / M(t)dt)}

= exp(—/ ET[I\/I(t)]dt> <1 - ;Var[/ /\/I(t)dt])

0 0

First order term depends only on the marginal distribution.
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At each time t, we model the spreads g;(t) conditionally independent.

Common factor approximation:

qgi(t) = C(t) + Ai(t)

with independent ql(t) =
normal distributions

C(t) and A;(t)

such that ~
qz(t) =
qi(t) ~ qi(t).
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The common factor maximum can be expressed in terms of independent
random variables.

M(t) = max(0,qi(t), ..., qn(t))
= max(0, C(t) + A(t)
= max(0, C(t) + max(A;(t),..., An(t)))
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The common factor maximum can be expressed in terms of independent
random variables.

M(t) = max(O q1(t),. CIN(t))
:max(O C(t )+A1() ()+AN< ))
= max(0, C(t) 4 max(A; - An(t)))

T T

sum of independent random variables

This makes the CDF of M(t) available.
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The CDF of M(t) = max (0, C(t) + max(Ai(t),...,An(t))) is
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The CDF of M(t) = max (0, C(t) + max(Ai(t),...,An(t))) is

. o, x <0,
PI[M(t) < x] = {[[DT[C(t) +max(Ai(t),...,An(t)) < x], x>0.

The CDF of the maximum is

N
Fmax(A,-(t))(X) = PT[maX(Al(t)v ce 7AN(t)) < X] = HPT[AI(t) < X]'
i=1

The CDF of the sum of independent random variables is

PTC(t) +max(A(t), ..., An(t)) < x| = (fe(e 5 Fmax(ai(e)) (%)-

density of C(t) Convolution
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With the CDF of M(t), any moment can be computed.

[e.e]

E" {I\/I(t)q = / ox"1 (1 - (fC(t) * Frnax(A,-(t)))(X))dX
0
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The variance of the integral is harder to estimate.
T T T

.
Var[/ M(t)dt}_ET[/ / M(t)M(s)dtds}—ETM M(t)dt}

0 0 0
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1) Ito Process dX(t) = g(t)dt + h(t)dB(t)

Choose coefficients g, h such that

E[X(t)] = E[M(t)], Var[X(t)] = Var[M(t)].
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The variance of the integral is harder to estimate.
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1) Ito Process dX(t) = g(t)dt + h(t)dB(t)
Choose coefficients g, h such that

E[X(t)] = E[M(t)], Var[X(t)] = Var[M(t)].
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The variance of the integral is harder to estimate.

T T

T T
Var| [ M(t)dt| =RET M(t)M(s)dtds| —ET| [ M(t)dt ’
[[ nae] <=7 [ [ momisjaes| [[ )

0 0

1) Ito Process dX(t) = g(t)dt + h(t)dB(t)

Choose coefficients g, h such that

E[X(t)] = E[M(t)], Var[X(t)] = Var[M(t)].

T T t T

Var / X(t)dt] = / / Var[M(s)] dsdt + / (T — t)\Var[M(1)]dt

0 0 0 0

This variance estimator neglects mean-reversion but is quickly computed.

12/16



2) Mean-reverting estimator
Based on Sankovich & Zhu ‘15

Heuristically:
T T

Var[/ M(t)dt} %Var[/ Z(t)dt]

0 0

with a mean-reverting process Z(t) such that

Var[Z(t)] = Var[M(t)]

and the mean-reversion speed is

N
R(t) =Y wiPT[qi(t) = M(1)].
i=1

13/16



2) Mean-reverting estimator
Based on Sankovich & Zhu ‘15

Heuristically:
T T

Var[/ M(t)dt} %Var[/ Z(t)dt]

0 0

with a mean-reverting process Z(t) such that

Var[Z(t)] = Var[M(t)]
and the mean-reversion speed is
N ~
K(t) = Z“iPT[ai(t) = M(t)].
i=1

available analytically
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Are there no downsides to the common factor approximation?

Analytical tractability comes at cost of simplified correlation structure.

Cov[qi(t), qj(t)] = Cov[C(t) + Ai(t), C(t) + Aj(t)] = Var[C(t)]

Thus

corr[q; 5. = varlc ()]
[q,(t), qj(t)] \/Var[qi(t)]var[qj(t)] a

This has only one degree of freedom, so for more than three currencies
(go = 0, g1, g2) the correlation structure must be approximated.

14/16



CTD Discount Factor

Three currencies: Correlation

Effect on Discount Factor Error of Common Factor Model
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CTD Discount Factor
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Three currencies: Mean-reversion speed

Effect on Discount Factor

CF1
CF2 diffusion
—&— CF2 mean-reverting
—— exact
- calibrated mean reversion

10-3 102 107!
Mean Reversion Speed

Error of Common Factor Model

Absolute error in basis points

CF2 diffusion
—&— CF2 mean-reverting
- calibrated mean reversion

1072 1071 100
Mean Reversion Speed
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Conclusions

e Semi-analytical result
with restriction to correlation range (or complexity)

e Fast computation even for large number of currencies

e Model error well within range of parameter error
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