

Dipartimento di Matematica, Università di Bologna

Unified model for XVA including Interest Rates and Rating

Kevin Kamm

September 29, 2022

Supervisor (Industry) Dr. Luca Caputo, Banco Santander

Supervisor (University) Prof. Dr. Andrea Pascucci, Bologna

Setting of the thesis

Collateral reduces the potential loss at the default and reduces the value of XVA making the financial derivative more attractive to customers but can increase the default probability!

We would like to minimize the collateral-inclusive CVA

$$\min_{\mathbb{C}\in ?} \mathbb{E}^{\mathbb{Q}} \left[\operatorname{LGD} \exp\left(-\int_{t}^{\tau} r_{s} ds\right) \mathbb{1}_{\tau < T} \left(\operatorname{V}_{\tau}^{+} - \operatorname{C}_{\tau}^{+} \right)^{+} \middle| \mathcal{G}_{t} \right].$$
(CVA)

The loss-given-default (LGD) will be constant and is equal to 0.6;

- 2 The time of default prior to the end of contracts T > 0 of an entity is denoted by τ ;
- The portfolio at time t between the counterparty and an entity is denoted by V_t ;
- The collateral account at time t by C_t ;
- The discount factor seen from time t up to time u by $\exp\left(-\int_t^u r_s ds\right)$.

$$\min_{\mathbb{C}\in ?} \mathbb{E}^{\mathbb{Q}} \left[\operatorname{LGD} \exp\left(-\int_{t}^{\tau} r_{s} ds \right) \mathbb{1}_{\tau < \mathcal{T}} \left(\operatorname{V}_{\tau}^{+} - \operatorname{C}_{\tau}^{+} \right)^{+} \middle| \mathcal{G}_{t} \right].$$
(CVA)

- The unconstraint problem is easily solved by $C_t = V_t$, this is called *perfect* collateralization;
- Posting collateral is expensive and counterparties would like to avoid it;
- Therefore the aim is to minimize (CVA) under the constraint of as little collateral postings as possible;
- One way to do this, is to take the creditworthiness of a counterparty into account, which we will see in Section 2.

$$\min_{\mathbb{C}\in ?} \mathbb{E}^{\mathbb{Q}} \left[\operatorname{LGD} \exp\left(-\int_{t}^{\tau} r_{s} ds\right) \mathbb{1}_{r < \mathcal{T}} \left(\operatorname{V}_{r}^{+} - \operatorname{C}_{\tau}^{+} \right)^{+} \middle| \mathcal{G}_{t} \right].$$
(CVA)

- The unconstraint problem is easily solved by $C_t = V_t$, this is called *perfect* collateralization;
- Posting collateral is expensive and counterparties would like to avoid it;
- Therefore the aim is to minimize (CVA) under the constraint of as little collateral postings as possible;
- One way to do this, is to take the creditworthiness of a counterparty into account, which we will see in Section 2.

$$\min_{\mathbb{C}\in ?} \mathbb{E}^{\mathbb{Q}} \left[\operatorname{LGD} \exp\left(-\int_{t}^{\tau} r_{s} ds\right) \mathbb{1}_{\tau < \mathcal{T}} \left(\operatorname{V}_{\tau}^{+} - \operatorname{C}_{\tau}^{+} \right)^{+} \middle| \mathcal{G}_{t} \right].$$
(CVA)

- The unconstraint problem is easily solved by $C_t = V_t$, this is called *perfect* collateralization;
- 2 Posting collateral is expensive and counterparties would like to avoid it;
- Therefore the aim is to minimize (CVA) under the constraint of as little collateral postings as possible;
- One way to do this, is to take the creditworthiness of a counterparty into account, which we will see in Section 2.

$$\min_{\mathbb{C}\in ?} \mathbb{E}^{\mathbb{Q}} \left[\operatorname{LGD} \exp\left(-\int_{t}^{\tau} r_{s} ds\right) \mathbb{1}_{\tau < \mathcal{T}} \left(\operatorname{V}_{\tau}^{+} - \operatorname{C}_{\tau}^{+} \right)^{+} \middle| \mathcal{G}_{t} \right].$$
(CVA)

- The unconstraint problem is easily solved by $C_t = V_t$, this is called *perfect* collateralization;
- 2 Posting collateral is expensive and counterparties would like to avoid it;
- Therefore the aim is to minimize (CVA) under the constraint of as little collateral postings as possible;
- One way to do this, is to take the creditworthiness of a counterparty into account, which we will see in Section 2.

