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optimization: the challenges in deep learning

Figure: A highly nonconvex loss surface; as is common in deep neural nets 1

1From https:

//www.telesens.co/2019/01/16/neural-network-loss-visualization
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the goal of a good optimization algorithm

∙ Controllable through hyperparameters

∙ Escape local minima and saddle points

∙ Converge close to the optimum
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overview

∙ The optimization objective

∙ Classical optimization schemes and their convergence results

∙ The challenge with stochastic optimization

∙ Interacting particles: the setup

∙ Interacting particles: convergence properties

∙ Numerical examples

∙ Further ideas
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constrained optimization: the objective

∙ Consider a generic optimization problem of the form:

min
x∈X

f(x).

∙ X ∈ Rd is a closed convex set describing the constraints.

∙ f is the objective function, taken to be L-Lipschitz and (strongly)

convex.

∙ We are looking for the minimizer x∗
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projected gradient descent

∙ One way of finding the solution is using,

xk+1 = ΠX (xk − η∇f(xk)),

where k denotes discrete time, η is the learning rate, and the

projection is defined through the Euclidean norm,

ΠX (y) = argmin
x∈X

||y− x||22,

∙ Drawback: tied to the Euclidean norm can lead to slow

convergence for large dimension d.

∙ If supx,x′∈X ||x− x′||∞ ≤ 1 implies supx,x′∈X ||x− x′||2 < 2
√
d it

converges at rate
√

d/t.
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mirror descent

∙ A generalization of projected gradient descent (GD),

xk+1 = argmin
x∈X

DΦ(x, yk+1 = ∇Φ∗(zk+1),

zk+1 = ∇Φ(xk)− η∇f(xk).

∙ Here Φ : X → Rd is the mirror map, mapping from the

constrained set to an unconstrained one.

∙ Its convex conjugate is ∇Φ∗(z) := argminx∈X (Φ(x)− zTx).

∙ The Bregman divergence is

DΦ(x, y) = Φ(x)− Φ(y)−∇Φ(y)T(x− y).
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mirror descent

∙ The point xk is mapped into its dual space mirror image

zk = ∇Φ(xk).

∙ This is updated by the negative gradient step to zk+1.

∙ Then it is mapped back xk+1 = ∇Φ∗(zk+1) into primal space X .

∙ Note: when Φ(x) = 1
2
||x||22 we get back to projected GD.

∙ Benefits: The mapping is now done using Bregman divergence.

By choosing Φ in such a way that supx,x′

√
2DΦ(x, x′) is

dimension-independent, fast convergence is obtained 2

2A. BECK, First-order methods in optimization

7



continuous mirror descent

∙ The continuous version of mirror descent is given by,

dzt = −∇f(xt)dt,

xt = ∇Φ∗(zt).

∙ Using Euler discretization with ∆t = η we obtain the discrete

version.

8



continuous mirror descent: convergence properties

∙ Converge of MD for a convex objective

∙ Assume f is convex. Then,

1

T

∫ T

0

(f(xt)− f(x∗))dt ≤
D2
Φ,X

2T
,

where DΦ,X = supx,x′

√
2DΦ(x, x′).

∙ Therefore, if we choose Φ such that it ‘adapts well’ to constraint

set X convergence can be faster than projected GD.

∙ In the case of a strongly convex f the convergence speed can be

increased to an exponential rate.
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stochastic mirror descent

∙ The gradient estimate can contain noise, e.g. when computed

over batches as is common in machine learning

∙ Under certain assumptions on the noise, we obtain stochastic

mirror descent. In continuous time it is given by,

dzt = −∇f(xt)dt+ σdBt,

xt = ∇Φ∗(zt),

where Bt is a Brownian motion and σ determines the noise

variance and ∇Φ∗ : Rd → X is a projection operator.
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convergence of stochastic mirror descent

∙ Converge of SMD for a convex objective

∙ Assume f is convex. Then,

E

[
1

T

∫ T

0

(f(xt)− f(x∗))dt

]
≤ 1

2T
D2
Φ,X +

1

2
σ2||∆Φ∗||∞.

