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We consider the collateral choice option with free choice and substitution
from a selection of rates.

One choice:

{c}

EQ
[
e−

∫ T
0 c(t)dtV (T )

]

Many choices:

{c0, c1, . . . , cN}

EQ0

[
e−

∫ T
0 max(c0(t),c1(t),...,cN(t))dtV (T )

]
Each collateral rate creates its own measure: Q0, Q1, . . . , QN .
Choose one (Q0) and translate all collateral rates to the corresponding
currency.
ri = FX0

i (ci)
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One choice:
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e−
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0 c(t)dtV (T )

]

Many choices:

{r0, r1, . . . , rN}

EQ0
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Stochastic modelling always leads to a bigger discount.

Jensen’s inequality: EQ0[max(r0(t), r1(t))] ≥ max(EQ0[r0(t)],EQ0[r1(t)])
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Instead of FX-adjusted collateral rates, we use collateral spreads:

max
(
r0(t), r1(t), . . . , rN(t)

)
= r0(t)+max

(
0, (r1−r0)(t), . . . , (rN−r0)(t)

)
EQ0

[
e−

∫ T
0 max

(
r0(t),r1(t),...,rN(t)

)
dt
]

= EQ0

[
e−

∫ T
0 r0(t)dt

]
︸ ︷︷ ︸ ET

[
e−

∫ T
0 max

(
0,(r1−r0)(t),...,(rN−r0)(t)

)
dt
]

= P0(0,T ) ET
[
e−

∫ T
0 max

(
0, q1(t),...,qN(t)

)
dt
]

Collateral spreads have much less volatility and their maximum is well
described by a second order Taylor expansion.
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The spreads qi are modelled as correlated Hull-White processes under the
T -forward measure:

dqi(t) = κi
(
θi(t)− qi(t)

)
dt + ξidWi(t)

Finite Dimensional Distribution:
0 0 0 0 0 0

q1(t1) q1(t2) q1(t3) q1(t4) q1(t5) q1(t6)
q2(t1) q2(t2) q2(t3) q2(t4) q2(t5) q2(t6)
q3(t1) q3(t2) q3(t3) q3(t4) q3(t5) q3(t6)


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The spreads qi are modelled as correlated Hull-White processes under the
T -forward measure:

dqi(t) = κi
(
θi(t)− qi(t)

)
dt + ξidWi(t)

Define maximum process

M(t) = max
(
0, q1(t), . . . , qN(t)

)
Finite Dimensional Distribution:

0 0 0 0 0 0
q1(t1) q1(t2) q1(t3) q1(t4) q1(t5) q1(t6)
q2(t1) q2(t2) q2(t3) q2(t4) q2(t5) q2(t6)
q3(t1) q3(t2) q3(t3) q3(t4) q3(t5) q3(t6)


(
M(t1) M(t2) M(t3) M(t4) M(t5) M(t6)

)
5/16



1) The marginal distribution max(0, q1(t), . . . , qN(t)) is not tractable.
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1) The marginal distribution max(0, q1(t), . . . , qN(t)) is not tractable.
2) The process distribution (M(t1), . . . ,M(tR)) is not tractable.

We need it all!

ET
[
exp

(
−
∫ T

0
M(t)dt

)]
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The problem can be simpified by order reduction.

For collateral spreads, second order approximation is sufficient.

ET
[
exp

(
−

T∫
0

M(t)dt
)]

≈ exp
(
ET [− T∫

0

M(t)dt
])(

1 +
1

2
Var

[ T∫
0

M(t)dt
])
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ET
[
exp

(
−

T∫
0

M(t)dt
)]

≈ exp
(
ET [− T∫

0

M(t)dt
])(

1 +
1

2
Var

[ T∫
0

M(t)dt
])

= exp
(
−

T∫
0

ET [M(t)
]
dt
)(

1 +
1

2
Var

[ T∫
0

M(t)dt
])

First order term depends only on the marginal distribution.
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At each time t, we model the spreads qi(t) conditionally independent.

Common factor approximation:

q̃i(t) = C(t) + Ai(t)

with independent
normal distributions

C(t) and Ai(t)

such that

q̃i(t) ∼ qi(t).
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The common factor maximum can be expressed in terms of independent
random variables.