Table of Contents

Interest rates

Calibration to swaptions

Ratings

Historical and Market Data A Lie Group perspective The stochastic Langevin equation

Magnus expansion

Heuristical derivation Expansion formulas SPDE DI FRANCESCO, MARCO and KEVIN KAMM (2021). "How to handle negative interest rates in a CIR framework". In: *SeMA Journal*. ISSN: 2281-7875. URL: https://doi.org/10.1007/s40324-021-00267-w.

- DI FRANCESCO, MARCO and KEVIN KAMM (2022). "On the Deterministic-Shift Extended CIR Model in a Negative Interest Rate Framework". In: International Journal of Financial Studies 10(2). ISSN: 2227-7072. URL: https://www.mdpl.com/2227-7072/10/2/38.
- KAMM, KEVIN (2022). An introduction to rating triggers for collateralinclusive XVA in an ICTMC framework. URL: https://arxiv.org/abs/ 2207.03883.
- KAMM, KEVIN and MICHELLE MUNIZ (2022). A novel approach to rating transition modelling via Machine Learning and SDEs on Lie groups. URL: https://arxiv.org/abs/2205.15699.
- KAMM, KEVIN, STEFANO PAGLIARANI and ANDREA PASCUCCI (2021). "On the Stochastic Magnus Expansion and Its Application to SPDEs". In: Journal of Scientific Computing 89(3), p. 56. ISSN: 1573-7691. URL: https://doi.org/10.1007/s10915-021-01633-6.
- KAMM, KEVIN, STEFANO PAGLIARANI and ANDREA PASCUCCI (2022). Numerical solution of kinetic SPDEs via stochastic Magnus expansion. URL: https://arxiv.org/abs/2207.09776.

Calibration to swaptions

Interest rates

Calibration to swaptions

$$\min_{C \in \mathbb{P}} \mathbb{E}^{\mathbb{Q}} \left[\operatorname{LGD} \exp\left(-\int_{t}^{\tau} r_{s} ds \right) \mathbb{1}_{\tau < \tau} \left(\operatorname{V}_{\tau}^{+} - \operatorname{C}_{\tau}^{+} \right)^{+} \middle| \mathcal{G}_{t} \right]$$

joint work with Marco Di Francesco

Calibration to swaptions

Idea

We want to study negative interest rates in a Cox-Ingersoll-Ross framework. In particular, we set

$$r(t) = x(t) - y(t) + \psi(t),$$

where for $z \in \{x, y\}$

$$dz(t) = k_z(\theta_z - z(t))dt + \sigma_z \sqrt{z(t)}dW_z(t), \quad z(0) = z_0$$
(CIR)

are independent and $\psi(t)$ is the deterministic shift extension

 $\psi(t)\coloneqq \mathsf{f}^{\mathcal{M}}(0,t)-\mathsf{f}(0,t)$

with $f^{M}(0, t)$, f(0, t) the market, model instantaneous forward rate, respectively.

Calibration to swaptions

Swaps

The net value of a $T_0 \times (T_N - T_0)$ payer and receiver swap at time $t \leq T_0$ is given by

$$\operatorname{Swap}(t; K, \zeta) \coloneqq \zeta \left(\mathsf{P}(t, T_0) - \mathsf{P}(t, T_N) - K \sum_{i=1}^N \alpha_i \mathsf{P}(t, T_i) \right)$$
(1.1)

where $\alpha_i = T_i - T_{i-1}$ is the day-count convention and K the fixed rate,

Calibration to swaptions

Swaptions

Let us first of all make the following observation: The payer ($\zeta = 1$) and receiver ($\zeta = -1$) swap value (1.1) can both be rewritten as

$$\operatorname{Swap}(t; K, \zeta) \coloneqq \sum_{i=0}^{N} a_{i}^{\zeta} \mathsf{P}(t, T_{i}),$$

where a_i^{ζ} are equal to

$$a_0^{\zeta} \coloneqq \zeta, \qquad a_N^{\zeta} \coloneqq -\zeta \left(1 + K \alpha_N\right), \qquad a_i^{\zeta} \coloneqq -\zeta K \alpha_i, \quad i = 1, \dots, N-1.$$

Now, with this notation, we can write the swaption prices under the forward measure as

$$\begin{aligned} \text{Swaption}(t; K, \zeta) &= \mathsf{P}(t, \mathcal{T}_0) \mathbb{E}^{\mathbb{Q}^{\mathcal{T}_0}} \left[\left(\text{Swap}(\mathcal{T}_0; K, \zeta) \right)^+ \middle| \mathcal{F}_t \right] \\ &= \mathsf{P}(t, \mathcal{T}_0) \int_0^\infty x f(x) dx, \end{aligned}$$

for an unknown density function f.

