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Interest rates
Ratings

Magnus expansion

Setting of the thesis

Bank Entity

Portfolio

Default

Collateral

Collateral reduces the potential loss at the default and reduces the value of XVA making the
financial derivative more attractive to customers but can increase the default probability!
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Aim of the thesis

We would like to minimize the collateral-inclusive CVA

min
C∈?

EQ
[

LGD exp
(
−
∫ τ

t
rsds

)
1τ<T

(
V+

τ − C+
τ

)+∣∣∣∣Gt

]
. (CVA)

1 The loss-given-default (LGD) will be constant and is equal to 0.6;
2 The time of default prior to the end of contracts T > 0 of an entity is denoted by τ ;
3 The portfolio at time t between the counterparty and an entity is denoted by Vt ;
4 The collateral account at time t by Ct ;
5 The discount factor seen from time t up to time u by exp (−

∫ u
t rsds).
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1 The unconstraint problem is easily solved by Ct = Vt , this is called perfect
collateralization;

2 Posting collateral is expensive and counterparties would like to avoid it;
3 Therefore the aim is to minimize (CVA) under the constraint of as little collateral

postings as possible;
4 One way to do this, is to take the creditworthiness of a counterparty into account, which

we will see in Section 2.
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Calibration to swaptions min
C∈?

EQ
[

LGD exp
(

−
∫ τ

t
rsds
)
1τ<T

(
V+

τ − C+
τ

)+
∣∣∣∣Gt

]

joint work with Marco Di Francesco
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Idea

We want to study negative interest rates in a Cox-Ingersoll-Ross framework. In particular, we
set

r(t) = x(t)− y(t) + ψ(t),

where for z ∈ {x , y}

dz(t) = kz(θz − z(t))dt + σz

√
z(t)dWz(t), z(0) = z0 (CIR)

are independent and ψ(t) is the deterministic shift extension

ψ(t) := fM(0, t)− f(0, t)

with fM(0, t), f(0, t) the market, model instantaneous forward rate, respectively.
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Swaps

The net value of a T0 × (TN − T0) payer and receiver swap at time t ≤ T0 is given by

Swap(t; K , ζ) := ζ

(
P(t,T0)− P(t,TN)− K

N∑
i=1

αiP(t,Ti)
)

(1.1)

where αi = Ti − Ti−1 is the day-count convention and K the fixed rate,

Kevin Kamm Unified model for XVA 8 / 38
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Swaptions
Let us first of all make the following observation: The payer (ζ = 1) and receiver (ζ = −1)
swap value (1.1) can both be rewritten as

Swap(t; K , ζ) :=
N∑

i=0
aζ

i P(t,Ti),

where aζ
i are equal to

aζ
0 := ζ, aζ

N := −ζ (1 + KαN) , aζ
i := −ζKαi , i = 1, . . . ,N − 1.

Now, with this notation, we can write the swaption prices under the forward measure as

Swaption(t; K , ζ) = P(t,T0)EQT0
[
(Swap(T0; K , ζ))+

∣∣∣Ft
]

!= P(t,T0)
∫ ∞

0
xf (x)dx ,

for an unknown density function f .
Kevin Kamm Unified model for XVA 9 / 38



Interest rates
Ratings

Magnus expansion
Calibration to swaptions

Gram-Charlier expansion
Assume that a random variable Y has the continuous density function f and has finite
cumulants ck , k ≥ 1. Then the following holds:
f can be expanded as

f (x) =
∞∑

n=0

qn√c2
Hn

(
x − c1√c2

)
φ

(
x − c1√c2

)
,

where Hn are the probabilist’s Hermite polynomials and φ the probability density function of
the standard normal distribution, as well as q0 = 1, q1 = q2 = 0, and for n ≥ 3

qn = 1
n!E

[
Hn

(
Y − c1√c2

)]
=
⌊ n

3⌋∑
m=1

∑
k1+···+km=n

ki ≥3

ck1 · · · ckm

m!k1! · · · km!

(
1
√c2

)n

.
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Gram-Charlier expansion
In our case, we have for any a ∈ R

E [Y1Y ≥a] = c1N
(

c1 − a
√c2

)
+
√

c2φ

(
c1 − a
√c2

)

+
∞∑

n=3
(−1)n−1 qnφ

(
c1 − a
√c2

)[
aHn−1

(
c1 − a
√c2

)
−
√

c2Hn−2

(
c1 − a
√c2

)]
,

where furthermore N denotes the cumulative distribution function of the standard normal
distribution.
In particular, we have

q3 = c3

3!c
3
2
2

, q4 = c4

4!c
4
2
2

, q5 = c5

5!c
5
2
2

, q6 = c6 + 10c2
3

6!c
6
2
2

, q7 = c7 + 35c3c4

7!c
7
2
2

.
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Gram-Charlier expansion

Therefore, it remains to find the cumulants ci , usually 7 are enough. For this, one proceeds as
follows:

1 Use the fact that cumulants and moments are one-to-one;
2 Derive the bond and swap moments;
3 For this, Riccati equations have to be solved;
4 Truncate the Gram-Charlier expansion and use it for approximating swaption prices.

