Unified model for XVA including Interest Rates and Rating

Kevin Kamm

September 29, 2022

Supervisor (University)
Prof. Dr. Andrea Pascucci, Bologna

Setting of the thesis

Collateral reduces the potential loss at the default and reduces the value of XVA making the financial derivative more attractive to customers but can increase the default probability!

Aim of the thesis

We would like to minimize the collateral-inclusive CVA

$$
\begin{equation*}
\min _{C \in ?} \mathbb{E}^{\mathbb{Q}}\left[\mathrm{LGD} \exp \left(-\int_{t} r_{s} d s\right) \mathbb{1}<T\left(\mathrm{~V}^{+}-\mathrm{C}^{+}\right)^{+} \mid \mathcal{G}_{t}\right] . \tag{CVA}
\end{equation*}
$$

1 The loss-given-default (LGD) will be constant and is equal to 0.6 ;
2 The time of defaulf prior to the end of contracts $T>0$ of an entity is denoted by
3 The portfolio at time t between the counterparty and an entity is denoted by V_{t};
4 The collateral account at time t by C_{t};
5 The discount factor seen from time t up to time u by $\exp \left(-\int_{t}^{u} r_{s} d s\right)$.

Aim of the thesis

$$
\begin{equation*}
\min _{C \in ?} \mathbb{E}^{\mathbb{Q}}\left[\mathrm{LGD} \exp \left(-\int_{t} r_{s} d s\right) \mathbb{1}<T\left(\mathrm{~V}^{+}-\mathrm{C}^{+}\right)^{+} \mid \mathcal{G}_{t}\right] . \tag{CVA}
\end{equation*}
$$

1 The unconstraint problem is easily solved by $C_{t}=V_{t}$, this is called perfect collateralization;

- Posting collateral is expensive and counterparties would like to avoid it;
- Therefore the aim is to minimize (CVA) under the constraint of as little collateral postings as possible;
(One way to do this, is to take the creditworthiness of a counterparty into accourt, whigho we will see in Section 2.

Aim of the thesis

$$
\begin{equation*}
\min _{C \in ?} \mathbb{E}^{\mathbb{Q}}\left[\mathrm{LGD} \exp \left(-\int_{t} r_{s} d s\right) \mathbb{1}<T\left(\mathrm{~V}^{+}-\mathrm{C}^{+}\right)^{+} \mid \mathcal{G}_{t}\right] . \tag{CVA}
\end{equation*}
$$

1 The unconstraint problem is easily solved by $C_{t}=V_{t}$, this is called perfect collateralization;
2 Posting collateral is expensive and counterparties would like to avoid it;

- Therefore the aim is to minimize (CVA) under the constraint of as little collateral postings as possible;
(1) One way to do this, is to take the creditworthiness of a counterparty into account, whighe
we will see in Section 2 .

Aim of the thesis

$$
\min _{C \in ?} \mathbb{E}^{\mathbb{Q}}\left[\mathrm{LGD} \exp \left(-\int_{t} r_{s} d s\right) \mathbb{1}<T\left(\mathrm{~V}^{+}-\mathrm{C}^{+}\right)^{+} \mid \mathcal{G}_{t}\right] .
$$

(1) The unconstraint problem is easily solved by $C_{t}=V_{t}$, this is called perfect collateralization;
2 Posting collateral is expensive and counterparties would like to avoid it;
3 Therefore the aim is to minimize (CVA) under the constraint of as little collateral postings as possible;
© One way to do this, is to take the creditworthiness of a counterparty into account, we will see in Section 2.

Aim of the thesis

$$
\begin{equation*}
\min _{C \in ?} \mathbb{E}^{\mathbb{Q}}\left[\mathrm{LGD} \exp \left(-\int_{t} r_{s} d s\right) \mathbb{1}<T\left(\mathrm{~V}^{+}-\mathrm{C}^{+}\right)^{+} \mid \mathcal{G}_{t}\right] . \tag{CVA}
\end{equation*}
$$

(1) The unconstraint problem is easily solved by $C_{t}=V_{t}$, this is called perfect collateralization;
2 Posting collateral is expensive and counterparties would like to avoid it;
3 Therefore the aim is to minimize (CVA) under the constraint of as little collateral postings as possible;
4 One way to do this, is to take the creditworthiness of a counterparty into account, which we will see in Section 2.