Calibration to swaptions

Gram-Charlier expansion

Assume that a random variable Y has the continuous density function f and has finite cumulants c_k , $k \ge 1$. Then the following holds: f can be expanded as

$$F(x) = \sum_{n=0}^{\infty} \frac{q_n}{\sqrt{c_2}} H_n\left(\frac{x-c_1}{\sqrt{c_2}}\right) \varphi\left(\frac{x-c_1}{\sqrt{c_2}}\right),$$

where H_n are the probabilist's Hermite polynomials and φ the probability density function of the standard normal distribution, as well as $q_0 = 1$, $q_1 = q_2 = 0$, and for $n \ge 3$

$$q_n = \frac{1}{n!} \mathbb{E}\left[H_n\left(\frac{Y-c_1}{\sqrt{c_2}}\right)\right] = \sum_{m=1}^{\lfloor \frac{n}{3} \rfloor} \sum_{\substack{k_1+\dots+k_m=n\\k_i \ge 3}} \frac{c_{k_1}\cdots c_{k_m}}{m!k_1!\cdots k_m!} \left(\frac{1}{\sqrt{c_2}}\right)^{n}$$

Calibration to swaptions

Gram-Charlier expansion

In our case, we have for any $a \in \mathbb{R}$

$$\mathbb{E}\left[Y\mathbb{1}_{Y\geq a}\right] = c_1 \mathcal{N}\left(\frac{c_1 - a}{\sqrt{c_2}}\right) + \sqrt{c_2}\varphi\left(\frac{c_1 - a}{\sqrt{c_2}}\right) \\ + \sum_{n=3}^{\infty} (-1)^{n-1} q_n \varphi\left(\frac{c_1 - a}{\sqrt{c_2}}\right) \left[aH_{n-1}\left(\frac{c_1 - a}{\sqrt{c_2}}\right) - \sqrt{c_2}H_{n-2}\left(\frac{c_1 - a}{\sqrt{c_2}}\right)\right],$$

where furthermore ${\cal N}$ denotes the cumulative distribution function of the standard normal distribution.

In particular, we have

$$q_{3} = \frac{c_{3}}{3!c_{2}^{\frac{3}{2}}}, \qquad q_{4} = \frac{c_{4}}{4!c_{2}^{\frac{4}{2}}}, \qquad q_{5} = \frac{c_{5}}{5!c_{2}^{\frac{5}{2}}}, \qquad q_{6} = \frac{c_{6} + 10c_{3}^{2}}{6!c_{2}^{\frac{6}{2}}}, \qquad q_{7} = \frac{c_{7} + 35c_{3}c_{4}}{7!c_{2}^{\frac{7}{2}}}.$$

Calibration to swaptions

Gram-Charlier expansion

Therefore, it remains to find the cumulants c_i , usually 7 are enough. For this, one proceeds as follows:

- Use the fact that cumulants and moments are one-to-one;
- 2 Derive the bond and swap moments;
- For this, Riccati equations have to be solved;
- Truncate the Gram-Charlier expansion and use it for approximating swaption prices.

Historical and Market Data A Lie Group perspective The stochastic Langevin equation

Ratings

Historical and Market Data A Lie Group perspective The stochastic Langevin equation

$$\min_{\boldsymbol{\omega} \in \boldsymbol{\mathcal{C}}} \mathbb{E}^{\mathbb{Q}} \left[\operatorname{LGD} \exp \left(-\int_{t}^{t} r_{s} ds \right) \mathbb{1}_{\boldsymbol{\varphi} < \mathcal{T}} \left(\operatorname{V}_{\boldsymbol{\varphi}}^{+} - \operatorname{C}_{t}^{+} \right)^{+} \middle| \mathcal{G}_{t} \right]$$

joint work with Michelle Muniz and Luca Caputo

 Interest rates
 Historical and Market Data

 Ratings
 A Lie Group perspective

 Magnus expansion
 The stochastic Langevin equation

Ratings

Ratings are an indicator of creditworthiness and usually denoted by

best ratings $\mathbf{A} > \mathbf{B} > \mathbf{C} > \mathbf{D}$ worst rating

The rating D denotes the default or bankruptcy of an entity. We will assume that an entity cannot recover from default.

Ratings

Ratings are an indicator of creditworthiness and usually denoted by

best ratings $\mathbf{A} > \mathbf{B} > \mathbf{C} > \mathbf{D}$ worst rating

The rating D denotes the default or bankruptcy of an entity. We will assume that an entity cannot recover from default.