Kevin Kamm Unified model for XVA 12 / 38
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[

LGD exp
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∫ τ

t
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Ratings

Ratings are an indicator of creditworthiness and usually denoted by

best ratings A > B > C > D worst rating

The rating D denotes the default or bankruptcy of an entity. We will assume that an entity
cannot recover from default.

With this concept, we would like to define the collateral account as

Ct := f (Vt ,Xt) ,

where Xt :=
(
XB

t ,XC
t

)
is a stochastic process whose values are the rating of a bank and a

counterparty at time t.
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Rating matrices
Example of a one year rating matrix under the historical measure:

From
To A B C D

A 0.9395 0.0566 0.0037 2.7804e-04
B 0.0092 0.9680 0.0211 0.0017
C 6.2064e-04 0.0440 0.8154 0.1400
D 0 0 0 1

1 Probability of transitioning from B to C in one year is 2.11 %
2 Absorbing default state
3 Rows sum up to one
4 Under the risk-neutral measure only the default column is known from

Credit-Default-Swaps (CDS) with usually slightly higher probabilities
Kevin Kamm Unified model for XVA 16 / 38
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Stochastic Matrices form a Lie-Group

R(K−1)2

≥0

R(K−1)2

Ai
t

g≥0

g

At :=
∑(K−1)2

i=1 Ai
tEi

G≥0

G

gEM: Rtk+1 = Rtk exp(Atk+1)

expCoordinates Ai

Basis Ei

Kevin Kamm Unified model for XVA 17 / 38
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A model in the Lie-Algebra

We need to ensure that the gEM has values not only in the Lie-Group G but in the subspace
of stochastic matrices G≥0. One sufficient condition is to ensure monotonically increasing
paths in the Lie-Algebra.
Therefore, we define our model in the Lie-Algebra under the historical measure by

dAi
t =

∣∣∣Y i
t

∣∣∣ai dt
dY i

t = bidt + σidW i
t , Y i

0 = 0.
(Langevin)

We can derive the dynamics under a risk-neutral measure by applying the usual Girsanov
theorem to Y i

t .
Also notice that (Langevin) has Langevin-like dynamics, which we will come back to later.

Kevin Kamm Unified model for XVA 18 / 38
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Calibration

1 Under the historical measure, we use a Deep-Neural-Network called TimeGAN to analyse
the distribution of historical time-series data and match the moments of our model and
TimeGAN data;

2 Under the risk-neutral measure, we calibrate the change of measure parameters, such that
the model has close probabilities of default compared to the market data;

3 A rating process can now be simulated with a nested Stochastic Simulation Algorithm
(SSA) leading to a doubly stochastic process XB

t and XC
t for the bank and counterparty.

Kevin Kamm Unified model for XVA 19 / 38
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Collateral-inclusive bilateral XVA

XVA with the different collateral agreements (no, perfectly and rating triggers) using
LGDB = 0.6, as well as LGDC = 0.6 with M = 10000 simulations and thresholds defined as
before.

XVA Uncollateralized Rating Triggers Perfectly collateralized
DVA 1015922 587335 351276
CVA 896413 376938 271492

Kevin Kamm Unified model for XVA 20 / 38
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A filtering problem

For the available data we have an information mismatch under the historical and risk-neutral
measure.

Historical data Risk neutral data
Entity (unobserved) observed
Sector observed (unobserved)

At the moment we are studying the stochastic Langevin equation for this problem, which
emerges if one applies the Fokker-Planck equation to a special case of (Langevin). This leads
to an SPDE with two spatial dimensions, for which we found an efficient numerical scheme
based on the Magnus expansion.

Kevin Kamm Unified model for XVA 21 / 38
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Heuristical derivation
Expansion formulas
SPDE

joint work with Stefano Pagliarani and Andrea Pascucci
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Idea

Solve the matrix-valued SDE

dXt = BXtdt + AXtdWt , X0 = Id

by assuming that there exists a solution Xt = exp (Yt) for small times t > 0 depending on a
stopping time and

Yt =
∫ t

0
µ (Ys) ds +

∫ t

0
σ (Ys) dWs , Y0 = 0Rd×d .