Table of Contents

Interest rates

Calibration to swaptions

Ratings

Historical and Market Data
 A Lie Group perspective The stochastic Langevin equation

Magnus expansion

Heuristical derivation
Expansion formulas
SPDE

Di Francesco，Marco and Kevin Kamm（2021）．＂How to handle negative interest rates in a CIR framework＂．In：SeMA Journal．ISSN： 2281－7875．URL：https：／／doi．org／10．1007／s40324－021－00267－w．

Di Francesco，Marco and Kevin Kamm（2022）．＂On the Deterministic－Shift Extended CIR Model in a Negative Interest Rate Framework＂．In：International Journal of Financial Studies 10（2）．ISSN： 2227－7072．URL：https：／／www．mdpi．com／2227－7072／10／2／38．
for collateral－ inclusive XVA in an ICTMC framework．URL：https：／／arxiv．org／abs／ 2207.03883.

Kamm，Kevin and Michelle Muniz（2022）．A novel approach to rating transition modelling via Machine Learning and SDEs on Lie groups．URL： https：／／arxiv．org／abs／2205．15699．

Kamm，Kevin，Stefano Pagliarani and Andrea Pascucci（2021）． ＂On the Stochastic Magnus Expansion and Its Application to SPDEs＂． In：Journal of Scientific Computing 89（3），p．56．ISSN：1573－7691．URL： https：／／doi．org／10．1007／s10915－021－01633－6．

Numerical solution of kinetic SPDEs via stochastic Magnus expansion． URL：https：／／arxiv．org／abs／2207．09776．

Interest rates

Calibration to swaptions

$$
\min _{C \in ?} \mathbb{E}^{\mathbb{Q}}\left[\mathrm{LGD} \exp \left(-\int_{t}^{\tau} r_{s} d s\right) \mathbb{1}_{\tau<\tau}\left(\mathrm{V}_{\tau}^{+}-\mathrm{C}_{\tau}^{+}\right)^{+} \mid \mathcal{G}_{t}\right]
$$

joint work with Marco Di Francesco

Idea

We want to study negative interest rates in a Cox-Ingersoll-Ross framework. In particular, we set

$$
r(t)=x(t)-y(t)+\psi(t)
$$

where for $z \in\{x, y\}$

$$
\begin{equation*}
d z(t)=k_{z}\left(\theta_{z}-z(t)\right) d t+\sigma_{z} \sqrt{z(t)} d W_{z}(t), \quad z(0)=z_{0} \tag{CIR}
\end{equation*}
$$

are independent and $\psi(t)$ is the deterministic shift extension

$$
\psi(t):=f^{M}(0, t)-f(0, t)
$$

with $f^{M}(0, t), f(0, t)$ the market, model instantaneous forward rate, respectively.

Swaps

The net value of a $T_{0} \times\left(T_{N}-T_{0}\right)$ payer and receiver swap at time $t \leq T_{0}$ is given by

$$
\begin{equation*}
\operatorname{Swap}(t ; K, \zeta):=\zeta\left(\mathrm{P}\left(t, T_{0}\right)-\mathrm{P}\left(t, T_{N}\right)-K \sum_{i=1}^{N} \alpha_{i} \mathrm{P}\left(t, T_{i}\right)\right) \tag{1.1}
\end{equation*}
$$

where $\alpha_{i}=T_{i}-T_{i-1}$ is the day-count convention and K the fixed rate,

Swaptions

Let us first of all make the following observation: The payer $(\zeta=1)$ and receiver $(\zeta=-1)$ swap value (1.1) can both be rewritten as

$$
\operatorname{Swap}(t ; K, \zeta):=\sum_{i=0}^{N} a_{i}^{\zeta} \mathrm{P}\left(t, T_{i}\right),
$$

where a_{i}^{ζ} are equal to

$$
a_{0}^{\zeta}:=\zeta, \quad a_{N}^{\zeta}:=-\zeta\left(1+K \alpha_{N}\right), \quad a_{i}^{\zeta}:=-\zeta K \alpha_{i}, \quad i=1, \ldots, N-1 .
$$

Now, with this notation, we can write the swaption prices under the forward measure as

$$
\begin{aligned}
\operatorname{Swaption}(t ; K, \zeta) & =\mathrm{P}\left(t, T_{0}\right) \mathbb{E}^{\mathbb{Q}^{T_{0}}}\left[\left(\operatorname{Swap}\left(T_{0} ; K, \zeta\right)\right)^{+} \mid \mathcal{F}_{t}\right] \\
& \stackrel{!}{=} \mathrm{P}\left(t, T_{0}\right) \int_{0}^{\infty} x f(x) d x
\end{aligned}
$$

for an unknown density function f.