M̃(t) = max
(
0, q̃1(t), . . . , q̃N(t)

)
= max

(
0,C(t) + A1(t), . . . ,C(t) + AN(t)

)
= max

(
0,C(t) +max

(
A1(t), . . . ,AN(t)

))
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sum of independent random variables

This makes the CDF of M̃(t) available.
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The CDF of M̃(t) = max
(
0,C(t) +max(A1(t), . . . ,AN(t))

)
is

PT [M̃(t) ≤ x ] =
{
0, x ≤ 0,

PT [C(t) +max(A1(t), . . . ,AN(t)) ≤ x ], x > 0.
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{
0, x ≤ 0,

PT [C(t) +max(A1(t), . . . ,AN(t)) ≤ x ], x > 0.

The CDF of the maximum is

Fmax(Ai(t))(x) = PT [max(A1(t), . . . ,AN(t)) ≤ x ] =
N∏

i=1

PT [Ai(t) ≤ x ].

The CDF of the sum of independent random variables is

PT [C(t) +max(A1(t), . . . ,AN(t)) ≤ x ] =
(
fC(t)∗Fmax(Ai(t))

)
(x).

density of C(t) Convolution
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With the CDF of M̃(t), any moment can be computed.

ET
[
M̃(t)`

]
=

∞∫
0

`x `−1
(
1−

(
fC(t) ∗ Fmax(Ai(t))

)
(x)

)
dx
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The variance of the integral is harder to estimate.

Var
[ T∫

0

M(t)dt
]
= ET

[ T∫
0

T∫
0

M(t)M(s)dtds
]
− ET

[ T∫
0

M(t)dt
]2

12/16



The variance of the integral is harder to estimate.

Var
[ T∫

0

M(t)dt
]
= ET

[ T∫
0

T∫
0

M(t)M(s)dtds
]
− ET

[ T∫
0

M(t)dt
]2

1) Ito Process dX(t) = g(t)dt + h(t)dB(t)

Choose coefficients g , h such that

E[X(t)] = E[M̃(t)], Var[X(t)] = Var[M̃(t)].

12/16



The variance of the integral is harder to estimate.

Var
[ T∫

0

M(t)dt
]
= ET

[ T∫
0

T∫
0

M(t)M(s)dtds
]
− ET

[ T∫
0

M(t)dt
]2

1) Ito Process dX(t) = g(t)dt + h(t)dB(t)

Choose coefficients g , h such that

E[X(t)] = E[M̃(t)], Var[X(t)] = Var[M̃(t)].

Var
[ T∫

0

X(t)dt
]
=

T∫
0

t∫
0

Var
[
M̃(s)

]
dsdt +

T∫
0

(T − t)Var
[
M̃(t)

]
dt

12/16



The variance of the integral is harder to estimate.

Var
[ T∫

0

M(t)dt
]
= ET

[ T∫
0

T∫
0

M(t)M(s)dtds
]
− ET

[ T∫
0

M(t)dt
]2

1) Ito Process dX(t) = g(t)dt + h(t)dB(t)

Choose coefficients g , h such that

E[X(t)] = E[M̃(t)], Var[X(t)] = Var[M̃(t)].

Var
[ T∫

0

X(t)dt
]
=

T∫
0

t∫
0

Var
[
M̃(s)

]
dsdt +

T∫
0

(T − t)Var
[
M̃(t)

]
dt

This variance estimator neglects mean-reversion but is quickly computed.
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2) Mean-reverting estimator
Based on Sankovich & Zhu ‘15

Heuristically:

Var
[ T∫

0

M(t)dt
]
≈ Var

[ T∫
0

Z(t)dt
]

with a mean-reverting process Z(t) such that

Var[Z(t)] = Var[M̃(t)]

and the mean-reversion speed is

κ̃(t) =
N∑

i=1

κiPT [q̃i(t) = M̃(t)
]
.

available analytically
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Are there no downsides to the common factor approximation?

Analytical tractability comes at cost of simplified correlation structure.

Cov[q̃i(t), q̃j(t)] = Cov[C(t) + Ai(t),C(t) + Aj(t)] = Var[C(t)]

Thus

corr[q̃i(t), q̃j(t)] =
Var[C(t)]√

Var[qi(t)]Var[qj(t)]
≥ 0

This has only one degree of freedom, so for more than three currencies
(q0 = 0, q1, q2) the correlation structure must be approximated.
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Three currencies: Correlation

Effect on Discount Factor Error of Common Factor Model
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Three currencies: Mean-reversion speed

Effect on Discount Factor Error of Common Factor Model
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Conclusions

Semi-analytical result
with restriction to correlation range (or complexity)

Fast computation even for large number of currencies

Model error well within range of parameter error
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