With this concept, we would like to define the collateral account as

 $\mathrm{C}_t \coloneqq f(V_t, X_t),$

where $X_t := (X_t^B, X_t^C)$ is a stochastic process whose values are the rating of a bank and a counterparty at time t.

Interest rates	Historical and Market Data
Ratings	A Lie Group perspective
Magnus expansion	The stochastic Langevin equation

To From	А	В	С	D
Α	0.9395	0.0566	0.0037	2.7804e-04
B	0.0092	0.9680		0.0017
C	6.2064e-04	0.0440	0.8154	0.1400
D	0	0	0	1

- ${f 0}$ Probability of transitioning from ${f B}$ to ${f C}$ in one year is $2.11\,\%$
- Absorbing default state
- Rows sum up to one
- Under the risk-neutral measure only the default column is known from Credit-Default-Swaps (CDS) with usually slightly higher probabilities

Interest rates	Historical and Market Data
Ratings	A Lie Group perspective
Magnus expansion	The stochastic Langevin equation

To From	А	В	С	D
Α	0.9395	0.0566	0.0037	2.7804e-04
B	0.0092	0.9680	0.0211	0.0017
C	6.2064e-04	0.0440	0.8154	0.1400
D	0			

- 2 Absorbing default state
- Rows sum up to one
- Under the risk-neutral measure only the default column is known from Credit-Default-Swaps (CDS) with usually slightly higher probabilities

Interest rates	Historical and Market Data
Ratings	A Lie Group perspective
Magnus expansion	The stochastic Langevin equation

To From	А	В	С	D
Α	0.9395			
B	0.0092	0.9680	0.0211	0.0017
C	6.2064e-04	0.0440	0.8154	0.1400
D	0	0	0	1

- f v Probability of transitioning from f B to f C in one year is 2.11 %
- 2 Absorbing default state
- 8 Rows sum up to one
- Under the risk-neutral measure only the default column is known from Credit-Default-Swaps (CDS) with usually slightly higher probabilities

Interest rates	Historical and Market Data
Ratings	A Lie Group perspective
Magnus expansion	The stochastic Langevin equation

To From	А	В	С	D
Α	0.9395	0.0566	0.0037	2.7804e-04
B	0.0092	0.9680	0.0211	0.0017
С	6.2064e-04	0.0440	0.8154	0.1400
D	0	0	0	

- f v Probability of transitioning from f B to f C in one year is 2.11 %
- 2 Absorbing default state
- 3 Rows sum up to one
- Under the risk-neutral measure only the default column is known from Credit-Default-Swaps (CDS) with usually slightly higher probabilities

 Interest rates
 Historical and Market Data

 Ratings
 A Lie Group perspective

 Magnus expansion
 The stochastic Langevin equation

Stochastic Matrices form a Lie-Group

Historical and Market Data A Lie Group perspective The stochastic Langevin equation

A model in the Lie-Algebra

We need to ensure that the gEM has values not only in the Lie-Group G but in the subspace of stochastic matrices $G_{\geq 0}$. One sufficient condition is to ensure monotonically increasing paths in the Lie-Algebra.

Therefore, we define our model in the Lie-Algebra under the historical measure by

$$dA_t^i = \left| Y_t^i \right|^{a_i} dt$$

$$dY_t^i = b_i dt + \sigma_i dW_t^i, \quad Y_0^i = 0.$$
(Langevin)

We can derive the dynamics under a risk-neutral measure by applying the usual Girsanov theorem to Y_t^i . Also notice that (Langevin) has Langevin-like dynamics, which we will come back to later.
 Interest rates
 Historical and Market Data

 Ratings
 A Lie Group perspective

 Magnus expansion
 The stochastic Langevin equation

Calibration

- Under the historical measure, we use a Deep-Neural-Network called TimeGAN to analyse the distribution of historical time-series data and match the moments of our model and TimeGAN data;
- Under the risk-neutral measure, we calibrate the change of measure parameters, such that the model has close probabilities of default compared to the market data;
- A rating process can now be simulated with a nested Stochastic Simulation Algorithm (SSA) leading to a doubly stochastic process X^B_t and X^C_t for the bank and counterparty

 Interest rates
 Historical and Market Data

 Ratings
 A Lie Group perspective

 Magnus expansion
 The stochastic Langevin equation

Calibration

- Under the historical measure, we use a Deep-Neural-Network called TimeGAN to analyse the distribution of historical time-series data and match the moments of our model and TimeGAN data;
- 2 Under the risk-neutral measure, we calibrate the change of measure parameters, such that the model has close probabilities of default compared to the market data;
- A rating process can now be simulated with a nested Stochastic Simulation Algorithm (SSA) leading to a doubly stochastic process X^B_t and X^C_t for the bank and counterparty.