Gram-Charlier expansion

Assume that a random variable Y has the continuous density function f and has finite cumulants $c_{k}, k \geq 1$. Then the following holds:
f can be expanded as

$$
f(x)=\sum_{n=0}^{\infty} \frac{q_{n}}{\sqrt{c_{2}}} H_{n}\left(\frac{x-c_{1}}{\sqrt{c_{2}}}\right) \varphi\left(\frac{x-c_{1}}{\sqrt{c_{2}}}\right),
$$

where H_{n} are the probabilist's Hermite polynomials and φ the probability density function of the standard normal distribution, as well as $q_{0}=1, q_{1}=q_{2}=0$, and for $n \geq 3$

$$
q_{n}=\frac{1}{n!} \mathbb{E}\left[H_{n}\left(\frac{Y-c_{1}}{\sqrt{c_{2}}}\right)\right]=\sum_{m=1}^{\left\lfloor\frac{n}{3}\right\rfloor} \sum_{\substack{k_{1}+\cdots+k_{m}=n \\ k_{i} \geq 3}} \frac{c_{k_{1}} \cdots c_{k_{m}}}{m!k_{1}!\cdots k_{m}!}\left(\frac{1}{\sqrt{c_{2}}}\right)^{n} .
$$

Gram-Charlier expansion

In our case, we have for any $a \in \mathbb{R}$

$$
\begin{aligned}
\mathbb{E}\left[Y \mathbb{1}_{Y \geq a}\right]=c_{1} \mathcal{N} & \left(\frac{c_{1}-a}{\sqrt{c_{2}}}\right)+\sqrt{c_{2}} \varphi\left(\frac{c_{1}-a}{\sqrt{c_{2}}}\right) \\
& +\sum_{n=3}^{\infty}(-1)^{n-1} q_{n} \varphi\left(\frac{c_{1}-a}{\sqrt{c_{2}}}\right)\left[a H_{n-1}\left(\frac{c_{1}-a}{\sqrt{c_{2}}}\right)-\sqrt{c_{2}} H_{n-2}\left(\frac{c_{1}-a}{\sqrt{c_{2}}}\right)\right]
\end{aligned}
$$

where furthermore \mathcal{N} denotes the cumulative distribution function of the standard normal distribution.
In particular, we have

$$
q_{3}=\frac{c_{3}}{3!c_{2}^{\frac{3}{2}}}, \quad q_{4}=\frac{c_{4}}{4!c_{2}^{\frac{4}{2}}}, \quad q_{5}=\frac{c_{5}}{5!c_{2}^{\frac{5}{2}}}, \quad q_{6}=\frac{c_{6}+10 c_{3}^{2}}{6!c_{2}^{\frac{6}{2}}}, \quad q_{7}=\frac{c_{7}+35 c_{3} c_{4}}{7!c_{2}^{\frac{7}{2}}} .
$$

Gram-Charlier expansion

Therefore, it remains to find the cumulants c_{i}, usually 7 are enough. For this, one proceeds as follows:
(1) Use the fact that cumulants and moments are one-to-one;

2 Derive the bond and swap moments;
3 For this, Riccati equations have to be solved;
4 Truncate the Gram-Charlier expansion and use it for approximating swaption prices.

Ratings

Historical and Market Data
A Lie Group perspective The stochastic Langevin equation

$$
\min _{\mathrm{C} \in ?} \mathbb{E}^{\mathbb{Q}}\left[\mathrm{LGD} \exp \left(-\int_{t} r_{s} d s\right) \mathbb{1}<T\left(\mathrm{~V}^{+}-\mathrm{C}^{+}\right)^{+} \mid \mathcal{G}_{t}\right]
$$

joint work with Michelle Muniz and Luca Caputo

Ratings

Ratings are an indicator of creditworthiness and usually denoted by

$$
\text { best ratings } \mathbf{A}>\mathbf{B}>\mathbf{C}>\mathbf{D} \quad \text { worst rating }
$$

The rating D denotes the default or bankruptcy of an entity. We will assume that an entity cannot recover from default.