∙ Challenge: the gap to optimality is bounded from above by a

quantity proportional to noise variance σ2...
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common variance reduction techniques

∙ When the gradient estimate contains noise, convergence is to a

neighborhood of the optimum. The size of the neighborhood is

controlled by σ.

∙ How to converge closer to the optimum?

∙ Increase batch size or decrease noise variance σ

∙ Decrease learning rate 3

∙ Importance sampling 4

∙ Variance reduction techniques 5, 6

3P. MERTIKOPOULOS AND M. STAUDIGL, On the convergence of gradient-like flows

with noisy gradient input
4D. NEEDELL, R. WARD, AND N. SREBRO, Stochastic gradient descent, weighted

sampling, and the randomized Kaczmarz algorithm
5R. JOHNSON AND T. ZHANG, Accelerating stochastic gradient descent using

predictive variance reduction
6A. DEFAZIO, F. BACH, AND S. LACOSTE-JULIEN, SAGA: a fast incremental gradient

method with support for non-strongly convex composite objectives
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constrained optimization with interacting particles

∙ We consider an alternative to such variance reduction

techniques.

∙ Instead of using independent particles, one could consider

interacting particles (ISMD) 7, 8, 9

dzit = −∇f(xit)dt+ θ

N∑
j=1

Aij(z
j
t − zit) + σdBi

t,

for i = 1, ...,N.

∙ Here A is the interaction matrix taken to be doubly stochastic.

Aij = 1 if two particles interact, e.g. exchange values.

∙ The parameter θ controls the interaction strength.
7M. RAGINSKY AND J. BOUVRIE, Continuous-time stochastic mirror descent on a

network: Variance reduction, consensus, convergence
8J.C.DUCHI, A.AGARWAL, AND M.J.WAINWRIGHT, Dual averaging for distributed

optimization: Convergence analysis and network scaling
9P. LIN, W. REN, AND J. A. FARRELL, Distributed continuous-time optimization:

nonuniform gradient gains, finite-time convergence, and convex constraint set
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ismd: a useful reparametrization

∙ Let zt = ((z1t)
T, ..., (zNt )

T)T.

∙ Define the graph Laplacian as L := Diag(A1N)− A, and let

L := L⊗ Id, where ⊗ is the Kronecker product.

∙ Then we have,

dzt = (−∇V(zt)− Lzt)dt+ σdBt,

where Bt := ((B1
t)

T, ..., (BN
t )

T)T is the stacked variable of Brownian

motions and ∇V(zt) = (∇V(z1t)T, ...,∇V(zNt )T)
T
.

∙ We have taken ∇V(z) = ∇f ◦ ∇Φ∗(z).

∙ By the properties of the Laplacian, it has eigenvalues

λ0 = 0 < λ ≤ λ2 ≤ ... ≤ λN.
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interacting particles: why is it useful?

∙ Convergence of ISMD for a convex objective

∙ Let f be a convex function. Define z̃it = zit − 1
N

∑N
i=1 z

i
t. Then we

have,

1

T

∫ T

0

E[(f(xit)− f(x∗))]dt ≤ 1

2T
D2
Φ,X +

σ2

2N
||∆Φ∗||∞

+

∫ T

0

L

µT
E
[
||z̃it||∗

]
dt+

∫ T

0

2L

µNT

N∑
i=1

E
[
||z̃it||∗

]
dt.
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interacting particles: why is it useful?

∙ 1
2T
D2
Φ,X : the standard optimization error giving linear in time

convergence,

∙ σ2

2N
||∆Φ∗||∞: variance is decreased by a factor of N,

∙
∫ T

0
L
µTE

[
||z̃it||∗

]
and

∫ T

0
2L
µNT

∑N
i=1 E

[
||z̃it||∗

]
dt measure deviation

from the particle average.