Interest rates Historical and Market Data Ratings A Lie Group perspective Magnus expansion The stochastic Langevin equation

Calibration

- Under the historical measure, we use a Deep-Neural-Network called TimeGAN to analyse the distribution of historical time-series data and match the moments of our model and TimeGAN data;
- 2 Under the risk-neutral measure, we calibrate the change of measure parameters, such that the model has close probabilities of default compared to the market data;
- A rating process can now be simulated with a nested Stochastic Simulation Algorithm (SSA) leading to a doubly stochastic process X_t^B and X_t^C for the bank and counterparty.

Historical and Market Data A Lie Group perspective The stochastic Langevin equation

Collateral-inclusive bilateral XVA

XVA with the different collateral agreements (no, perfectly and rating triggers) using $LGD_B = 0.6$, as well as $LGD_C = 0.6$ with M = 10000 simulations and thresholds defined as before.

XVA	Uncollateralized	Rating Triggers	Perfectly collateralized
DVA	1015922	587335	351276
CVA	896413	376938	271492

 Interest rates
 Historical and Market Data

 Ratings
 A Lie Group perspective

 Magnus expansion
 The stochastic Langevin equation

A filtering problem

For the available data we have an information mismatch under the historical and risk-neutral measure.

	Historical data	Risk neutral data
Entity	(unobserved)	observed
Sector	observed	(unobserved)

At the moment we are studying the stochastic Langevin equation for this problem, which emerges if one applies the Fokker-Planck equation to a special case of (Langevin). This leads to an SPDE with two spatial dimensions, for which we found an efficient numerical scheme based on the Magnus expansion.

Heuristical derivation Expansion formulas SPDE

Magnus expansion

Heuristical derivation Expansion formulas SPDE

joint work with Stefano Pagliarani and Andrea Pascucci

Interest rates Heuristical derivation Ratings Expansion formulas Magnus expansion SPDE

Idea

Solve the matrix-valued SDE

$$dX_t = BX_t dt + AX_t dW_t, \quad X_0 = I_d$$

by assuming that there exists a solution $X_t = \exp(Y_t)$ for small times t > 0 depending on a stopping time and

$$Y_t = \int_0^t \mu(Y_s) \, ds + \int_0^t \sigma(Y_s) \, dW_s, \quad Y_0 = 0_{\mathbb{R}^{d \times d}}.$$

Heuristical derivation Expansion formulas

Determine μ and σ

$$dX_{t} = BX_{t} + AX_{t}dW_{t}$$

$$= B \exp(Y_{t}) + A \exp(Y_{t}) dW_{t}$$

$$= d \exp(Y_{t})$$

$$= \left(\mathcal{L}_{Y_{t}}(\mu(Y_{s})) + \frac{1}{2}\mathcal{Q}_{Y_{t}}(\sigma(Y_{t}), \sigma(Y_{t}))\right) \exp(Y_{t}) dt$$

$$+ \mathcal{L}_{Y_{t}}(\sigma(Y_{t})) \exp(Y_{t}) dW_{t}.$$
comparison of coefficients yields

- \leftarrow Equation
- \leftarrow Assumption
- \leftarrow Assumption
- ← Itô's formula

Α

$$B \stackrel{!}{=} \mathcal{L}_{Y_{t}}(\mu(Y_{t})) + \frac{1}{2}\mathcal{Q}_{Y_{t}}(\sigma(Y_{t}), \sigma(t, Y_{t}))$$
$$A \stackrel{!}{=} \mathcal{L}_{Y_{t}}(\sigma(Y_{t})).$$

Heuristical derivation Expansion formulas SPDE

Determine μ and σ

Inverting $\mathcal{L}_{\mathbf{Y}}$ by using Baker's lemma yields

$$\sigma(Y_t) \equiv \sum_{n=0}^{\infty} \frac{\beta_n}{n!} \operatorname{ad}_{Y_t}^n (A)$$

$$\mu(Y_t) \equiv \sum_{k=0}^{\infty} \frac{\beta_k}{k!} \operatorname{ad}_{Y_t}^k \left(B - \frac{1}{2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\operatorname{ad}_{Y_t}^n (\sigma(Y_t))}{(n+1)!} \frac{\operatorname{ad}_{Y_t}^m (\sigma(Y_t))}{(m+1)!} + \frac{\left[\operatorname{ad}_{Y_t}^n (\sigma(Y_t)), \operatorname{ad}_{Y_t}^m (\sigma(Y_t))\right]}{(n+m+2)(n+1)!m!} \right)$$

$$(3.2)$$

where β_n denote the Bernoulli numbers, e.g. $\beta_0 = 1$, $\beta_1 = -\frac{1}{2}$, $\beta_2 = \frac{1}{6}$, $\beta_3 = 0$ and $\beta_4 = -\frac{1}{30}$.