Ratings

Ratings are an indicator of creditworthiness and usually denoted by

$$
\text { best ratings } \mathbf{A}>\mathbf{B}>\mathbf{C}>\mathbf{D} \quad \text { worst rating }
$$

The rating \mathbf{D} denotes the default or bankruptcy of an entity. We will assume that an entity cannot recover from default.
With this concept, we would like to define the collateral account as

$$
\mathrm{C}_{t}:=f\left(V_{t}, X_{t}\right),
$$

where $X_{t}:=\left(X_{t}^{B}, X_{t}^{C}\right)$ is a stochastic process whose values are the rating of a bank and a counterparty at time t.

Interest rates

Historical and Market Data
A Lie Group perspective
The stochastic Langevin equation

Rating matrices

Example of a one year rating matrix under the historical measure:

	To	A	B	C
From		D		
A	0.9395	0.0566	0.0037	$2.7804 \mathrm{e}-04$
B	0.0092	0.9680	0.0211	0.0017
C	$6.2064 \mathrm{e}-04$	0.0440	0.8154	0.1400
D	0	0	0	1

(1) Probability of transitioning from \mathbf{B} to \mathbf{C} in one year is 2.11%

- Absorbing default state
- Rows sum up to one
- Under the risk-neutral measure only the default column is known from Credit-Default-Swaps (CDS) with usually slightly higher probabilities

Rating matrices

Example of a one year rating matrix under the historical measure:

	To	A	B	C
From		D		
\mathbf{A}	0.9395	0.0566	0.0037	$2.7804 \mathrm{e}-04$
B	0.0092	0.9680	0.0211	0.0017
C	$6.2064 \mathrm{e}-04$	0.0440	0.8154	0.1400

(1) Probability of transitioning from \mathbf{B} to \mathbf{C} in one year is 2.11%

- Rows sum up to one
- Under the risk-neutral measure only the default column is known from Credit-Default-Swaps (CDS) with usually slightly higher probabilities

Rating matrices

Example of a one year rating matrix under the historical measure:

	To	A	B	C
From	D			
A	0.9395	0.0566	0.0037	$2.7804 \mathrm{e}-04$
B	0.0092	0.9680	0.0211	0.0017
C	$6.2064 \mathrm{e}-04$	0.0440	0.8154	0.1400
D	0	0	0	1

(1) Probability of transitioning from \mathbf{B} to \mathbf{C} in one year is 2.11%

2 Absorbing default state
3 Rows sum up to one

- Under the risk-neutral measure only the default column is known from Credit-Default-Swaps (CDS) with usually slightly higher probabilities

Rating matrices

Example of a one year rating matrix under the historical measure:

	To	A	B	C
From		D		
A	0.9395	0.0566	0.0037	$2.7804 \mathrm{e}-04$
B	0.0092	0.9680	0.0211	0.0017
C	$6.2064 \mathrm{e}-04$	0.0440	0.8154	0.1400
D	0	0	0	1

(1) Probability of transitioning from \mathbf{B} to \mathbf{C} in one year is 2.11%

2 Absorbing default state
3 Rows sum up to one
4 Under the risk-neutral measure only the default column is known from Credit-Default-Swaps (CDS) with usually slightly higher probabilities

Stochastic Matrices form a Lie-Group

A model in the Lie-Algebra

We need to ensure that the gEM has values not only in the Lie-Group G but in the subspace of stochastic matrices $G_{\geq 0}$. One sufficient condition is to ensure monotonically increasing paths in the Lie-Algebra.
Therefore, we define our model in the Lie-Algebra under the historical measure by

$$
\begin{align*}
d A_{t}^{i} & =\left|Y_{t}^{i}\right|^{a_{i}} d t \tag{Langevin}\\
d Y_{t}^{i} & =b_{i} d t+\sigma_{i} d W_{t}^{i}, \quad Y_{0}^{i}=0
\end{align*}
$$

We can derive the dynamics under a risk-neutral measure by applying the usual Girsanov theorem to Y_{t}^{i}.
Also notice that (Langevin) has Langevin-like dynamics, which we will come back to later.