∙ If, fluctuation term z̃it is bounded and non-increasing with N,

variance is reduced!
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bounding the fluctuation term

∙ Luckily, fluctuation is bounded under certain assumptions.

∙ We have, for a κ-strongly convex function f,

E

[
1

N

N∑
i=1

||z̃it||2∗

]
≤ e−θ(κ+λ)tC+

dK

θ(κ+ λ)
σ2N− 1

N
.

∙ For a sufficiently large θ(κ+ λ) the interaction is controlled.

∙ Strong convexity κ plays a role.

∙ Interaction strength θ plays a role.

∙ Connectivity of the particles plays a role through λ.
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the benefits of ismd

∙ For a large amount of particles N, if

∙ function if sufficiently strongly convex,

∙ or interaction strength is high enough,

∙ and interaction between particles is dense enough,

∙ variance is reduced compared to running just one particle!
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another perspective: looking at it from a sampling view

∙ If we sample long enough using ISMD our samples will be from

the invariant distribution,

ηN∞ (dz) =
1

ZN
exp

(
− 2

σ2

(
N∑
i=1

V(zi) + θ

2
zTLz

))
dz

=
1

ZN
exp (−W(z))dz,

where ZN is the normalization constant.
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another perspective: looking at it from a sampling view

∙ Finding the mode of ηN∞ is equivalent to solving the following

optimization problem:

z∗ = argmin
z

W(z).

∙ Observe that this is the same as,

z∗ = argmin
z

V(z),

where under the right assumptions z∗ in dual space gives us the

optimum x∗ in primal space.

∙ Therefore, if the samples have converged to samples from the

invariant measure, the samples lie around the minimizer!
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another perspective: looking at it from a sampling view

∙ Studying the convergence rates from a sampling perspective, i.e.

the speed of convergence of the samples zit to samples from the

invariant distribution can give insight into how close we are to

the minimum.

∙ Using Bakry-Emery theory, if we can show that

Hess(W) � ρId,

then this implies,

||ηNt − ηN∞||TV ≤ Ke−2ρt,
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convergence to the invariant measure

∙ We can show the curvature assumption holds with with

ρ = σ2

2
(κ+ λ

2
) where κ is the curvature of our objective function

and λ is the second-lowest eigenvalue of the Laplacian matrix

of the interactions.

∙ Therefore we have an exponential convergence to the invariant

measure,

||ηNt − ηN∞||TV ≤ Ke−2ρt.
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distance to optimality

∙ Studying the form of the invariant measure can provide us with

insight into how far we are from the optimum and how close the

particles are.

∙ Remember, the mode of the invariant measure is our optimal

point.

∙ Measuring the distance between the expected value of the

samples and the mode can give us insight into the distance to

optimality,

EηN
∞
(W)−W(z∗) ≤ σ2

2

(
2dN

ρ
− 1

2
log

(
σ2

2LN

))
.
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numerical examples: an ill-conditioned problem

∙ Consider the problem,

min
x∈X

||Wx− b||22, (1)

where X = ∆n, the unit simplex, W ∈ Rm×d and b ∈ Rm.

∙ If we let W have a high condition number, the problem is

ill-conditioned.
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numerical examples: an ill-conditioned problem

Figure: A comparison between the initial convergence of SMD and ISMD for

condition number 100 (L) and a histogram (R). We observe a speedup in

convergence using interacting particles and a smaller variance.
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traffic assignment problem

∙ The objective of the traffic assignment problem is to compute

the optimal path between two nodes in a graph.

∙ This problem is a convex optimization problem with a simplex

constraint and therefore fits our framework.
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traffic assignment problem

∙ The setup is: take a directed multi-graph G = (V, E). An
origin-destination pair (o,d) sends λ units of traffic from o to d

via a set of paths p ∈ P using edges in G.
∙ The set of feasible routes is given by

X =
(
(xp)p∈P : xp ≥ 0 and

∑
p∈P xp = λ

)
.