Heuristical derivation Expansion formulas SPDE

Solve the SDE by Picard-iteration

Now, we solve the SDE for Y_t by Picard-iteration

$$Y_t^n = \int_0^t \mu\left(Y_s^{n-1}\right) ds + \int_0^t \sigma\left(Y_s^{n-1}\right) dW_s.$$
(3.4)

In order to derive the Magnus expansion formulas, we will introduce some bookkeeping parameters $\epsilon, \delta > 0$ and substitute A by ϵA , as well as B by δB . The Magnus expansion of order

• one will contain all the terms of Y_t^1 with ϵ^1 and δ^1 ;

4 . . .

- 2 two will contain all the terms of Y_t^2 with ϵ^2 , δ^2 and $\epsilon^1\delta^1$ plus all the terms of Y_t^1 ;
- three will contain all the terms of Y_t^3 with ϵ^3 , δ^3 , $\epsilon^2 \delta^1$, $\epsilon^1 \delta^2$ plus all the terms of Y_t^2 ;

Interest rates Heuristical derivation Ratings Expansion formulas Magnus expansion SPDE

Order 1, 2, 3

• order 1

$$Y_t^1 = \int_0^t Bds + \int_0^t AdW_s = Bt + AW_t.$$

order 2

$$Y_t^2 = Bt - \frac{1}{2}A^2t + \frac{1}{2}[B,A]\int_0^t W_s ds + AW_t - \frac{1}{2}[B,A]\left(tW_t - \int_0^t W_s ds\right)$$

= $Y_t^1 - \frac{1}{2}A^2t + [B,A]\int_0^t W_s ds - \frac{1}{2}[B,A]tW_t.$

order 3

$$egin{aligned} Y_t^3 &= Y_t^2 + \left[\left[B, A
ight], A
ight] \left(rac{1}{2} \int_0^t W_s^2 ds - rac{1}{2} W_t \int_0^t W_s ds + rac{1}{12} t W_t^2
ight) \ &+ \left[\left[B, A
ight], B
ight] \left(\int_0^t s W_s ds - rac{1}{2} t \int_0^t W_s ds - rac{1}{12} t^2 W_t
ight). \end{aligned}$$

Unified model for XVA

Heuristical derivation Expansion formulas SPDE

General parabolic SPDE

We want to discretize the following SPDE in space only to apply the Magnus expansion

$$\begin{cases} du_t(x,v) = \left(h(x,v)u_t(x,v) + f^x(x,v)\partial_x u_t(x,v) + f^v(x,v)\partial_v u_t(x,v) + \frac{1}{2}g^{xx}(x,v)\partial_{xx}u_t(x,v) + g^{xv}(x,v)\partial_{xv}u_t(x,v) + \frac{1}{2}g^{vv}(x,v)\partial_{vv}u_t(x,v)\right) dt & (SPDE) \\ + \left(\sigma(x,v)u_t(x,v) + \sigma^x(x,v)\partial_x u_t(x,v) + \sigma^v(x,v)\partial_v u_t(x,v)\right) dW_t \\ u_0(x,v) = \phi(x,v). \end{cases}$$

Interest rates Heurist Ratings Expansi Magnus expansion SPDE

Heuristical derivation Expansion formulas SPDE

Finite Differences

Let $\mathbb{X}_{a_x,b_x}^{n_x}$ be the grid for the position of a particle with $n_x + 2$ points on the subset $[a_x, b_x] \subset \mathbb{R}$ and $\mathbb{V}_{a_v,b_v}^{n_v}$ be the grid of its velocity with $n_v + 2$ points on the subset $[a_v, b_v] \subset \mathbb{R}$

$$\begin{split} \mathbb{X}_{a_{x},b_{x}}^{n_{x}} &\coloneqq \left\{x_{i}^{n_{x}} \in \left[a_{v},b_{v}\right] : x_{i}^{n_{v}} = a_{x} + i\Delta x, \ i = 0,\ldots,n_{v}+1\right\}, \\ \mathbb{V}_{a_{v},b_{v}}^{n_{v}} &\coloneqq \left\{v_{j}^{n_{v}} \in \left[a_{v},b_{v}\right] : v_{j}^{n_{v}} = a_{v}+j\Delta v, \ j = 0,\ldots,n_{v}+1\right\}, \\ \Delta v &\coloneqq \frac{b_{x}-a_{x}}{n_{x}+1}, \\ \Delta v &\coloneqq \frac{b_{v}-a_{v}}{n_{v}+1}, \end{split}$$

For simplicity we set $d = n_x = n_v$, $[a_x, b_x] = [a_v, b_v] = [-4, 4]$ during our experiments later on.

