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Monte Carlo Exposure Simulation

Let V (X) be an asset (or portfolio) over a risk-factor Xt (e.g. interest
rate, stock price, ...) and let E(t) := max(0,Vt) be its positive
exposure.
The expected exposure at time t (as seen today at t0) is

EE(t0, t) := EQ[D(t0, t)E(t)|Ft0
]
.

Standard MC simulation approach: Obtain paths of the underlyings
along the time horizon

Interest rate: {rt(ωj) : t ∈ [t0,T ], j = 1, . . . ,M},
Underlying: {Xt(ωj) : t ∈ [t0,T ], j = 1, . . . ,M},

and compute the empirical estimator

EE(t0, t) ≈
1

M

M∑
j=1

D(t0, t;ωj)max
(
0,Vt(Xt(ωj))

)
.
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Stochastic Collocation Monte Carlo Sampler
Calculation of expected exposure profile (EE(t0, t) for all t ∈ [t0,T ])
is expensive:
(Number of time steps × number of paths) portfolio valuations!
Stochastic collocation: Replace expensive portfolio valuation

Vt : Xt(ω) 7→ Vt(Xt(ω))

by polynomial approximation gt ≈ Vt .
1 Evaluate N exact points:

(
xi ,Vt(xi)

)
.

2 Construct polynomial approximation gt s.t. gt(xi) = Vt(xi).

3 EE(t0, t) ≈ 1
M

M∑
j=1

D(t0, t;ωj)max
(
0, gt(Xt(ωj)

)
.

Stochastic Collocation Monte Carlo sampler requires only
(Number of time steps × N) exact portfolio valuations.

L.A. Grzelak, J.A.S. Witteveen, M. Suárez-Taboada, C.W. Oosterlee. The
Stochastic Collocation Monte Carlo Sampler. Quantitative Finance, 2019.

L.A. Grzelak. Sparse Grid Method for Highly Efficient Computation of Exposures for
xVA. arXiv:2104.14319, 2021. 2/14



More general xVA (CVA with wrong-way risk)
Credit valuation adjustment (CVA) with full independence between
components is “CVA = LGD× PD× EE”. With correlations between
exposure default (modelled with some stochastic intensity λ):

CVA(t) = LGD EQ
[
D(t, tD)1{tD≤T}max

(
VtD , 0

)
|Ft

]
= LGD EQ

[ T∫
t

D(t, s)max
(
0,Vs

)
EQ[1{tD∈[s,s+ds)}|FT ]|Ft

]

= LGD
T∫

t

EQ
[
D(t, s)e−

∫ s
t λuduλs max

(
0,Vs

)
|Ft

]
ds

=: LGD
T∫

t

EQ
[
G(t, s)max

(
0,Vs

)
|Ft

]
ds.
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More general xVA (CVA with wrong-way risk)

CVA(t) = LGD
T∫

t

EQ
[
G(t, s)max

(
0,Vs

)
|Ft

]
ds

Simulation approach:
Simulate paths {

(
rt(ωj), λt(ωj),Xt(ωj)

)
: t ∈ [t0,T ], j = 1, . . . ,M}.

EQ[G(t, s)max(0,Vs)|Ft
]
≈ 1

M

M∑
j=1

G(t, s;ωj) gs(Xs(ωj)).

G(t, s;ω) := exp
(
−
∫ s

t (ru(ω) + λu(ω))du
)
λs(ω) does not require

portfolio valuations.
The stochastic collocation Monte Carlo sampler only touches the
portfolio valuation; completely flexible for advanced xVA frameworks!
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Sensitivities of expected exposures
1 Obtain yield curve φ0 from market instruments A1, . . . ,Am.
2 Obtain shocked yield curve φi by shocking the market quote Ki of

constructing instrument Ai (e.g. swap rate +1bp), i = 1, . . . ,m.
3 Simulate interest rate paths in normal and shocked market:

{rt(ωj) : t ∈ [t0,T ], j = 1, . . . ,M, yield curve = φ0}
{r i

t(ωj) : t ∈ [t0,T ], j = 1, . . . ,M, yield curve = φi}
4 Compute expected exposures

EE(t) ≈ 1

M

M∑
j=1

exp
(
−

t∫
t0

rs(ωj)ds
)
max

(
0,Vt(rt(ωj)

)
,

EEi(t) ≈ 1

M

M∑
j=1

exp
(
−

t∫
t0

r i
s(ωj)ds

)
max

(
0,V i

t (r i
t(ωj)

)
.

5 Compute difference quotients EE(t)−EE i(t)
h .
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Sensitivities of expected exposures with collocation

∂

∂Ki
EE(t0, t) = EQ[ ∂

∂Ki

(
D(t0, t)max(Vt , 0)

)]
= EQ[( ∂

∂Ki
D(t0, t)

)
max(Vt , 0) + D(t0, t)

∂max(Vt , 0)

∂Ki

]
≈

M∑
j=1

( ∂

∂Ki
D(t0, t;ωj)

)
max

(
gt(rt(ωj)), 0

)
+ D(t0, t;ωj)

max
(
g i

t(r i
t(ωj)), 0

)
−max

(
gt(rt(ωj)), 0

)
∆K .