Calibration

1) Under the historical measure, we use a Deep-Neural-Network called TimeGAN to analyse the distribution of historical time-series data and match the moments of our model and TimeGAN data;

- Under the risk-neutral measure, we calibrate the change of measure parameters, such that the model has close probabilities of default compared to the market data;
© A rating process can now be simulated with a nested Stochastic Simulation Algorithm (SSA) leading to a doubly stochastic process X_{t}^{B} and X_{t}^{C} for the bank and counterparty.

Calibration

1. Under the historical measure, we use a Deep-Neural-Network called TimeGAN to analyse the distribution of historical time-series data and match the moments of our model and TimeGAN data;
2 Under the risk-neutral measure, we calibrate the change of measure parameters, such that the model has close probabilities of default compared to the market data;
(A rating process can now be simulated with a nested Stochastic Simulation Algorithm (SSA) leading to a doubly stochastic process X_{t}^{B} and X_{t}^{C} for the bank and counterparty.

Calibration

1 Under the historical measure, we use a Deep-Neural-Network called TimeGAN to analyse the distribution of historical time-series data and match the moments of our model and TimeGAN data;
2 Under the risk-neutral measure, we calibrate the change of measure parameters, such that the model has close probabilities of default compared to the market data;
3 A rating process can now be simulated with a nested Stochastic Simulation Algorithm (SSA) leading to a doubly stochastic process X_{t}^{B} and X_{t}^{C} for the bank and counterparty.

Collateral-inclusive bilateral XVA

XVA with the different collateral agreements (no, perfectly and rating triggers) using $\mathrm{LGD}_{B}=0.6$, as well as $\mathrm{LGD} C=0.6$ with $M=10000$ simulations and thresholds defined as before.

XVA	Uncollateralized	Rating Triggers	Perfectly collateralized
DVA	1015922	587335	351276
CVA	896413	376938	271492

A filtering problem

For the available data we have an information mismatch under the historical and risk-neutral measure.

	Historical data	Risk neutral data
Entity	(unobserved)	observed
Sector	observed	(unobserved)

At the moment we are studying the stochastic Langevin equation for this problem, which emerges if one applies the Fokker-Planck equation to a special case of (Langevin). This leads to an SPDE with two spatial dimensions, for which we found an efficient numerical scheme based on the Magnus expansion.

Magnus expansion

Heuristical derivation
Expansion formulas
SPDE

joint work with Stefano Pagliarani and Andrea Pascucci

Idea

Solve the matrix-valued SDE

$$
d X_{t}=B X_{t} d t+A X_{t} d W_{t}, \quad X_{0}=I_{d}
$$

by assuming that there exists a solution $X_{t}=\exp \left(Y_{t}\right)$ for small times $t>0$ depending on a stopping time and

$$
Y_{t}=\int_{0}^{t} \mu\left(Y_{s}\right) d s+\int_{0}^{t} \sigma\left(Y_{s}\right) d W_{s}, \quad Y_{0}=0_{\mathbb{R} d \times d} .
$$

Determine μ and σ

$$
\begin{aligned}
d X_{t}= & B X_{t}+A X_{t} d W_{t} \\
= & B \exp \left(Y_{t}\right)+A \exp \left(Y_{t}\right) d W_{t} \\
= & d \exp \left(Y_{t}\right) \\
= & \left(\mathcal{L}_{Y_{t}}\left(\mu\left(Y_{s}\right)\right)+\frac{1}{2} Q_{Y_{t}}\left(\sigma\left(Y_{t}\right), \sigma\left(Y_{t}\right)\right)\right) \exp \left(Y_{t}\right) d t \\
& +\mathcal{L}_{Y_{t}}\left(\sigma\left(Y_{t}\right)\right) \exp \left(Y_{t}\right) d W_{t} .
\end{aligned}
$$