Interest rates Heuristical derivation Ratings Magnus expansion SPDF

Expansion formulas

Finite Differences

We will impose zero-boundary conditions and therefore define the central finite-difference matrices

$$egin{aligned} D^{\mathsf{x}} &\coloneqq rac{1}{2\Delta_{\mathsf{X}}} \mathrm{tridiag}^{n_{\mathsf{x}},n_{\mathsf{x}}} \left(-1,0,1
ight), & D^{\mathsf{v}} &\coloneqq rac{1}{2\Delta_{\mathsf{V}}} \mathrm{tridiag}^{n_{\mathsf{v}},n_{\mathsf{v}}} \left(-1,0,1
ight), \ D^{\mathsf{xx}} &\coloneqq rac{1}{\left(\Delta_{\mathsf{X}}
ight)^2} \mathrm{tridiag}^{n_{\mathsf{v}},n_{\mathsf{x}}} \left(1,-2,1
ight), & D^{\mathsf{vv}} &\coloneqq rac{1}{\left(\Delta_{\mathsf{V}}
ight)^2} \mathrm{tridiag}^{n_{\mathsf{v}},n_{\mathsf{v}}} \left(1,-2,1
ight). \end{aligned}$$

$$Z^{w} \coloneqq (z^{w}(x_{i}, v_{j}))_{\substack{i=1,...,n_{x} \\ j=1,...,n_{v}}}, \quad \Sigma^{w} \coloneqq (\sigma^{w}(x_{i}, v_{j}))_{\substack{i=1,...,n_{x} \\ j=1,...,n_{v}}}, \quad u_{t}^{n_{x},n_{v}} \coloneqq (u_{t}(x_{i}, v_{j}))_{\substack{i=1,...,n_{x} \\ j=1,...,n_{v}}}$$

for Z = F, G, H, z = f, g, h, respectively, and $w \in \{x, v, xx, xv, vv\}$.

Interest rates Heuristi Ratings Expansi Magnus expansion SPDE

Heuristical derivation Expansion formulas SPDE

Method of Lines

$$f^{\times}(x_i,v_j)\partial_x u_t(x_i,v_j) \approx f^{\times}(x_i,v_j) rac{u_t(x_{i+1},v_j)-u_t(x_{i-1},v_j)}{2\Delta x}$$

for all $i = 1, \ldots, n_x$ and $j = 1, \ldots, n_v$.

In our notations a derivative in x is a multiplication of the corresponding finite-difference matrix from the left to $u_t^{n_x,n_v}$, i.e.

$$\left(f^{x}(x_{i}, v_{j})\frac{u_{t}(x_{i+1}, v_{j}) - u_{t}(x_{i-1}, v_{j})}{2\Delta x}\right)_{\substack{i=1, \dots, n_{x} \\ j=1, \dots, n_{v}}} = F^{x} \odot \left(D^{x} \cdot u_{t}^{n_{x}, n_{v}}\right)$$

A derivative in v on the other hand is a multiplication from the right with the transposed matrix. To get them both on the left hand side we need to vectorize the equation.

Interest rates Heuristical derivation Ratings Expansion formulas Magnus expansion SPDE

Vectorization

Using the Hadamard or element-wise product yields

$$\operatorname{vec}\left(arFit^{ imes} \odot \left(D^{ imes} \cdot u_t^{a_{ imes},a_{ imes}}
ight)
ight) = \operatorname{diag}\left(\operatorname{vec}\left(arFit^{ imes}
ight)
ight) \cdot \operatorname{vec}\left(D^{ imes} \cdot u_t^{a_{ imes},a_{ imes}}
ight).$$

Using the Kronecker product yields

$$\operatorname{vec}\left(D^{x}u_{t}^{n_{x},n_{y}}\right) = \operatorname{vec}\left(D^{x}u_{t}^{n_{x},n_{y}}I_{n_{y}}\right) = \left(I_{n_{y}}\otimes D^{x}\right)U_{t}^{n_{x},n_{y}}$$