∙ The delay along a path is cp(x) =
∑

e∈p ce(we) with we the load

on an edge and the delay is ce(we).

∙ The average delay is then C(x) =
∑

p∈P xpcp(x).

∙ The objective is to find an optimum routing flow

x∗ ∈ argminx∈X C(x).
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traffic assignment problem

Figure: A comparison between MD and GD. GD with Euclidean projections is

considerably slower than MD for this problem because the solution is

sparse. IMD performs the same as MD for deterministic problems.
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traffic assignment problem

Figure: A histogram of the samples for the comparison between SMD and

ISMD with 10, 100 and 1000 particles. With more particles the variance of the

samples is lower.
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mini-batch optimization

∙ In machine learning the optimization objective typically consists

of a sum over data samples, i.e. f(x) =
∑m

i=1 fi(x), where m is the

sample size.

∙ The gradient is computed over a subset of the data (a

mini-batch), since for large m computing the full gradient is too

costly.

∙ The downside of this is that the gradient contains noise.

∙ Interaction is a way to decrease noise.

∙ But it comes at a cost! Let us compare cost of interaction

against an increased batch size.
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mini-batch optimization

∙ Consider,

f(x) =
1

m

m∑
i=1

fi(x) :=
1

m

m∑
i=1

||Wi,·x− bi||22. (2)

∙ In every iteration, the gradient is computed over a subset of the

data, fS(x) =
1

|S|
∑

i∈S fi(X), where |S| refers to the size of the

batch.

∙ The optimization algorithm is then given by,

zit+1 = zit − ηε∇fS(x
i
t) + ε

N∑
j=1

Aij(z
j
t − zit).

∙ The noise is thus implicit in the gradient ∇fS .
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mini-batch optimization

Figure: The loss function (L) and the histogram (R) for ISMD with different

batch sizes with κ(W) = 200. Using interacting particles allows to use a

smaller batch size while still attaining convergence. The presented results

are averaged over 10 runs.
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non-convex optimization

∙ Back to the setting of interest: non-convex objectives

∙ Consider the well-known Müller-Brown (MB)

f(x, y) =
4∑

i=1

Ai exp(ai(x− x̄i)
2 + bi(x− x̄i)(y− ȳi) + ci(y− ȳi)

2).

∙ It has several saddle points and local minima.

∙ What can interaction do?
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non-convex optimization

Figure: Starting from a saddle point with 10 particles using interacting SGD

with a low and high interaction strength in a no-noise setting. Interactions

help escape saddle points in interacting GD with learning rate η = 5e− 6.
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non-convex optimization

Figure: Starting from a saddle point with 10 particles using interacting SGD

with a low and high interaction strength. Interaction strength imposes

consensus in interacting SGD with σ = 0.005.
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applications: federated learning with privacy-guarantees

∙ Consider a setting in which each node in our distributed

optimization setting has access to certain local data, e.g. a

mobile device.

∙ The nodes have to communicate with each other or with a

centralized server to collectively optimize the objective

f(x) =
∑N

i=1 fi(x).

∙ To do this nodes exchange xi or gi := ∇fi(x).

∙ Problem: both parameters as gradients can leak sensitive

information about the other users.

∙ One solution: to each gradient that is exchanged in the system

add a certain amount of noise.

∙ Intuition: noise adds robustness to the model; robustness can

be related to differential privacy.
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applications: optimal perturbations to obfuscate private data

∙ When sending data from a local device to the cloud one is also

sending sensitive data.

∙ Ideally: reduce information content in transmitted data while

conserving essential pieces of information needed for learning.

Figure: From: A Principled Approach to Learning Stochastic Representations

for Privacy in Deep Neural Inference
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applications: optimal perturbations to obfuscate private data

∙ This problem can be formulated as a constrained convex

optimization problem:

min
L(X̂)≤x

I(X; X̂)

where I(X; X̂) is the mutual information between the raw input X

and the data sent to the cloud X̂ subject to the restriction on the

accuracy of the prediction task x.
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