A comparison of coefficients yields

$$
\begin{aligned}
& B \stackrel{!}{=} \mathcal{L}_{Y_{t}}\left(\mu\left(Y_{t}\right)\right)+\frac{1}{2} \mathcal{Q}_{Y_{t}}\left(\sigma\left(Y_{t}\right), \sigma\left(t, Y_{t}\right)\right) \\
& A \stackrel{!}{=} \mathcal{L}_{Y_{t}}\left(\sigma\left(Y_{t}\right)\right)
\end{aligned}
$$

Determine μ and σ

Inverting \mathcal{L}_{Y} by using Baker's lemma yields

$$
\begin{align*}
& \sigma\left(Y_{t}\right) \equiv \sum_{n=0}^{\infty} \frac{\beta_{n}}{n!} \operatorname{ad}_{Y_{t}}^{n}(A) \tag{3.2}\\
& \mu\left(Y_{t}\right) \equiv \sum_{k=0}^{\infty} \frac{\beta_{k}}{k!} \operatorname{ad}_{Y_{t}}^{k}\left(B-\frac{1}{2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\operatorname{ad}_{Y_{t}}^{n}\left(\sigma\left(Y_{t}\right)\right)}{(n+1)!} \frac{\operatorname{ad}_{Y_{t}}^{m}\left(\sigma\left(Y_{t}\right)\right)}{(m+1)!}\right. \tag{3.3}\\
&\left.+\frac{\left[\operatorname{ad}_{Y_{t}}^{n}\left(\sigma\left(Y_{t}\right)\right), \operatorname{ad}_{Y_{t}}^{m}\left(\sigma\left(Y_{t}\right)\right)\right]}{(n+m+2)(n+1)!m!}\right)
\end{align*}
$$

where β_{n} denote the Bernoulli numbers, e.g. $\beta_{0}=1, \beta_{1}=-\frac{1}{2}, \beta_{2}=\frac{1}{6}, \beta_{3}=0$ and $\beta_{4}=-\frac{1}{30}$.

Solve the SDE by Picard-iteration

Now, we solve the SDE for Y_{t} by Picard-iteration

$$
\begin{equation*}
Y_{t}^{n}=\int_{0}^{t} \mu\left(Y_{s}^{n-1}\right) d s+\int_{0}^{t} \sigma\left(Y_{s}^{n-1}\right) d W_{s} \tag{3.4}
\end{equation*}
$$

In order to derive the Magnus expansion formulas, we will introduce some bookkeeping parameters $\epsilon, \delta>0$ and substitute A by ϵA, as well as B by δB.
The Magnus expansion of order
(1) one will contain all the terms of Y_{t}^{1} with ϵ^{1} and δ^{1};

2 two will contain all the terms of Y_{t}^{2} with ϵ^{2}, δ^{2} and $\epsilon^{1} \delta^{1}$ plus all the terms of Y_{t}^{1};
3 three will contain all the terms of Y_{t}^{3} with $\epsilon^{3}, \delta^{3}, \epsilon^{2} \delta^{1}, \epsilon^{1} \delta^{2}$ plus all the terms of Y_{t}^{2};

Order 1, 2, 3

(1) order 1

$$
Y_{t}^{1}=\int_{0}^{t} B d s+\int_{0}^{t} A d W_{s}=B t+A W_{t}
$$

2 order 2

$$
\begin{aligned}
Y_{t}^{2} & =B t-\frac{1}{2} A^{2} t+\frac{1}{2}[B, A] \int_{0}^{t} W_{s} d s+A W_{t}-\frac{1}{2}[B, A]\left(t W_{t}-\int_{0}^{t} W_{s} d s\right) \\
& =Y_{t}^{1}-\frac{1}{2} A^{2} t+[B, A] \int_{0}^{t} W_{s} d s-\frac{1}{2}[B, A] t W_{t}
\end{aligned}
$$

3 order 3

$$
\begin{aligned}
Y_{t}^{3}=Y_{t}^{2} & +[[B, A], A]\left(\frac{1}{2} \int_{0}^{t} W_{s}^{2} d s-\frac{1}{2} W_{t} \int_{0}^{t} W_{s} d s+\frac{1}{12} t W_{t}^{2}\right) \\
& +[[B, A], B]\left(\int_{0}^{t} s W_{s} d s-\frac{1}{2} t \int_{0}^{t} W_{s} d s-\frac{1}{12} t^{2} W_{t}\right)
\end{aligned}
$$