In total, we have

$$[f^{\times}(x_i, v_j)\partial_x u_t(x_i, v_j)]_{\substack{i=1,...,n_x \\ j=1,...,n_v}} = \operatorname{diag}\left(\operatorname{vec}\left(\mathsf{F}^{\times}\right)\right) \cdot \left(I_{n_v} \otimes \mathsf{D}^{\times}\right) \cdot U_t^{n_v n_v}.$$

Interest rates Heuristical derivation Ratings Expansion formulas Magnus expansion SPDE

Vectorization

Applying this logic to all other summands in the (SPDE) yields

$$\begin{split} B &\coloneqq \operatorname{diag}\left(\operatorname{vec}\left(H\right)\right) \\ &+ \operatorname{diag}\left(\operatorname{vec}\left(F^{x}\right)\right) \cdot \left(I_{n_{v}} \otimes D^{x}\right) \\ &+ \operatorname{diag}\left(\operatorname{vec}\left(F^{v}\right)\right) \cdot \left(D^{v} \otimes I_{n_{x}}\right) \\ &+ \frac{1}{2}\operatorname{diag}\left(\operatorname{vec}\left(G^{xx}\right)\right) \cdot \left(I_{n_{v}} \otimes D^{xx}\right) \\ &+ \operatorname{diag}\left(\operatorname{vec}\left(G^{xv}\right)\right) \cdot \left(D^{v} \otimes D^{x}\right) \\ &+ \frac{1}{2}\operatorname{diag}\left(\operatorname{vec}\left(G^{vv}\right)\right) \cdot \left(D^{vv} \otimes I_{n_{x}}\right) \\ &A \coloneqq \operatorname{diag}\left(\operatorname{vec}\left(\Sigma\right)\right) \\ &+ \operatorname{diag}\left(\operatorname{vec}\left(\Sigma^{x}\right)\right) \cdot \left(I_{n_{v}} \otimes D^{x}\right) \\ &+ \operatorname{diag}\left(\operatorname{vec}\left(\Sigma^{x}\right)\right) \cdot \left(D^{v} \otimes I_{n_{x}}\right). \end{split}$$

Heuristical derivation Expansion formulas SPDE

Stochastic Langevin equation

$$h \equiv f^{\nu} \equiv g^{xx} \equiv g^{x\nu} \equiv \sigma^{x} \equiv 0, \quad f_{x}(x,\nu) \coloneqq -\nu, \quad g^{\nu\nu} \equiv a, \quad \sigma^{\nu} \equiv \sigma.$$
(3.5)

In this special case, there exists an explicit fundamental solution Γ for $0 < \sigma \le \sqrt{a}$ (cf. PASCUCCI and PESCE (2022):p. 4 Proposition 1.1.), which is given by

$$\Gamma(t,z;0,\zeta) \coloneqq \Gamma_0(t,z-m_t(\zeta)), \Gamma_0(t,[x,v]) \coloneqq \frac{\sqrt{3}}{\pi t^2(a-\sigma^2)} \exp\left(-\frac{2}{a-\sigma^2}\left(\frac{v^2}{t}-\frac{3vx}{t^2}+\frac{3x^2}{t^3}\right)\right)$$

where $\zeta \coloneqq (\xi, \eta)$ is the initial point and

$$egin{aligned} m_t(\zeta) \coloneqq \left(egin{array}{c} \xi + t\eta - \sigma \int_0^t W_{m{s}} ds \ \eta - \sigma W_t \end{array}
ight) \end{aligned}$$

Unified model for XVA

Heuristical derivation Expansion formulas SPDE

Stochastic Langevin equation

Having the fundamental solution, we can solve the Cauchy-problem by integrating against the initial datum, i.e.

$$u_t(x, \mathbf{v}) = \int_{\mathbb{R}^2} \mathsf{\Gamma}(t, [x, \mathbf{v}]; \mathbf{0}, [\xi, \eta]) \phi(\xi, \eta) d\xi d\eta.$$

To get an explicit solution for the double integral, we will choose ϕ to be Gaussian, i.e.

$$\phi\left(\xi,\eta
ight)\coloneqq\exp\left(-rac{\left(\xi^{2}+\eta^{2}
ight)}{2}
ight)$$

Heuristical derivation Expansion formulas SPDE

Absolute Errors

In the case d = 300 and $\Delta = 2.5e - 2$ on $[-4, 4] \times [-4, 4]$

Kevin Kamm

Unified model for XVA

Heuristical derivation Expansion formulas SPDE

Computational times vs Error level

Heuristical derivation Expansion formulas SPDE

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 813261 and is part of the ABC-EU-XVA project.