Kevin Kamm Unified model for XVA 23 / 38
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Determine µ and σ

dXt = BXt + AXtdWt
= B exp (Yt) + A exp (Yt) dWt
= d exp (Yt)

=
(
LYt (µ (Ys)) + 1

2QYt (σ (Yt) , σ (Yt))
)

exp (Yt) dt

+ LYt (σ (Yt)) exp (Yt) dWt .

← Equation
← Assumption
← Assumption
← Itô’s formula

A comparison of coefficients yields

B != LYt (µ (Yt)) + 1
2QYt (σ (Yt) , σ (t,Yt))

A != LYt (σ (Yt)) .

Kevin Kamm Unified model for XVA 24 / 38
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Determine µ and σ

Inverting LY by using Baker’s lemma yields

σ (Yt) ≡
∞∑

n=0

βn
n! adn

Yt (A) (3.2)

µ (Yt) ≡
∞∑

k=0

βk
k! adk

Yt

(
B − 1

2

∞∑
n=0

∞∑
m=0

adn
Yt (σ (Yt))
(n + 1)!

adm
Yt (σ (Yt))
(m + 1)!

+
[
adn

Yt (σ (Yt)) , adm
Yt (σ (Yt))

]
(n + m + 2)(n + 1)!m!

) (3.3)

where βn denote the Bernoulli numbers, e.g. β0 = 1, β1 = −1
2 , β2 = 1

6 , β3 = 0 and β4 = − 1
30 .
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Solve the SDE by Picard-iteration

Now, we solve the SDE for Yt by Picard-iteration

Y n
t =

∫ t

0
µ
(
Y n−1

s

)
ds +

∫ t

0
σ
(
Y n−1

s

)
dWs . (3.4)

In order to derive the Magnus expansion formulas, we will introduce some bookkeeping
parameters ϵ, δ > 0 and substitute A by ϵA, as well as B by δB.
The Magnus expansion of order

1 one will contain all the terms of Y 1
t with ϵ1 and δ1;

2 two will contain all the terms of Y 2
t with ϵ2, δ2 and ϵ1δ1 plus all the terms of Y 1

t ;
3 three will contain all the terms of Y 3

t with ϵ3, δ3, ϵ2δ1,ϵ1δ2 plus all the terms of Y 2
t ;

4 . . .
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Order 1, 2, 3
1 order 1

Y 1
t =

∫ t

0
Bds +

∫ t

0
AdWs = Bt + AWt .

2 order 2

Y 2
t = Bt − 1

2A2t + 1
2 [B,A]

∫ t

0
Wsds + AWt −

1
2 [B,A]

(
tWt −

∫ t

0
Wsds

)
= Y 1

t −
1
2A2t + [B,A]

∫ t

0
Wsds − 1

2 [B,A] tWt .

3 order 3

Y 3
t = Y 2

t + [[B,A] ,A]
(1

2

∫ t

0
W 2

s ds − 1
2Wt

∫ t

0
Wsds + 1

12 tW 2
t

)
+ [[B,A] ,B]

(∫ t

0
sWsds − 1

2 t
∫ t

0
Wsds − 1

12 t2Wt

)
.
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General parabolic SPDE

We want to discretize the following SPDE in space only to apply the Magnus expansion

dut(x , v) =
(

h(x , v)ut(x , v) + f x (x , v)∂xut(x , v) + f v (x , v)∂v ut(x , v)

+ 1
2gxx (x , v)∂xxut(x , v) + gxv (x , v)∂xv ut(x , v) + 1

2gvv (x , v)∂vv ut(x , v)
)

dt

+
(
σ(x , v)ut(x , v) + σx (x , v)∂xut(x , v) + σv (x , v)∂v ut(x , v)

)
dWt

u0(x , v) = ϕ(x , v).