General parabolic SPDE

We want to discretize the following SPDE in space only to apply the Magnus expansion

$$
\left\{\begin{array}{l}
d u_{t}(x, v)=\left(h(x, v) u_{t}(x, v)+f^{x}(x, v) \partial_{x} u_{t}(x, v)+f^{v}(x, v) \partial_{v} u_{t}(x, v)\right. \\
\left.\quad+\frac{1}{2} g^{x x}(x, v) \partial_{x x} u_{t}(x, v)+g^{x v}(x, v) \partial_{x v} u_{t}(x, v)+\frac{1}{2} g^{v v}(x, v) \partial_{v v} u_{t}(x, v)\right) d t \tag{SPDE}\\
\quad+\left(\sigma(x, v) u_{t}(x, v)+\sigma^{x}(x, v) \partial_{x} u_{t}(x, v)+\sigma^{v}(x, v) \partial_{v} u_{t}(x, v)\right) d W_{t} \\
u_{0}(x, v)=\phi(x, v) .
\end{array}\right.
$$

Finite Differences

We will impose zero-boundary conditions and therefore define the central finite-difference matrices

$$
\begin{array}{rlrl}
D^{x} & :=\frac{1}{2 \Delta x} \operatorname{tridiag}^{n_{x}, n_{x}}(-1,0,1), & D^{v} & :=\frac{1}{2 \Delta v} \operatorname{tridiag}^{n_{v}, n_{v}}(-1,0,1) \\
D^{x x} & :=\frac{1}{(\Delta x)^{2}} \operatorname{tridiag}^{n_{x}, n_{x}}(1,-2,1), & D^{v v}:=\frac{1}{(\Delta v)^{2}} \operatorname{tridiag}^{n_{v}, n_{v}}(1,-2,1) .
\end{array}
$$

$$
Z^{w}:=\left(z^{w}\left(x_{i}, v_{j}\right)\right)_{\substack{i=1, \ldots, n_{x} \\ j=1, \ldots, n_{v}}}, \quad \Sigma^{w}:=\left(\sigma^{w}\left(x_{i}, v_{j}\right)\right)_{\substack{i=1, \ldots, n_{x} \\ j=1, \ldots, n_{v}}}, \quad u_{t}^{n_{x}, n_{v}}:=\left(u_{t}\left(x_{i}, v_{j}\right)\right)_{\substack{i=1, \ldots, n_{x} \\ j=1, \ldots, n_{v}}}
$$

for $Z=F, G, H, z=f, g, h$, respectively, and $w \in\{x, v, x x, x v, v v\}$.

Method of Lines

$$
f^{x}\left(x_{i}, v_{j}\right) \partial_{x} u_{t}\left(x_{i}, v_{j}\right) \approx f^{x}\left(x_{i}, v_{j}\right) \frac{u_{t}\left(x_{i+1}, v_{j}\right)-u_{t}\left(x_{i-1}, v_{j}\right)}{2 \Delta x}
$$

for all $i=1, \ldots, n_{x}$ and $j=1, \ldots, n_{v}$.
In our notations a derivative in x is a multiplication of the corresponding finite-difference matrix from the left to $u_{t}^{n_{x}, n_{v}}$, i.e.

$$
\left(f^{x}\left(x_{i}, v_{j}\right) \frac{u_{t}\left(x_{i+1}, v_{j}\right)-u_{t}\left(x_{i-1}, v_{j}\right)}{2 \Delta x}\right)_{\substack{i=1, \ldots, n_{x} \\ j=1, \ldots, n_{v}}}=F^{x} \odot\left(D^{x} \cdot u_{t}^{n_{x}, n_{v}}\right) .
$$

A derivative in v on the other hand is a multiplication from the right with the transposed matrix. To get them both on the left hand side we need to vectorize the equation.