Can directly apply stochastic collocation method:

Standard market approximator: gt ≈ Vt ,

Shocked market approximator: g i
t ≈ V i

t .

=⇒ 2N exact valuations at each time step (down from 2M).
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Reducing the number of exact valuations

Practitioners care about a sensitivity profile: dEE(t)
dKi

for a range of
market instruments Ai (used in yield curve construction) with market
quotes Ki , i = 1, . . . ,m.
Full collocation approach requires N · (m + 1) exact valuations (N for
Vt and N more for each V i

t ).

Idea: Difference between V i
t and Vt may be well approximated by a

polynomial of degree d < N:

hi
t ≈ V i

t − Vt ,

reducing the number of additional exact valuations.
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Valuation differences between Vt and V i=2
t for t ∈ {2, 3, 7}
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Efficient sensitivities of expected exposures with collocation

Exact valuation reduction scheme:

Construct approximator of standard valuation gt ≈ Vt
based on data points

(
rk(t),Vt(rk(t))

)
.

Construct low-degree difference approximation

hi
t ≈ V i

t − gt

hi
t(x) :=

d∑
k=1

(
V i

t (r i
k)− g(r i

k)
)
`i

k(x)

with only d additional exact valuations V i
t (r i

k).
Approximate V i

t ≈ g̃t = gt + hi
t .

Requires N + dm exact valuations (down from N + Nm)
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The low-degree difference polynomial
Since V i

t and g i
t coincide in r i

k , we can write

hi
t(x) :=

d∑
k=1

(
V i

t (r i
k)− g(r i

k)
)
`i

k(x)

=

d∑
k=1

g i
t(r i

k)`
i
k(x)−

d∑
k=1

g(r i
k)`

i
k(x)

=: p i
t − pt ,

where we have
pt ≈ gt ,

p i
t ≈ g i

t .

Uniqueness of polynomial interpolation guarantees as d → N:
pt −→ gt

p i
t −→ g i

t

}
=⇒ g̃ i

t −→ g i
t .
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Error analysis
Assume approximation bounds (on closed interval):

‖Vt − gt‖ = ε(t) N→∞−→ 0,

‖V i
t − g i

t‖ = εi(t)
N→∞−→ 0.

Easy to obtain bounds for components pt , p i
t of hi

t (target functions
gt , g i

t are polynomials):

‖gt − pt‖ =: δ(t) d→N−→ 0,

‖g i
t − p i

t‖ =: δi(t)
d→N−→ 0.

Thus the low-degree approximation has an error of

‖g i
t − g̃ i

t‖ ≤ ‖g i
t − p i

t‖+ ‖gt − pt‖ = δ(t) + δi(t)

And we can find an overall approximation error of

‖V i
t − g̃ i

t‖ ≤ ‖V i
t − g i

t‖+ ‖g i
t − g̃ i

t‖ ≤ εi(t) + δi(t) + δ(t).
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Error analysis
Analogously, we can compare the expected exposure sensitivities:

∂EE(t0, t)
∂Ki

≈ Et0

[
∂D(t0, t)

∂Ki
max(Vt , 0) + D(t0, t)

V i
t − Vt
∆K

]
=: Ψfd(t),

∂EEcoll(t0, t)
∂Ki

≈ Et0

[
∂D(t0, t)

∂Ki
max(gt , 0) + D(t0, t)

g̃ i
t − gt
∆K

]
=: Ψcoll(t).

to obtain

|Ψfd(t)−Ψcoll(t)| =ε(t)Et0

[∣∣∣∣∣∂ exp(−
∫ t

t0 r(s)ds)
∂Ki

∣∣∣∣∣
]

+
ε(t) + εi(t) + δi(t) + δ(t)

∆Ki
P(t0, t).
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Numerical experiment, large swap portfolio

Full collocation: d = N = 10

(Row-wise: Sensitivity w.r.t. 1, 2, 3, 5, 7, 10, 20, 30-year instrument on
yield curve)
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Numerical experiment, large swap portfolio

Reduction: d = 8, N = 10

(Row-wise: Sensitivity w.r.t. 1, 2, 3, 5, 7, 10, 20, 30-year instrument on
yield curve)
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Numerical experiment, large swap portfolio

Reduction: d = 6, N = 10

(Row-wise: Sensitivity w.r.t. 1, 2, 3, 5, 7, 10, 20, 30-year instrument on
yield curve)
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Outlook

We have shown how to drastically reduce the number of exact
portfolio valuations in xVA sensitivity.
Success of the method relies entirely on the choice of interpolation
points, particularly the d points for the difference polynomial.
For convergence proofs we prefer Chebyshev points, in practise we
rely on quadrature points.
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