(SPDE)
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Finite Differences

Let Xnx
ax ,bx

be the grid for the position of a particle with nx + 2 points on the subset
[ax , bx ] ⊂ R and Vnv

av ,bv
be the grid of its velocity with nv + 2 points on the subset [av , bv ] ⊂ R

Xnx
ax ,bx

:= {xnx
i ∈ [av , bv ] : xnv

i = ax + i∆x , i = 0, . . . , nv + 1} , ∆x := bx − ax
nx + 1 ,

Vnv
av ,bv

:=
{

vnv
j ∈ [av , bv ] : vnv

j = av + j∆v , j = 0, . . . , nv + 1
}
, ∆v := bv − av

nv + 1 ,

For simplicity we set d = nx = nv , [ax , bx ] = [av , bv ] = [−4, 4] during our experiments later
on.
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Finite Differences

We will impose zero-boundary conditions and therefore define the central finite-difference
matrices

Dx := 1
2∆x tridiagnx ,nx (−1, 0, 1) , Dv := 1

2∆v tridiagnv ,nv (−1, 0, 1) ,

Dxx := 1
(∆x)2 tridiagnx ,nx (1,−2, 1) , Dvv := 1

(∆v)2 tridiagnv ,nv (1,−2, 1) .

Zw := (zw (xi , vj))i=1,...,nx
j=1,...,nv

, Σw := (σw (xi , vj))i=1,...,nx
j=1,...,nv

, unx ,nv
t := (ut(xi , vj))i=1,...,nx

j=1,...,nv

for Z = F ,G ,H, z = f , g , h, respectively, and w ∈ {x , v , xx , xv , vv}.
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Method of Lines

f x (xi , vj)∂xut(xi , vj) ≈ f x (xi , vj)
ut(xi+1, vj)− ut(xi−1, vj)

2∆x

for all i = 1, . . . , nx and j = 1, . . . , nv .
In our notations a derivative in x is a multiplication of the corresponding finite-difference
matrix from the left to unx ,nv

t , i.e.(
f x (xi , vj)

ut(xi+1, vj)− ut(xi−1, vj)
2∆x

)
i=1,...,nx
j=1,...,nv

= F x ⊙
(
Dx · unx ,nv

t
)
.

A derivative in v on the other hand is a multiplication from the right with the transposed
matrix. To get them both on the left hand side we need to vectorize the equation.
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Vectorization

Using the Hadamard or element-wise product yields

vec
(
F x ⊙

(
Dx · unx ,nv

t
))

= diag (vec (F x )) · vec
(
Dx · unx ,nv

t
)
.

Using the Kronecker product yields

vec
(
Dxunx ,nv

t
)

= vec
(
Dxunx ,nv

t Inv

)
= (Inv ⊗ Dx ) Unx nv

t .

In total, we have

[f x (xi , vj)∂xut(xi , vj)]i=1,...,nx
j=1,...,nv

= diag (vec (F x )) · (Inv ⊗ Dx ) · Unx nv
t .
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Vectorization
Applying this logic to all other summands in the (SPDE) yields

B := diag (vec (H))
+ diag (vec (F x )) · (Inv ⊗ Dx )
+ diag (vec (F v )) · (Dv ⊗ Inx )

+ 1
2diag (vec (Gxx )) · (Inv ⊗ Dxx )

+ diag (vec (Gxv )) · (Dv ⊗ Dx )

+ 1
2diag (vec (Gvv )) · (Dvv ⊗ Inx )

A := diag (vec (Σ))
+ diag (vec (Σx )) · (Inv ⊗ Dx )
+ diag (vec (Σv )) · (Dv ⊗ Inx ) .
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Stochastic Langevin equation

h ≡ f v ≡ gxx ≡ gxv ≡ σx ≡ 0, fx (x , v) := −v , gvv ≡ a, σv ≡ σ. (3.5)

In this special case, there exists an explicit fundamental solution Γ for 0 < σ ≤
√

a (cf.
Pascucci and Pesce (2022):p. 4 Proposition 1.1.), which is given by

Γ (t, z ; 0, ζ) := Γ0 (t, z −mt(ζ)) ,

Γ0 (t, [x , v ]) :=
√

3
πt2(a − σ2) exp

(
− 2

a − σ2

(
v2

t −
3vx
t2 + 3x2

t3

))

where ζ := (ξ, η) is the initial point and

mt(ζ) :=
(
ξ + tη − σ

∫ t
0 Wsds

η − σWt

)
.
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Stochastic Langevin equation

Having the fundamental solution, we can solve the Cauchy-problem by integrating against the
initial datum, i.e.

ut(x , v) =
∫
R2

Γ(t, [x , v ]; 0, [ξ, η])ϕ(ξ, η)dξdη.

To get an explicit solution for the double integral, we will choose ϕ to be Gaussian, i.e.

ϕ (ξ, η) := exp
(
−
(
ξ2 + η2)

2

)
.
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Absolute Errors

In the case d = 300 and ∆ = 2.5e − 2 on [−4, 4] × [−4, 4]
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Computational times vs Error level
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Thank you for your attention!

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 813261 and is part of the ABC-EU-XVA
project.
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