Vectorization

Using the Hadamard or element-wise product yields

$$
\operatorname{vec}\left(F^{x} \odot\left(D^{x} \cdot\right)\right)=\operatorname{diag}\left(\operatorname{vec}\left(F^{x}\right)\right) \cdot \operatorname{vec}\left(D^{x} \cdot\right) .
$$

Using the Kronecker product yields

$$
\operatorname{vec}\left(D^{x}\right)=\operatorname{vec}\left(\begin{array}{ll}
D^{x} & I_{n_{v}}
\end{array}\right)=\left(I_{n_{v}} \otimes D^{x}\right)
$$

In total, we have

$$
\left[f^{x}\left(x_{i}, v_{j}\right) \partial_{x} \quad\right]_{\substack{i=1, \ldots, n_{x} \\ j=1, \ldots, n_{v}}}=\operatorname{diag}\left(\operatorname{vec}\left(F^{x}\right)\right) \cdot\left(I_{n_{v}} \otimes D^{x}\right) .
$$

Vectorization

Applying this logic to all other summands in the (SPDE) yields

$$
\begin{aligned}
B:= & \operatorname{diag}(\operatorname{vec}(H)) \\
& +\operatorname{diag}\left(\operatorname{vec}\left(F^{x}\right)\right) \cdot\left(I_{n_{v}} \otimes D^{x}\right) \\
& +\operatorname{diag}\left(\operatorname{vec}\left(F^{v}\right)\right) \cdot\left(D^{v} \otimes I_{n_{x}}\right) \\
& +\frac{1}{2} \operatorname{diag}\left(\operatorname{vec}\left(G^{x x}\right)\right) \cdot\left(I_{n_{v}} \otimes D^{x x}\right) \\
& +\operatorname{diag}\left(\operatorname{vec}\left(G^{x v}\right)\right) \cdot\left(D^{v} \otimes D^{x}\right) \\
& +\frac{1}{2} \operatorname{diag}\left(\operatorname{vec}\left(G^{v v}\right)\right) \cdot\left(D^{v v} \otimes I_{n_{x}}\right) \\
A: & \operatorname{diag}(\operatorname{vec}(\Sigma)) \\
& +\operatorname{diag}\left(\operatorname{vec}\left(\Sigma^{x}\right)\right) \cdot\left(I_{n_{v}} \otimes D^{x}\right) \\
& +\operatorname{diag}\left(\operatorname{vec}\left(\Sigma^{v}\right)\right) \cdot\left(D^{v} \otimes I_{n_{x}}\right) .
\end{aligned}
$$

Stochastic Langevin equation

$$
\begin{equation*}
h \equiv f^{v} \equiv g^{x x} \equiv g^{x v} \equiv \sigma^{x} \equiv 0, \quad f_{x}(x, v):=-v, \quad g^{v v} \equiv a, \quad \sigma^{v} \equiv \sigma . \tag{3.5}
\end{equation*}
$$

In this special case, there exists an explicit fundamental solution Γ for $0<\sigma \leq \sqrt{a}$ (cf. Pascucci and Pesce (2022):p. 4 Proposition 1.1.), which is given by

$$
\begin{aligned}
\Gamma(t, z ; 0, \zeta) & :=\Gamma_{0}\left(t, z-m_{t}(\zeta)\right), \\
\Gamma_{0}(t,[x, v]) & :=\frac{\sqrt{3}}{\pi t^{2}\left(a-\sigma^{2}\right)} \exp \left(-\frac{2}{a-\sigma^{2}}\left(\frac{v^{2}}{t}-\frac{3 v x}{t^{2}}+\frac{3 x^{2}}{t^{3}}\right)\right)
\end{aligned}
$$

where $\zeta:=(\xi, \eta)$ is the initial point and

$$
m_{t}(\zeta):=\binom{\xi+t \eta-\sigma \int_{0}^{t} W_{s} d s}{\eta-\sigma W_{t}}
$$

Stochastic Langevin equation

Having the fundamental solution, we can solve the Cauchy-problem by integrating against the initial datum, i.e.

$$
u_{t}(x, v)=\int_{\mathbb{R}^{2}} \Gamma(t,[x, v] ; 0,[\xi, \eta]) \phi(\xi, \eta) d \xi d \eta
$$

To get an explicit solution for the double integral, we will choose ϕ to be Gaussian, i.e.

$$
\phi(\xi, \eta):=\exp \left(-\frac{\left(\xi^{2}+\eta^{2}\right)}{2}\right)
$$

Absolute Errors

In the case $d=300$ and $\Delta=2.5 e-2$ on $[-4,4] \times[-4,4]$

Computational times vs Error level

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 813261 and is part of the ABC-EU-XVA project.

